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Abstract 

The study addresses the challenges of analyzing time-to-event data, particularly 
emphasizing the discrete nature of durations, such as the number of years until divorce. 
This frequently results in zero-inflated survival data characterized by a notable frequency 
of zero observations. To address this, the study employs the zero-inflated discrete Weibull 
regression (ZIDWR) model, which serves as a suitable framework for evaluating the 
impact of explanatory variables in survival analysis. However, challenges such as 
nonstationarity in the relationship between variables and responses and spatial 
heterogeneity across geographical regions can result in a model with too many parameters 
To mitigate this, we propose a spatial clustering approach to summarize the parameter 
space. This Paper leverages nonparametric Bayesian methods to explore the spatial 
heterogeneity of regression coefficients, focusing on the geographically weighted 
Chinese restaurant process (gwCRP) for clustering the parameters of the ZIDWR model. 
Through simulation studies, the gwCRP method outperforms unsupervised clustering 
algorithms clustering K-means and the standard Chinese restaurant process (CRP), 
exhibiting superior accuracy and computational efficiency, particularly in scenarios with 
imbalanced cluster sizes. This improved performance is quantitatively demonstrated 
through higher Rand indices, lower average mean squared error (AMSE) in parameter 
estimation and superior log pseudo-marginal likelihood (LPML) values. Applying this 
methodology to Iranian divorce data reveals distinct spatial clusters characterized by 
varying covariate effects on the probability of divorce within the first five years of 
marriage and the subsequent time to divorce. 
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Introduction 
Survival analysis is a statistical technique used to 

evaluate time-to-event data. While survival time is 
generally treated as a continuous random variable, it is 
often recorded at discrete intervals (e.g., 0, 1, 2, 3…). 

                                                        
* Corresponding Author: Tel:+989122066712; Fax:+982182883483: Email:mohsen_m@modares.ac.ir 

This discretization may result in zero observations, 
indicating events that occurred before the first time 
recording unit (e.g., daily, monthly, or yearly). These 
zero values, sometimes referred to as "sampling 
zeros"(1), arise from events that take place right at the 
)commencement of the study. Such occurrences are 
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prevalent across various domains. For example, in the 
healthcare sector, pregnant women might spend less than 
a day in the hospital before delivery. Likewise, in studies 
related to job placement, a zero survival time may signify 
an immediate job placement. Traditional survival models 
often struggle to accommodate these instances. As a 
result, researchers have turned to "zero-inflated survival 
models" to tackle these challenges more effectively. 
Applications of these models include zero-inflated Cox 
models for analyzing rat sleep time following ethanol 
exposure (2), Weibull models for investigating time until 
banking fraud occurs (3-4), and zero-inflated cure models 
employed in studies of labor duration and cervical cancer 
(5-6). The choice of the baseline distribution is crucial in 
zero-inflated discrete models. While the Poisson 
distribution is frequently used for its intuitive 
interpretation of count data, its inherent assumption of 
equality between mean and variance often fails in 
practice. This limitation leads to over- or under-
dispersion, resulting in inaccurate inferences and 
underestimated standard errors. Although the negative 
binomial distribution effectively addresses over-
dispersion, it is unsuitable for under-dispersed data. 
Furthermore, by modeling the probability of a specific 
number of events within a defined period and assuming 
independence, the Poisson distribution is not directly 
analogous to time-to-event distributions. Consequently, 
generalizing discrete distributions in survival analysis is 
necessary to accommodate all types of dispersion and 
relax the  independence assumption, mainly when 
dealing with correlated data. The Type I Discrete Weibull 
distribution proposed (7) is designed to mirror its 
continuous counterpart, is well-suited for discrete 
survival data and effectively handles both over- and 
under-dispersion. The Zero-Inflated Discrete Weibull 
(ZIDW) regression model is ideal for zero-inflated 
discrete survival data as it captures dispersion in zero and 
non-zero modes (8). This model includes two regression 
relationships:one for the effect of explanatory variables 
on the rate of non-zero responses and another for the 
probability of zero, allowing each explanatory variable to 
have two regression coefficients. Considering the spatial 
references of survival data, known as survival spatial 
analysis, enables the estimation and comparison of 
survival across different geographical areas, revealing 
spatial patterns. This helps identify areas with the highest 
and lowest survival rates. 

One notable aspect of spatial variability is the 
difference in the influence of explanatory variables on 
survival time across different locations, a phenomenon 
known as spatial heterogeneity. Spatial heterogeneity 
refers to how the relationship between explanatory and 
response variables alters with geographical displacement. 

This variation arises because different locations exhibit 
different properties or values. Consequently, the values 
of regression coefficients can differ significantly from 
region to region. As a result, traditional regression 
models may fail to accurately capture the nature of these 
relationships in the context of spatial data analysis. Two 
main methods exist for estimating regression coefficients 
in models with spatially variable coefficients. The first is 
geographically weighted regression, a local method that 
estimates model parameters by weighting them at any 
point in the examined space. Unlike conventional 
regression, which describes general relationships 
between variables, geographically weighted regression 
provides spatial information on the variations in these 
relationships. The second method treats regression 
coefficients as random variables following spatial 
distributions. The spatial distribution can be assessed by 
selecting appropriate prior probability functions for the 
parameters. (9) examined the application of a 
geographically weighted regression model for 
accelerated failure time in spatial survival data.  (10)  
investigated the influence of explanatory variables 
through a geographically weighted regression model on 
the  Cox survival models, explicitly  applying the Weibull 
distribution to handle the data. 

