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Abstract

When discussing non-Gaussian spatially correlated variables, generalized linear
mixed models have enough flexibility for modeling various data types. However, the
maximum likelihood methods are plagued with substantial calculations for large data
sets, resulting in long waiting times for estimating the model parameters. To alleviate
this drawback, composite likelihood functions obtained from the product of the
likelihoods of subsets of observations are used. The current paper uses the pairwise
likelihood method to study the parameter estimations of spatial generalized linear mixed
models. Then, we use the weighted pairwise and penalized likelihood functions to
estimate the parameters of the mentioned models. The accuracy of estimates based on
these likelihood functions is evaluated and compared with full likelihood function-based
estimation using simulation studies. Based on our results, the penalized likelihood
function improved parameter estimation. Prediction using penalized likelihood
functions is applied. Ultimately, pairwise and penalized pairwise likelihood methods are
applied to analyze count real data sets.
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Weighted pairwise likelihood.
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Introduction
Generalized linear models were first introduced by

(1), while (2) employed these models to discrete
response variables. These models assume independence
of observations to establish a linear relationship
between the mean of observations and the explanatory
variables. An improved class model, the Generalized
Linear Mixed (GLMM), is employed for correlated
observations. In these models, the assumption of
independence of observations is adjusted as conditional
independence, and the correlation between the variables
is established by introducing random effects through
latent variables to the model. For cases in which a

model can be established to represent the correlations of
spatial responses, the Kriging method can be used for
spatial analysis and predict the unknown values through
a random field; otherwise, a Spatial Generalized Linear
Mixed (SGLMM) can be used. Unlike linear models,
the likelihood functions in SGLMMs do not offer a
closed form owing to the non-Gaussian nature of the
response variable; the parameters cannot, hence, be
estimated using the maximum likelihood. Therefore,
most articles accept the assumption of latent variables'
normality and provide a solution to estimate model
parameters and latent variables by maximizing
likelihood functions, Penalized quasi-likelihood, or
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hierarchical likelihood using numerical methods.
Among others (3), utilized maximum likelihood
algorithms for GLMMs with non-spatial random effects
using numerical methods such as Monte Carlo
Expectation Maximization (MCEM) (4). Also employed
the MCEM algorithm to estimate the maximum
likelihood of the model parameters with the assumption
of closed skew normal of the latent variables (5, 6).
Presented another method based on a data cloning

algorithm. Recently, approximate Bayesian inference
methods, which are less computationally burdensome
and hence faster than simulation-based, have garnered
much attention among the literature contributors (7).
Introduced approximate Bayesian inference for

Gaussian Markov random processes (8) applied a
similar method to SGLMs.
Recent studies have studied other approximate

methods, which are not based on the complete
likelihood of observations. Compared to the
approximate likelihood methods, the advantage of these
methods is the presumed lack of need for
simultaneously modeling all the observations. As such,
(9, 10) have employed quasi-likelihood functions, a
subclass of composite likelihood methods (11) applied
the pairwise composite likelihood approach to binary
spatial data using a probit link function for the first
time. The evaluation of pairwise likelihood is
computationally efficient when the bivariate density
function can be computed quickly compared to the joint
density of n observations. In spatial modeling,
accurately estimating covariance functions is crucial.
Pairwise likelihood methods facilitate this by allowing
for the estimation of covariance structures based on
pairs of observations. Pairwise likelihood methods
specifically target bivariate relationships among
observations, often more straightforward to model and
validate than higher-dimensional dependencies. This
focus allows researchers to effectively capture the
essential structure of spatial data without needing a
complete joint distribution (see 12, 13). A general
discussion of pairwise likelihood can be found in (14),
which, due to its simplicity, has been applied in many
fields of statistics (15) used the pairwise composite
likelihood method for SGLMMs, in which a novel EM
algorithm that uses numerical quadrature was
introduced (16) used the weighted likelihood function
for the spatiotemporal data and proved it is a good
approximation of maximum likelihood (17) showed that
weighting the likelihood function increases the
asymptotic relative estimation efficiency in categorical
data. We employed the pairwise likelihood function for
SGLMMs. We were looking to increase the accuracy of
estimates compared to other methods proposed so far,

so the weighted pairwise likelihood function was
developed and used to estimate the parameters of the
models. Moreover, the penalized pairwise likelihood
function was used to increase the accuracy of model
parameter estimation. Incorporating penalization into
composite likelihood methods not only mitigates issues
related to overfitting and computational complexity but
also enhances model interpretability and performance in
high-dimensional settings (see 18). In a simulation
study, the accuracy of model parameter estimation in
the pairwise, weighted, and penalized pairwise
likelihood was evaluated and compared using the Mean
Squared Error (MSE) and Standard Error (SE) criteria.
Then, we estimated parameters based on the full
likelihood function of the data with the Laplace
approximation method introduced by (19), and the
results were compared with three pairwise likelihood
functions. Finally, penalized pairwise likelihood was
used to predict and estimate two real data sets.
The article's structure is as follows: In the next

section, we delve into the details of SGLMMs and
explain their formulation. Then, it discusses these
likelihood functions' theoretical foundations and
practical implementations. We introduce the EM
algorithm, detailing its steps and how it is applied
within the context of SGLMMs. The following Section
presents the results of various simulation studies
conducted to evaluate the performance of the proposed
methods. We discuss the setup, results, and implications
of these simulations. Then, we apply the proposed
methods to real data sets, providing a comprehensive
analysis and interpretation of the results. The final
Section summarizes the study's key findings and
discusses their implications.

Materials and Methods
In this section, maximum likelihood estimation

method for SGLMMs is investigated. First, we
introduce the SGLMMs, then we discuss the composite
likelihood and penalized likelihood functions used in
this models.

1. Spatial Generalized Linear Mixed Models
Let () be a discrete spatial response variable,

(), … ,() be  covariates, and {():  ∈ ℝ} is a
latent spatial random field, where () denotes a
random effect at location s. (8) have defined the
SGLMMs as follows: Let {():  ∈ ℝ} denotes a zero
mean stationary Gaussian Random Field (GRF) with
spatial covariance function Cov(),() =
( − ;). Here, (⋅;) is a positive definite
function, and  ∈ ℝ is a vector of correlation
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parameters. Given {():  ∈ ℝ}, the random field
() denotes a set of independent random variables
whose distribution is characterized by conditional mean
[() ∣ ()]. For each link function  and regression
parameters , … ,, we have {[() ∣ ()]} =
∑
 () + (). Now the conditional distribution

of [() ∣ ()] belongs to the exponential family.

2. Weighted Pairwise Composite Likelihood Function
The composite likelihood function is obtained by

multiplying a set of likelihood components, in which
each likelihood component represents a subset of
observations. There are two main logical reasons for
using composite likelihood. The first is to reduce the
computational load in modeling the joint distribution of
a high-dimensional random vector. The second is
robustness under uncertainty of high-dimensional
distributions, as composite likelihood requires
assumptions about low-dimensional marginal and
conditional densities, and having the details of the
simultaneous distribution would not be necessary.
Inference based on the likelihood function for
particularly voluminous data is associated with
integrating and inverting high-dimensional matrices,
which may be difficult to solve even for potent
computers. These multiple integrals can be converted
into the sum of integrals with lower dimensions using
the weighted composite likelihood function.
Consider the -dimensional random vector  =

(, … ,) with the probability density function (;)
for the -dimension parameter  = , … , ∈ Θ. Let
{, … ,} be a set of conditional or marginal events
with the likelihood functions (; ) ∝ ( ∈
;),  = 1,… ,, in which case the composite
likelihood function for the parameter  would be
defined as follows