The second method, Spatial Variable Coefficient 
(SVC), addresses this spatial heterogeneity by treating 
regression coefficients as spatial random variables. This 
method considers regression coefficients as spatial 
random variables that follow spatial distributions. By 
selecting suitable prior probability functions for the 
parameters, it is possible to assess the spatial variability 
of the parameters at different locations in the Bayesian 
spatially-varying coefficient (BSVC) model and to 
estimate the regression coefficients from their posterior 
probability (11). Simulation studies indicate that SVC 
processes outperform GWR by accurately estimating 
regression coefficients, so GWR must be considered a 
purely exploratory tool (12). In survival data analysis, the 
spatial variable coefficients (SVCs) method in the Cox 
model with a frequency-oriented perspective has been 
suggested by  (13). (14) have suggested an AFT model 
with prior spatial distributions for spatially variable 
regression coefficients. (15) have suggested a 
geographically weighted Cox regression model for sparse 
spatial survival data. 

 Although these methods enhance survival prediction 
accuracy by considering the spatial variability of 
regression coefficients, they also raise model fitting 
complexity for ZIDWR models, assuming spatial 
variability of parameters for both regression coefficient 
vectors. This is because not only can the effect of 
explanatory variables on non-zero response have spatial 
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variability, but their effect on the probability of zeroing 
can also be different in different places. Thus, all 
regression coefficients have spatial variability.  

Moreover, there are often censored observations in 
these data due to limited follow-up time that cannot be 
overlooked. Clustering the model parameters with 
similar spatial features is a proper method for efficiently 
reducing model dimensions and summarizing data. 
Spatial clustering methods, such as the 𝐾-means method, 
can be used to summarize data efficiently. Hence, 
Bayesian nonparametric processes, such as the Dirichlet 
mixture process, are used to investigate the spatial 
heterogeneity of regression coefficients (16). This 
process simultaneously considers intra-cluster 
correlation and heterogeneity between clusters in the 
spatial clustering structure. These processes turn the 
model into a simple parametric form by clustering with 
complex data on the model parameter space. Given its 
computational ease, the Dirichlet Process is one of the 
best random processes among nonparametric processes 
(for instance, the Gaussian process, Pólya tree process 
(17), and so on) for clustering parameters in models with 
SVCs. In this method, we can cluster coefficients into 
homogeneous groups by choosing prior probabilities on 
the distribution of discrete partitions, where several 
parameters get the same value simultaneously. 

As a representation of the infinite mixture Dirichlet 
process, the Chinese Restaurant Process (CRP) 
introduced by (18,19) allows for dividing model 
parameters into homogeneous clusters without 
predetermined assumptions about the cluster count. As 
our purpose of spatial clustering of parameters is to 
reduce the spatial heterogeneity in the data, it is necessary 
to consider the geographical location of the units in the 
allocation of clusters because the presence of common 
factors in close areas causes the parameters in them to be 
similar. In other words, each member's allocation within 
each cluster will be such that if that member is closer to 
the other cluster members regarding geographical 
distance, it has a better chance of being in that cluster. 
Hence, the distance between regions has a significant role 
in this clustering. (20) offers a compelling alternative:the 
distance-dependent Chinese restaurant process (ddCRP). 
This model directly incorporates the probability of 
assigning data points to existing clusters, making the 
assignment dependent on the distance between data 
points. An excellent way to do this is to make this 
function one of the weighting functions in geographically 
weighted regression models. Recently (21) introduced a 
Geographically Weighted Chinese Restaurant Process 
(gwCRP) to analyze the spatial heterogeneity of 
regression coefficients. This method simultaneously 
considers intra-cluster correlation and spatial clustering 

structure heterogeneity and estimates the number of 
clusters using a nonparametric Bayesian approach. While 
recent studies have explored the spatial heterogeneity of 
regression coefficients in count data models (22) and 
zero-inflated models (23), the spatial clustering of 
coefficients within survival models incorporating both 
zero-inflated and right-censoring remains an uncharted 
area of research. 

Here, we demonstrate the adaptability of the 
geographically weighted Chinese restaurant process 
(gwCRP) clustering method for zero-inflated and right-
censored survival models and show that compared to 
traditional CRP and k-means methods, gwCRP 
consistently estimates the number of clusters regarding 
distances while maintaining precise parameter estimation 
of each component of our two-part generalized linear 
regression model. To our knowledge, we are the first to 
introduce the spatial varying coefficients in the ZIDW 
regression model.  Finally,   we demonstrate how a Zero-
Inflated Discrete Weibull (ZIDW) model, incorporating 
covariates such as the husband's employment status, 
wife's financial autonomy, age gap, and spousal 
similarity, could best fit the data. By spatial analysis, we 
will reveal significant regional variations in the effects of 
these covariates on both the probability of early divorce 
and the duration of marriage when divorce occurs later. 
Our novel approach, combining survival analysis with 
spatial clustering, provides a more nuanced 
understanding of divorce than traditional CRP and k-
mean methods and offers valuable insights for targeted 
policy interventions. 

The remainder of the paper is organized as follows. 
Section 2 summarizes ZIDW regression models. Section 
3 defines the variability of SVC regression coefficients in 
ZIDW survival data and provides an overview of CRP 
and gwCRP methods. Section 4 presents the Bayesian 
analysis with a Gibbs sampling algorithm for clustering 
parameters of the ZIDW model with spatial variability of 
regression coefficients. Section 5 compares the existing 
methods in a simulation study. Then, numerical results 
on divorce data are presented in Section 6. 

 

Materials and Methods 
Let the random variable 𝑇  has a discrete Weibull 

distribution 𝑇 ∼ 𝐷𝑊(𝑞,𝛽)  with probability mass 
function 𝑓(𝑡) = 𝑃(𝑇 = 𝑡) = 𝑞௧ഁ − 𝑞(௧ାଵ)ഁ , 𝑡 = 0,1,2, … 
One uses the discrete Weibull regression model with 
some link functions of the parameters 𝑞 or 𝛽 to consider 
the effects of some covariates on 𝑇. To define a ZIDW 
regression model, let the survival time 𝑇  be a non-
negative random count variable with the probability mass 
function 
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𝑃(𝑇 = 𝑡 ∣ 𝑋,𝑍)= ቊ𝑝(𝑍) + (1 − 𝑝(𝑍))(1 − 𝑞(𝑋)), 𝑡 = 0(1 − 𝑝(𝑍)) ቀ𝑞(𝑋)௧ഁ − 𝑞(𝑋)(௧ାଵ)ഁቁ , 𝑡 = 1,2, … 

denoting by 𝑇 ∣ 𝑋,𝑍 ∼ ZIDW(𝑝(𝑍), 𝑞(𝑋),𝛽), where the 
parameters 𝑞 ≡ 𝑞(𝑋)  and 𝑝 ≡ 𝑝(𝑍)  depend on the 
covariates 𝑋௡×(௠భାଵ) = ൫1,𝑋ଵ, … ,𝑋௠భ൯  and 𝑍௡×(௠మାଵ) =  ൫1,𝑍ଵ, … ,𝑍௠మ൯,  respectively, through the 
link functions (24): log൫− log൫𝑞(𝑋)൯൯ = 𝑋ᇱ𝜶,  ⇒  𝑞 ≡ 𝑞(𝑋) = 𝑒ି௘೉ᇲ𝜶               (1)logit(𝑝(𝑍)) = 𝑍ᇱ𝜸,  ⇒  𝑝 ≡ 𝑝(𝑍) = 𝑒௓ᇲ𝜸1 + 𝑒௓ᇲఊ = ൫1 + 𝑒ି௓ᇲ𝜸൯ିଵ(2) 

where 𝛼 = ൫𝛼଴, … ,𝛼௠భ൯  and 𝜸 = ൫𝛾଴, … , 𝛾௠మ൯  are 
the vectors of regression coefficients. 
The ZIDW regression models assume that the effect of 
explanatory variables on the response variable is the 
same in different places. However, other conditions in 
each region may cause spatial heterogeneity. Here, we 
consider the spatial variability for all regression 
coefficients. Let 𝑇ℓ௜ ,  for 𝑖 = 1, … ,𝑛,  and ℓ = 1, … ,𝑛௜ 
denote the survival time for the case ℓ  at site 𝑠௜ =(𝑢௜ , 𝑣௜),𝑛௜ denotes the number of subjects at site 𝑠௜ , and 𝑋ℓ(𝑠௜),𝑍ℓ(𝑠௜)  are the vectors of covariates. Let 𝑇ℓ௜ ∣𝑋,𝑍 ∼ 𝑍𝐼𝐷𝑊(𝑝ℓ௜(𝑍), 𝑞ℓ௜(𝑋),𝛽), then the equations (1) 
and (2) considering the spatial variability of regression 
coefficients 𝛼ℓ௜ and 𝛾ℓ௜ will be as follows: 𝑝ℓ௜(𝑍) = 𝑒௓ℓ(௦೔)ఊ(௦೔)1 + 𝑒௓ℓ(௦೔)ఊ(௦೔) ,  𝑞ℓ௜(𝑋) = 𝑒ି௘೉ℓ൫ೞ೔൯ഀ൫ೞ೔൯ 

Where 𝛾(𝑠𝒊) = ቀ𝛾଴(𝑠௜), … , 𝛾௣(𝑠௜)ቁ  and 𝜶(𝑠௜) =ቀ𝛼଴(𝑠௜), … ,𝛼௣(𝑠௜)ቁ are the model components that can 
be estimated by fitting two separate models. So  