(; ) = ∏
 (, ),

where , … , are non-negative weights (see
(20)). An example of the composite likelihood function
is the weighted pairwise composite likelihood function.
(20) applied the weighted likelihood function to spatio-
temporal data. They showed that weighted composite
likelihood estimators are consistent and asymptotically
Gaussian with a variance equal to the inverse of the
Godambe information. They also showed with
simulation studies that this estimation approximates
maximum likelihood estimation and requires far fewer
calculation overloads than the maximum likelihood and
composite likelihood estimations (13) applied the
weighted composite likelihood function to categorize
data with a variable number of categories and examined
the asymptotic relative efficiency measure for different

weights. The results indicate that the composite
likelihood function increases the relative asymptotic
efficiency. In this research, we used a Weighted
pairwise composite likelihood function for SGLMMs,
and a simulation study showed that it is more efficient
and has better accuracy for such models than a full
likelihood function. Weighted pairwise composite
likelihood function can be represented as follows

(; ) =











 ,;
 .

Therefore, the logarithm of the pairwise weighted
likelihood function can be restructured as

ℓ(; ) = 











 log  ,; . (1)

For the SGLMMs

 = 1  −  ≤ 
0 o.w.

where  represents the distance between spatial
points. In this paper, we introduced new values for 
discussed in detail in the simulation section .As such,
the weighted pairwise composite maximum likelihood
estimation of  that maximizes the function in Equation
(1) under regularity conditions is equal to the unique
solution of the equation (; ) = ∇ℓ = 0. The
pairwise likelihood function for the SGLMMs is as
follows

(; ) = 
(,)∈

 ∣  ,  ∝


(,)∈

 ( ∣ ) ∣  ,  ∣  ,

where  = (,) is the vector of model parameters,
and  is the pairwise neighborhood set of  ,.

3. Penalized Pairwise Likelihood Function
The maximum likelihood method in parameter

estimation in various problems is sometimes plagued
with overfitting, low accuracy, or high variance of the
estimators. Penalization of the likelihood function is a
solution to alleviate the behaviors of estimators
mentioned above using the usual maximum likelihood
method, called the penalized maximum likelihood
method (see (21)). Using the approximation of the
likelihood function instead of the usual likelihood due to
its approximate nature can reduce the accuracy of the
estimators. The composite likelihood function can be
employed to estimate the parameters for extensive
spatial data, where obtaining the likelihood function is
analytically extremely difficult. The composite
likelihood function approximates the likelihood function
of observation, and hence, estimators based on this
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function may have low accuracy. The penalized
likelihood function can be, as such, used to improve the
estimation accuracy in the SGLMMs, in which a penalty
function is embedded in the logarithm of the likelihood
of observations. Penalized likelihood methods provide a
robust framework for estimating correlation parameters
in spatial models by enhancing stability, reducing
variability, and directly incorporating spatial
dependence. These advantages make them particularly
effective compared to traditional maximum likelihood
estimation techniques. In spatial models, accounting for
spatial autocorrelation is vital. Penalized likelihood
methods allow for the direct integration of spatial
dependence into the likelihood function, leading to more
efficient estimates than methods that only indirectly
consider spatial relationships. This direct approach
enhances model fit and improves inference regarding
correlation parameters (see 22). For the SGLMs, the
penalized pairwise likelihood function is as follows

ℓ(; ) = 











log  ,; − (),

where  is the smoothing parameter and () is the
penalty function, which can be selected using various
methods. For example, (23) defined the penalty function

as 



log |()| for the exponential class of functions,

where () is the Jeffreys prior of . (24) presented the
Lasso penalty as () =  for estimation in linear
models. Here, the Lasso and Green (see (25)) function
2(developed for the penalization of SGLMMs
likelihood function and based on MSE criterion showed
that have better results compared to other models).
When using the Lasso penalty, the regularization
parameter lambda controls the degree of shrinkage
applied to the parameters. The optimal value of lambda
can be chosen using cross-validation, which involves
splitting the data into training and validation sets and
selecting the value of lambda that minimizes the mean
squared error on the validation set.