 
 

Zero-Inflated Discrete Weibull (CZIDW) model, if Tℓ୧ is 
the survival time of the ℓ-th unit and 𝐶ℓ௜  the censored 
from the right that is independent of 𝑇ℓ௜ ,  then for a 
censored unit, the only available information is 𝐶ℓ௜ < 𝑇ℓ௜. 
By defining 𝑌ℓ௜ = min(𝑇ℓ௜ ,𝐶ℓ௜),𝛿௜ℓ = 1 if 𝑇ℓ௜ ≥ 𝐶ℓ௜ and 𝐽ℓ௜ = 1,  if 𝑌ℓ௜ = 0,  we can divide all the data, 𝑫 =൛൫𝑇ℓ௜ , 𝛿ℓ௜ ,𝑋ℓ(𝑠௜)൯, 𝑖 = 1, … ,𝑛, ℓ = 1, … ,𝑛௜ൟ, as follows ቐ𝐽ℓ௜ = 1, 𝛿ℓ௜ = 0 𝑌ℓ௜ is zero and not right-censored 𝐽ℓ௜ = 0, 𝛿ℓ௜ = 0 𝑌ℓ௜ is non-zero and not right-censored 𝐽ℓ௜ = 0, 𝛿ℓ௜ = 1 𝑌ℓ௜ is non-zero and right-censored 

 

In this case, the likelihood of the CZIDW model can 
be defined as follows 𝐿(𝛽,𝜶, 𝛾 ∣∣ 𝑛,𝑌,𝑋,𝑍 ) = Π௜ୀଵ௡ Πℓୀଵ௡೔ ሾ𝐹ℓ௜ + (1 − 𝐹ℓ௜)(1 − 𝐺ℓ௜)ሿ௃ℓ೔(ଵିఋℓ೔) × ൤(1 − 𝐹ℓ௜) ൬𝐺ℓ௜௬೔ℓഁ − 𝐺ℓ௜(௬ℓ೔ାଵ)ഁ൰൨(ଵି௃ℓ೔)(ଵିఋℓ೔) ቂ1 − 𝐹ℓ௜ − (1 − 𝐹ℓ௜) ቀ1 − 𝐺ℓ௜஼ഁቁቃఋℓ೔    (3) 

where 𝐹ℓ௜ = ൫1 + 𝑒ି௓ℓ(௦೔)ఊ(௦೔)൯ିଵ and 𝐺ℓ௜ = 𝑒ି௘೉ℓ൫ೞ೔൯ഀ൫ೞ೔൯. 
 

1. Clustering of Model Coefficients 
For each particular location 𝑠௜ , 𝑖 = 1, … ,𝑛, we define 𝜽(𝑠௜) = (𝜶(𝑠௜)ୃ,𝜸(𝑠௜)ୃ)ୃ the collection of parameters. 

CRP assumes 𝑛  customers enter a Chinese restaurant 
with 
unlimited tables (5). In our setting, we assume that the 𝑛 
parameter vectors can be clustered into 𝑘  groups, i.e., 𝜽(𝑠௜) = 𝜽ఒ೔ ∈ ሼ𝜽ଵ, … ,𝜽௞ሽ,  where 𝜆௜ ∈ {1, … ,𝑘},  with 𝑘 
being the total number of clusters. One popular way to 
model the joint distribution of 𝝀 = (𝜆ଵ, … , 𝜆௞)  is the 
CRP, which is an essential representation of the Dirichlet 
process and defines a series of conditional distributions 
as 

𝑃(𝜆௜ = 𝑐 ∣ 𝝀ି௜) ∝ ൞ 𝑛௜,௖𝛼∗ + 𝑖 − 1  existing cluster 𝛼∗𝛼∗ + 𝑖 − 1  new cluster 
(4) 

where 𝝀ି௜ = (𝜆ଵ, … , 𝜆௜ିଵ) and 𝑛௜,௖  is the number of 
elements in cluster 𝑐 , and 𝛼∗  is the concentration 
parameter of the underlying Dirichlet process. Equation 
(4) expresses the conditional probability of placing the 𝑖௧௛  unit in the 𝑐௧௛  cluster, given that the 𝑖 − 1  of the 
previous unit is clustered. (15,20) introduced the 
"geographically weighted Chinese Restaurant Process" 
(gwCRP) clustering method based on the weight 
functions of distances. So in equation (3), we have 𝑛௜,௖ =∑௝ୀଵ௜ିଵ  𝑤௜௝𝐼൫𝜆௝ = 𝑐൯,  where 𝑤௜௝  s are elements of the 
weight matrix 𝑊 . Spatial weights are accommodated 
using a Stochastic Neighborhood Conditional 
Autoregressive (SNCAR) model (25), extending the 
conventional Conditional Autoregressive (CAR) model 
(26) to account for areal data.  (27) defined a weight 
matrix based on graph distance. Assume that the whole 
area we are considering is a graph 𝐴 with a set of vertices 𝑉(𝐴) = {𝑣ଵ, … ,𝑣௡}  and a set of edges 𝐸(𝐴) ={𝑒ଵ, … , 𝑒௠}  then the matrix elements are 𝑤௜௝ = 1  if 𝑑௩೔௩ೕ ≤ 1, otherwise 𝑤௜௝ = exp ൬− ௗೡ೔ೡೕ௛ ൰ where 𝑑௩೔௩ೕ= ൜|𝑉(𝑒)|,  if 𝑒 is the shortest path connecting 𝑣௜ and 𝑣௝∞,  if 𝑣௜ and 𝑣௝ are not connected  

is the distance graph between 𝐴௜ and 𝐴௝ , and ℎ is the 
bandwidth (28). Moreover, |𝑉(𝑒)| is the cardinality of 
the 𝑉(𝑒)  set, where 𝑒  is the shortest path to the two 
vertices. It is evident that when ℎ = 0,  the suggested 
gwCRP technique is identical to the traditional CRP 
technique. In this particular situation, the CRP technique 
tends to cluster excessively. Another significant pattern 
is that as ℎ  rises, the estimated number of clusters 
decreases before rising again. Simultaneously, the Rand 
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index demonstrates an initial increase followed by a 
decrease as ℎ  becomes excessively large. This pattern 
emerges because, starting from ℎ = 0 , the gwCRP 
technique effectively begins to capture the inherent 
spatial relationships in the data. Nevertheless, as ℎ → ∞, 
the geographic weights 𝑤௜௝  for spatial-discontinuous 
areas decrease to zero. As a result, only neighboring areas 
are categorized within the identical cluster, bringing back 
the problem of excessive clustering. 

 
2. Bayesian Analysis 

Suppose for the CZIDW model for the set of 
parameters Θ = (𝜶,𝜸,𝝅, 𝑘),  we have separated the 
model parameters by to 𝑘 ≤ 𝑛. In that case, we expect 
that each member of the parameter space 𝜽 = (𝜃ଵ, … , 𝜃௡) 
where 𝜽(𝑠௜) = 𝜽ఒ೔ is equal to one of the k separate values 
of the separation set 𝜽ଵ∗ , … ,𝜽௄∗∗  If 𝐾∗ denotes the number 
of clusters excluding the 𝑖 -th observation 𝜽ଵ, … ,𝜽௜ିଵ . 
Thus, if 𝐺଴  is a continuous distribution Polya Urn 
scheme, the conditional distribution of 𝜃௜  given 𝜽ି௜ ={𝜃ଵ, … , 𝜃௜ିଵ,𝜃௜ାଵ, … ,𝜃௡} will be as follows: 𝑃൫𝜃௜ ∣ 𝜽(ି௜),𝛼∗,𝐺଴൯
∝ ⎩⎨
⎧ 1𝛼∗ + 𝑖 − 1∑௞∗ୀଵ௄∗  ∑௝ୀଵ௜ିଵ  𝑤௜௝∗ 𝐼൫𝜽൫𝑠௝൯ = 𝜽௞∗൯𝛿𝜽ೖ∗ ൫𝜽(𝑠௜)൯  existing cluster 𝛼∗𝐺଴൫𝜽(𝑠௜)൯𝛼∗ + 𝑖 − 1  new cluster. 

 
Where 𝛿(⋅) is the indicator function. Then by defining 
Prior hierarchically as follows: 𝑇 ∣ 𝑋,𝑍,𝑈 ∼ 𝑍𝐼𝐷𝑊൫𝑝ఒ೔(𝑍),𝑞ఒ೔(𝑋),𝛽൯,  𝑖 = 1, … ,𝑛,𝜶௛ ∼  N(𝟎,Σఈ),  𝛾௛ ∼  N൫𝟎,Σఊ൯,  ℎ = 1, … ,𝑘,𝐺଴(𝛼, 𝛾) ∝ 𝑃(𝛼)𝑃(𝛾) = 𝑀𝑉𝑁(0,Σ଴),𝜆௜ ∣ 𝝅, 𝑘 ∼ Multinomial(𝜋ଵ,⋯ ,𝜋௞),𝝅 ∼ gwCRP(𝛼∗,ℎ),  𝑘 ∼ 𝑃(⋅).

 