4. Expectation Maximization Algorithm
(15) presented the pairwise Expectation

Maximization (EM) algorithm for maximizing the
likelihood. Based on this algorithm, the value of ()

should be selected in such a way that ();  > 0.
Set  = 0. In the E step, the value of conditional
expectation is selected as follows
 ∣ () = 

,∈

 log , , ,; , ∣  ,;
() . (2)

Then, in the M step, the value () is selected
such that

() ∣ () ≥ () ∣ ().

Then, by setting  =  + 1, the algorithm goes to
the next iteration and continues until convergence. If the
conditional expectation of step  cannot be expressed
in a closed form, it should be approximated numerically.
(15) defined an approximate EM algorithm as replacing
 with an approximate ̂ value. In the approximate EM
algorithm, the initial value of () must be chosen such
that ();  > 0 and  = 0. The approximate EM
algorithm repeats the following steps until convergence.
Algorithm 1:
Step 1: Approximate E step: the conditional

expectation value in Equation (2) is approximated with
̂;().
Step 2: Generalized  step: the value of () is

chosen such that ̂() ∣ () ≥ ̂() ∣ ().
Step 3: Reiterate steps 1 to 2 of the algorithm until

convergence.
The convergence criterion in this algorithm is

max () − ()/() < 0.0005. (3,26) used
Monte Carlo integration in the expectation step for
SGLMMs. In pairwise likelihood maximization, the
expectation step involves the sum of double integrals.
Results indicate that the Gauss Hermite quadrature is
more efficient than Monte Carlo integration. Therefore,
(15) presented the Quadrature Pairwise EM (QPEM)
algorithm for SGLMMs and showed that its speed is
faster than the MCEMG algorithm. In the E step of this
algorithm, Equation (2) is approximated using the
Gauss-Hermite quadrature. Moreover, our results
showed that the QPEM algorithm is faster than the ML
method with place approximation.
Gauss-Hermite quadrature is developed to

approximate integrals that involve distributions close to
the normal distribution. In this approximation, the sub-
integral function () is divided into two parts: the
Gaussian part (the envelope) and the remaining part, the
latter of which becomes ̃() = ‖‖

/() after
changing the variables. Gauss-Hermite quadrature
decreases the integral of a function into a weighted sum
of sub-integral functions computed at  nodes.
Adaptive Gauss-Hermite quadrature uses Gaussian
approximation  ,  ∣  ,; to good accuracy
with low values of  but requires the mode and the
second derivative of those mentioned above. (15)
considered the distribution of  ,  as the envelope
function and the likelihoods of ( ∣ ) as the
remaining part to approximate the likelihood function of
the SGLMM. To solve the double integral in Equation

(2), the vector  , 

is transformed into the

standardized components of  , , where  =


and



Penalized Composite Likelihood Estimation for …

139

 =




and  =  − ;. After changing the

variables, by solving for () and  ,  the
approximate value of the function ;() is as
follows

̂;()

= 



,





,

log ℎ(), ℎ(),ℎ(), , ;, ;()

where
,;() =
∣();

()∣(),();
()ℓ()ℓ()

∑,∣();
()∣(),();()ℓ()ℓ()

.

Here, ℎ() s and ℓ() s denote, respectively, the
nodes and the weights.

5. Simulation Study
In this section, we use the QPEM algorithm to

estimate the parameters of spatial generalized linear
mixed models through simulation. In this study,
pairwise likelihood, weighted pairwise likelihood, and
penalized pairwise likelihood functions are used, and
the accuracy of each of these functions is checked
through the MSE and SE criteria. A neighborhood with
a radius of 4 is used for each observation. If we want to
use all 48 neighbors for each point in the model, there
are 48 = 10800 pairs, which is far less than all
possible ordered pairs, i.e., ( − 1)/2 = 25200.
The QPEM algorithm with  = 4 × 4 nodes of