For data 𝐷 = (𝑌,𝑋,𝑍, 𝐽, 𝛿), with 𝐿(Θ ∣ 𝐷), our goal 
is to sample from the posterior distribution of the 
parameters 𝑘,𝝀 = (𝜆ଵ, … , 𝜆௡) ∈ {1, … ,𝑘},𝜶 =(𝜶ଵ, … ,𝜶௞),  and 𝛾 = (𝛾ଵ, … , 𝛾௞) . In nonparametric 
Bayesian models with the prior Dirichlet Processes (8), 
due to the unavailability of the analytical form for the 
posterior distribution of Θ,  we employ the Gibbs 
sampling (27) to repeatedly draw values for each 𝜃௜ from 
its conditional distribution given both the data and the 𝜃௝ 
for 𝑗 ≠ 𝑖 . Then, we combine this result with the 
likelihood and derive the full conditional distribution for 𝜃௜ for use in Gibbs sampling: 𝜃௜ ∣ 𝜃ି௜ ,𝑌 ∼ 𝑄ൣ∑௜ஷ௥ 𝐿(𝜃௜ ∣ 𝑛,𝑌,𝑋ଵ,𝑋ଶ)𝛿ఏೝ(𝜃௜)+ 𝛼∗൫∫ 𝐿(𝜃௜∣ 𝑛,𝑌,𝑋ଵ,𝑋ଶ)𝑑𝐺଴(𝜃)൯𝐻௜(𝜃௜)൧, 
Where Q is the normalizer constant, 𝐻௜(𝜃)  is the 
posterior distribution of 𝜃  obtained by combining 
information from the prior distribution 𝐺଴ and observed 
data 𝐷௜. 

3. Cluster Configurations 
Using Dahl's method introduced by (28) allows for 

obtaining posterior estimates of cluster memberships 𝜆ଵ, … , 𝜆௡  and other model parameters 𝛾  and 𝛼 . This 
method selects an "average" clustering using all posterior 
clusterings in the three below steps: 

Step 1. Define membership matrices 𝒜(௕) =൫𝒜(௕)(𝑖, 𝑗)൯௜,௝∈{ଵ,…,௡} = ቀ𝐼൫𝜆௜(௕) = 𝜆௝(௕)൯ቁ௡×௡,  where 𝑏 =1, … ,𝐵 is the index for the retained MCMC draws after 
burn-in, and 𝐼(⋅) is the indicator function. 

Step 2. Calculate the element-wise mean of the 
membership matrices over MCMC 
draws 𝒜 = ଵ஻ ∑௕ୀଵ஻  𝒜(௕). 

Step 3. Identify the most representative posterior 𝒜 
draw based on minimizing the element-wise Euclidean 
distance ∑௜ୀଵ௡  ∑௝ୀଵ௡  ൫𝒜(௕)(𝑖, 𝑗) −𝒜(𝑖, 𝑗)൯ଶ  among the 
retained 𝑏 = 1, … ,𝐵 posterior draws. 

The algorithm accuracy can be evaluated using the 
Rand index (29) for comparing cluster configurations 
obtained with different methods to the actual clusters. 
The Rand index computes a similarity measure between 
two clusterings by considering all sample pairs and 
counting pairs assigned in the same or different clusters 
in the predicted and true clusterings. This index allows us 
to measure the similarity between different clustering 
results, providing valuable insights into the match ability 
of these configurations. To measure the agreement 
between 𝝀(஼ಽೄ) and the true clustering configuration. The 
Rand index of two partitions, 𝒮ଵ = {𝑈ଵ, … ,𝑈௥} and 𝒮ଶ ={𝑉ଵ, … ,𝑉௦},  of a set of n objects 𝑆 = {𝑜ଵ, … , 𝑜௡},  is 
defined as 𝑅𝐼 = 𝑎 + 𝑏𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑎 + 𝑏(௡ଶ)  

where 𝑎 represents the number of pairs of objects in 
set 𝑆  that are in the same cluster in 𝒮ଵ  and the same 
cluster in 𝒮ଶ,𝑏 represents the number of pairs of objects 
in set 𝑆 that are in different clusters in 𝒮ଵ and different 
clusters in 𝒮ଶ, c represents the number of pairs of objects 
in set 𝑆 that are in the same cluster in 𝒮ଵ and different 
clusters in 𝒮ଶ  and 𝑑  represents the number of pairs of 
objects in set 𝑆 that are in different clusters in 𝒮ଵ and the 
same cluster in 𝒮ଶ. The Rand index varies from 0 to 1, 
where a higher value signifies more excellent agreement 
between the two partitions. When the partitions are in 
complete agreement, the Rand index equals 1. 

For model selection, the decaying effect parameter ℎ 
for geographical weights needs to be tuned, and we use 
the logarithm of the Pseudo-Marginal Likelihood (30) 
based on conditional predictive ordinate to select ℎ. The 
LPML is defined as LPML  ∑௜ୀଵே  log (CPO௜),  where CPO௜ is the 𝑖 − 𝑡ℎ𝑒 conditional predictive ordinate. The 
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Monte Carlo estimate of the CPO, within the Bayesian 
framework, can be obtained as CPOప෣ିଵ =ଵ஻ ∑௕ୀଵ஻   ଵ௙ቀ஽೔∣𝜽ഊ೔್ ቁ, where 𝐵  is the total number of Monte 

Carlo iterations, 𝜽ఒ೔௕  is the 𝑏 − 𝑡ℎ𝑒 posterior sample, and 𝑓(⋅) is the likelihood function defined in (3). An estimate 
of the LPML can subsequently be calculated as LPML෣ =∑௜ୀଵே  log ൫CPO෢ ௜൯ . A model with a more considerable 
LPML value is preferred. 