Gauss-Hermite quadrature was used to estimate the
parameters. Based on the method proposed by (15), 15
pairs from a radius of four neighbors are randomly
selected for each observation, as shown in Figure 1.
This method would, in turn, reduce the number of
observations to 15 = 3375. The parameters were
estimated using pairwise likelihood and weighted
pairwise likelihood function, and the accuracy was
compared through the MSE and SE criteria. Results

were obtained for 100 datasets. Different values of 
were inputted in the Equation (1) to obtain the optimal
value of the weight function. Consider a matrix of
Euclidean distance between spatial points and sort them
from smallest to largest; then,  's are a function of the
quantiles of these values. For this research, we consider
 = (0.4), (0.6), (0.8), (0.9). The results of the
simulations are presented in Table 1. The current
research also examined the effect of the number of
Gauss-Hermite quadrature nodes and the corresponding
neighborhood's radius. (15) revealed that reducing the
number of nodes to 3 × 3 leads to lower performance,
while increasing the number of nodes to 5 × 5
significantly does not improve the results. Increasing the
neighborhood radius, and thus increasing the number of
pairs, did not have much effect on the results of the
simulations.
The present research also studied the effect of

weighting the pairwise likelihood function on the
accuracy of the SGLMM parameter estimation. The
result was compared with estimation based on the full
likelihood function of the data, and an ML algorithm
with Laplace approximation was used for evaluation.
The examined model was SGLM with Poisson response
and logarithm link function. The data is generated from
a 25 × 25 regular grid with nodes {(, ): ,  =
0,0.04,… ,1}. To generate the spatial latent variables, ,
the normal distribution of (0, Σ), the isotropic
exponential covariance function of (ℎ;) =
exp(−3ℎ/), ℎ > 0, = (,) and values  =
1.5, = 6 and  = (,) = (1,0.5) are considered.
The explanatory variable in each position  = (, ) is
considered as  = . The response variable, , is also
generated by conditioning on spatial latent variables

from the distribution  ∼ Poisson , exp +  +

, where  = 25 × 25 is the number of samples. The

graphs of these data are shown in Figure 2. Logarithm

Figure 1. Sampling pairs within a neighborhood of radius 4. Here, ∗ is the observation location, and the filled circles are 15
neighbors sampled randomly without replacement. The contributing pairs consist of ∗ and each of the 15 sampled neighbors.



Vol. 35 No. 2 Spring 2024 L. Salehi, and M. Mohammadzadeh. J. Sci. I. R. Iran

140

transformation was used to maximize the parameters of
random effects to avoid singularity. That is, the
parameters were , and  inputted in the model as
log and log. The relation mentioned in Section 5
was used as the criterion of convergence.

The regression parameters  and  are estimated
without considering the random variable and using a
simple GLMM to obtain the initial values. Then, using
the link function, the observed values are converted, and
the remaining values are estimated as ̂() = ()−

Table 1. Estimation of the SGLMM based on full, pairwise and weighted pairwise likelihoods.
Likelihood Weight Parameter Estimate MSE SE

Full 1

 0.892 0.0930 0.0401
 0.485 0.0852 0.0331
 1.340 0.1245 0.0185
 6.0820 4.0980 0.3633

Pairwise 1

 0.842 0.1052 0.0380
 0.565 0.0934 0.0305
 1.230 0.1042 0.0177
 5.640 3.4111 0.3820

Weighted

(0.4)
 0.901 0.8563 0.0374
 0.327 0.5946 0.0307
 1.196 0.9116 0.0176
 6.105 14.054 0.3756

(0.6)

 0.807 0.1702 0.0336
 0.474 0.1170 0.0312
 1.470 0.1042 0.0187
 5.830 6.8114 0.3756

(0.8)

 0.883 0.1180 0.0377
 0.469 0.1067 0.0300
 1.554 0.1111 0.0160
 5.907 3.5143 0.3677

(0.9)

 0.922 0.1120 0.0327
 0.519 0.0900 0.0243
 1.511 0.1137 0.0166
 6.041 3.4819 0.2849

Figure 2. Realization from the spatial Poisson model. From top-left to bottom-right: covariate () = , simulated mixed effects
field (), (log) simulated data, histogram of the data.
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̂,  = 1,… ,. The appropriate covariance function is
fitted to the experimental variogram of the residuals,
and the estimation of  and  are considered the initial
values.
The results from Table 1 indicated that the weighted

pairwise composite likelihood outperforms the pairwise
composite likelihood function when  is equal to
(0.8) or (0.9). The lower SE criterion values of
weighted pairwise likelihood estimation show this
function is more efficient than pairwise and full
likelihood function-based methods. For example, the SE
values of , , , and  with the full likelihood
function are 0.0401, 0.0331, 0.185, and 0.3633,
respectively. In weighted pairwise likelihood, when 
is equal to (0.9), these values are 0.0327, 0.0243,
0.0166, and 0.02849, respectively. Moreover, the output
values for these two inputs were similar, implying that
excluding the outlying pairs from the likelihood
function would not result in substantial information loss,
and the model parameters can be estimated with
acceptable accuracy even with fewer pairs. Results
show that for  and , the MSE of the full likelihood
function is slightly smaller than pairwise and weighted
pairwise likelihood functions, and for  and , the
results are the opposite. The R program was used for
this research. The computing time for QPEM on a
typical data set using a 2.40 GHz computer with 4 GB
RAM was 250 seconds. The ML estimates with Laplace
approximation for the same data set were computed in
1200 seconds.

6. Penalized Composite Likelihood Function
This section examines the effect of penalizing the

pairwise likelihood function on the accuracy of
SGLMM parameter estimation. For this purpose, two
penalization functions, Lasso and 2 (see (25)), were
used where  = (,) is the vector of model
parameters. We used the cross-validation method
mentioned in Section 3.1 to select optimal  in the
Lasso penalty, and for our simulated data,  = 2 was
selected. The QPEM algorithm estimates the
parameters, maximizing ( ∣ )− () in the M
step. In order to examine the effect of penalizing the

pairwise likelihood function, the estimation accuracy
based on the MSE criterion has been compared for two
functions: pairwise likelihood and penalized pairwise
likelihood. Findings from Table 2 indicate that MSE
and SE criteria in estimating the model parameters using
the penalized pairwise likelihood function for both
penalty functions are lower than those of the pairwise
likelihood function. The penalized pairwise likelihood
function can significantly increase parameter estimation
accuracy. Also, the results indicate that the lasso penalty
function outperforms that of (25).
To compare two penalty functions in prediction

accuracy, we compute prediction error measures by
MSPE at (0.35, .55) location for 100 data sets. This
measure for the Lasso and Green penalty was 1.5134
and 1.5245, respectively. So, two penalty functions have
the same operation.

Results
Real Binomial and count datasets were employed to

check the performance of composite likelihood
functions based on the QPEM algorithm: Rhizoctonia
root rot data and Swedish weed data.

1. Binomial Example
Rhizoctonia root and stem rot is a disease that

affects plant roots and prevents water and nutrient
absorption. This dataset contains counts of Rhizoctonia
root rot disease in barley collected at 100 sampling sites
at Cunningham Farm in the northwestern United States.
For each sampling site, 15 plants were pulled out from
the ground for examination. This dataset contains five
columns and 100 rows. The first two columns contain
the coordinates of the sampling sites, the third column
contains the total number of crown roots in the extracted
plants, the fourth column represents the total number of
infected roots in the plants, and the last column contains
the yield of barley in the sampling sites, see Figure 3.
Using the findings from (16,19,27), a Binomial
SGLMM with a logit link function, a constant mean, ,
and an exponential correlation function of

(ℎ;) = (1 − )exp −



 , = (,,),

Table 2. Estimation of SGLMMs by weighted pairwise and penalized pairwise likelihoods.
Likelihood Parameter Estimate MSE SE