 
4. Simulation Study 

A simulation study compares the 𝐾-means and the 
CRP clustering methods with the proposed gwCRP 
clustering for zero-inflated discrete time-to-event data 
with spatially varying covariates. The study will examine 
two balanced and imbalanced scenarios for data 
geographical clustering patterns. Under the balanced 
scenario, each group contains an equal number of units. 
Under the imbalanced scenario, the group sizes differ, 
and we have three to four clusters over two scenarios. The 
number of sites is set to the number of provinces in Iran, 
i.e., 31. We then generated a sample of size 𝑛௜ = 5 for 
each province with center 𝑠௜ ,  so the total number of 
observations is 𝑛 = 155. We assumed 𝑋 is equivalent to 𝑍  and a similar set of covariates affect 𝑞  and 𝑝 
parameters. Then, we generated spatial covariates 𝑋ℓ(𝑠௜) 
from Normal distribution 𝑁(0,1) . The temporal 
component pdf for the ℓ௧௛, ℓ = 1, … ,𝑛௜  observation in 
province 𝑠௜ ,  follows the distribution 𝑇ℓ௜ ∣ 𝑋ℓ௜ ∼ZIDW(𝑝(𝑋ℓ௜),𝑞(𝑋ℓ௜),𝛽), with a fixed value of 𝛽 = 1. 2. 
So, two related responses were controlled under two 
generalized linear models, logit(𝑝) and log (−log (𝑞)). 
We set initial values for model coefficient parameter 𝛼real , (−2,0.5), (1.5,0.6), (2.1,−0.4), (1.1,0.3), and for 𝛾real , (0.95,1.1), (−0.4,0.6), (0.5,0.8), (1,1.5) 
corresponding to each of the 4 clusters, respectively. 
Then, to investigate the right censoring, we considered 
the quantile 93% of data as the censored point 𝐶௜ℓ and as 
a threshold to cut the simulated sample, such that all 
values 𝑦ℓ௜ ≥ 𝐶ℓ௜ were re-valued to be equal to 𝐶ℓ௜. Also, 
if 𝑇ℓ௜ is not greater than the generated censored time 𝐶௜ℓ, 
we set 𝛿ℓ௜ = 1, otherwise, it is considered zero. To add a 
zero-inflated feature for each response, first, a random 
vector from a uniform distribution 𝑈 = (𝑢ଵ, … ,𝑢௡) ∼𝑈(0,1) is generated if 𝑢ℓ௜ ≤ 𝑝ℓ௜, set 𝐽ℓ௜ = 0 and 𝑌ℓ௜ = 0 

otherwise, we considered 𝐽ℓ௜ = 1 and generated 𝑌ℓ௜ from 
DW distribution. We generated the outcome data under 
the following two generalized linear models logit(𝑝௜ℓ) = 𝛾଴ℓ(𝑠௜) + 𝛾ଵℓ𝑥ℓ,                       (5)  log(− log(𝑞௜ℓ)) = 𝛼଴ℓ(𝑠௜) + 𝛼ଵℓ(𝑠௜)𝑥ℓ      (6) 

We used Normal prior distributions 𝑁(0,𝜎ఈଶ)  for 
regression coefficients 𝛼଴  and 𝛼ଵ,  with precision 
parameters, 𝜎ఈି ଶ ∼ 𝑇(10ିହ, 10ିହ). Similarly, for 𝛾଴ and 𝛾ଵ , the Normal priors 𝑁൫0,𝜎ఊଶ൯,  are considered, 
respectively, with 𝜎ఊି ଶ ∼ 𝑇(10ିହ, 10ିହ) . To assess 
gwCRP's clustering performance across a range of ℎ 
values, we will evaluate it from 1 to 3 in a grid of 0.2. 
The optimal value of ℎ will be determined using LPML 
(Table 1). We fixed the concentration parameter 𝛼∗ = 1. 
We provide information on estimating the number of 
clusters and the compatibility of clustering 
configurations. The maximum distance in the spatial 
structure of the 31 regions is 10k. m,  so yielding an 
optimal bandwidth ൫ℎopt = 2.6൯  induces a weighting 
scheme that ensures relative weights are assigned 
appropriately. Each replicate involves running an 
MCMC chain of length 10,000 with a thin of one and 
burn-in of 2,000 samples.  

 

Results 
After meticulously examining the MCMC chain 

length, we run our proposed algorithm in 100 separate 
data replicates. A vital part of this process is obtaining 
100 RI values, which we then compare with the real 
values to validate our results. We calculated the mean in 
the 100 replicates and the posterior means of the 
parameters. Each replicate runs a total of MCMC 
iterations. We calculated the cover rate for each scenario, 
which equals the percentage of replicates in which our 
proposed algorithm accurately recovers the number of 
clusters. In our gwCRP model for scenario 2, we observe 
that the correct number of clusters is inferred in at least 
25 out of 100 instances. Specifically, for model 1 under 
scenario 2, the final estimate of the number of clusters 
consistently reaches five across 90 replicates. However, 
in scenario 1, 75 cases underestimate the number of 
clusters by 10. We also provide a detailed comparison of 
our method with the 𝐾 -means Algorithm. As the 𝐾 -
means algorithm cannot infer the number of clusters, 

 

Table 1. Comparison of LPML for different ℎ values in both scenarios 
 h-values 
Scenario 1 1.6 2 2.6 3 
Balanced -22402 -155942 -12658 -8360 -9653 
Imbalanced -20188 -21070 -13181 -5133 -6671 
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such values must be pre-specified. We supplied them 
with the number of clusters inferred by our method in 
each replicate, providing a comprehensive understanding 
of their differences. We also present the histogram of the 
final number of clusters inferred for each cluster scenario 
and data generation model combination in (Figure 1). 