Weighted pairwise
 1.230 0.1042 0.0177
 5.640 3.411 0.3820

Penalized with Lasso
 1.506 0.071 0.0169
 1.895 1.925 0.1504

Penalized with Green
 1.489 0.093 0.0169
 1.895 2.252 0.1504
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was used for the spatial random effect that  is the
nugget effect.
Furthermore, the penalized composite likelihood

function with the Lasso and Green penalty functions
was implemented to estimate the SGLMM. We used the
cross-validation method mentioned in Section 3.1 for
selecting the optimal  in the Lasso penalty. For our
data,  = (0.2,0.5,0.7,1,1.5,1.75,2,4) was examined,
and  = 2 was selected. The method mentioned in the
simulation study was also used to obtain the initial

values shown in Table 3. The results were consistent
with those obtained by (19). We used the penalized
likelihood function with the Lasso penalty to predict
new locations. Based on estimated parameters and latent
variables on 100 observations, we predict the responses
for 36 new locations, and the results are shown in
Figure 4. We use the minimum mean-squared error
(MMSE) prediction method proposed by (27) with the
Metropolis-Hastings algorithm.
Results show that prediction values are similar to

Figure 3. Plot of Rhizoctonia data set

Table 3. Estimation by weighted pairwise and penalized pairwise likelihoods
Method

Parameter Lasso penalty Green penalty Weighted pairwise likelihood
 -1.69 -1.75 -1.73
 0.15 0.09 0.18
 149.08 152.65 148.4
 0.58 0.61 0.46

Figure 4. Observed proportion of infected roots and prediction of Binomial probability for Rhizoctonia example
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observation values. The Cross-Validation MSE for
predicting new data based on the MMSE method was
0.30548.

2. Poisson Example
The weed dataset was first published by (28) and

was modeled using a spatial Poisson-lognormal model.
The data pertained to the number of weeds of non-crop
plants measured in more than 100 frames of 0.5 × 0.7
meter dimensions at Gertrup Farm in southern Sweden.
This dataset contains four columns and 100 rows. The
first two columns are the coordinates of the sampling
locations. The third column includes the number of
observations, and the last column estimates the number

of photos obtained. The areas of the frames on which
the number of weeds is collected are all equal.
Therefore, they can be considered equal to 1, see Figure
5. The Poisson SGLMM with a lognormal link function
fits this data set. The covariance function of latent
variables is exponential with a nugget effect, and the
experimental variogram of data in Figure 6 shows the
suitability of this model. There is no explanatory
variable for this data, but we consider an intercept
parameter for the model. Penalized pairwise likelihood
was used to estimate parameters. For Lasso, the penalty
 = 0.7 was optimal. The results of the parameter
estimation for the weed data set are in Table 4.

Figure 5. Plot of weed data set

Figure 6. Experimental variogram of the weed data set

Table 4. Parameter estimation by weighted pairwise and penalized pairwise likelihood.
Method

Parameter Lasso penalty Green penalty Weighted pairwise likelihood
 2.14 2.07 1.98
 0.18 0.35 0.26
 56.6 53.7 54.9
 15.6 17.2 18.8
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Discussion
This research used full likelihood, pairwise

likelihood, weighted pairwise likelihood, and penalized
pairwise likelihood functions for spatial generalized
linear mixed models. The QPEM algorithm was used to
maximize pairwise likelihood functions, and for the full
likelihood function method, the ML algorithm with
Laplace approximation was used. During a simulation
study, the accuracy of model parameter estimation
based on these functions was evaluated and compared
using the mean squared error (MSE) parameter. The
simulation results showed that the weighted pairwise
likelihood function and the penalized pairwise
likelihood function outperformed the pairwise
likelihood function in estimating the parameters of the
SGLMM.
Also, we showed that the full likelihood function has

better results for regression parameters, and pairwise
and weighted pairwise likelihood functions have better
applications for correlation parameters. The findings
further established that the penalized pairwise likelihood
function was more accurate than others in estimating the
correlation parameters  and . Also, the Lasso
penalty function exhibited better results than the Green
penalty function among penalized composite likelihood
functions. The results were analyzed and compared with
those of other studies for two real data sets with
Binomial and Poisson distributions. Overall, the results
of the current study showed that the proposed functions
outperformed other functions in estimating the
parameters of the SGLMM.
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