As the Gibbs sampler does not directly yield the 
posterior distribution of 𝑘, we employed Dahl's method 
to estimate it. The RIs for each scenario and data 
generation model are reported in Table 2. We also 
thoroughly compared our method to the K means 
algorithm. As the 𝐾-means algorithm cannot infer the 
number of clusters, such values need to be pre-specified, 
and we supplied them with the number of clusters 
inferred by our method in each replicate. As the Gibbs 
sampler does not directly yield the posterior distribution 
of 𝑘, we employed Dahl's method to estimate it. Table 2 
demonstrates the significant improvement in 
computational efficiency offered by our proposed 
gwCRP model with vectorization for both scenarios. This 
enhancement, coupled with the model's highest RI, 
underscores its innovative approach and high accuracy in 
clustering. The 𝐾 -means model, while having an RI 
greater than 0.6, does not match the performance of our 
proposed model. Furthermore, using the optimal value of 

ℎ  determined by LPML has resulted in excellent 
clustering performance. In addition to assessing 
clustering performance, we also evaluate the estimation 
performance of covariate coefficients. 

Let 𝝀 = (𝜆ଵ, … , 𝜆௡)  be the actual clustering label 
vector, 𝜽௥(𝑠௜)  be the true parameter value of cluster 𝑗, 𝜅௥ = ∑௜ୀଵଷଵ  𝐼(𝜆௜ = 𝑟)  be the number of provinces in 
cluster 𝑟  (where 𝑟 = 1, … ,𝑘  and ∑௥ୀଵ௞  𝜅௥ = 𝑛). For the 
simulated dataset 𝑡, let 𝜽෡(௧)(𝑠௜) be the estimate of Dahl's 
method at location 𝑠௜. Then, the average of mean squared 
error (AMSE) is calculated as AMSE = 1𝑘෍  ௞

௥ୀଵ
1𝜅௥ ෍  ௜∣ఒ೔ୀ௥

1100෍ ଵ଴଴
௕ୀଵ ቀ𝜽෡(௕)(𝑠௜)− 𝜽௥(𝑠௜)ቁଶ 

Which calculates mean squared errors for each cluster 
first and then averages across clusters. Table 3 presents 
the AMSE results for parameter estimation of gwCRP 
using optimal values of ℎ  in two different scenarios. 
Table 3 presents the AMSE results for parameter 
estimation of gwCRP using optimal values of ℎ in two 
different scenarios. Generally, the 𝐾-mean method has a 
higher AMSE than other methods. Our research 
Identifies a pattern in clustering performance, showing 
that gwCRP exhibits a lower AMSE than traditional 

 
(Balanced Scenario)                                               (Imbalanced Scenario) 

Figure 1. Histogram of estimates of 𝑘 under h-optimal and box plot of Rand index under different ℎ and LPML selection. 

Table 2.  𝑅𝐼 indexes for different clustering methods (ℎ௢𝑝𝑡 = 2.6) 
Type CRP 𝑲-means gwCRP 
Balanced 0.8931 0.6865 0.9344 
Imbalanced 0.8122 0.7624 0.9581 
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CRP. This result indicates the importance of selecting the 
optimal ℎ based on LPML for accurate estimation. The 
AMSE fluctuates more in the balanced scenario than the 
imbalanced scenario;in this scenario, AMSE values are 
lower overall due to being mis-clustered.  

In conclusion, our simulation studies clearly show 
that the gwCRP models outperform the standard CRP 
models in terms of clustering accuracy and parameter 
estimation. Our proposed model selection criterion, the 
LPML, effectively identifies the optimal ℎ  value, 
yielding superior results for clustering and parameter 
estimation tasks. These conclusions should convince the 
audience of the strength of our research findings. 

The computational costs of our different clustering 
methods vary significantly. K-means has a time 
complexity of 37,200 units and is faster when the number 
of clusters is pre-defined, but it cannot automatically 
determine the optimal number of clusters. The Chinese 
Restaurant Process (CRP) has a more complex time 
complexity of around 24,025 units due to its iterative 
evaluation of potential cluster assignments, making it less 
efficient for larger datasets. In contrast, the proposed 
method, gwCRP, utilizes vectorization and optimized 
techniques, achieving a time complexity of 
approximately 930 units per iteration, leading to faster 
convergence. Additionally, the use of the LPML criterion 

helps identify the optimal value for parameter (h), further 
enhancing efficiency. In conclusion, while K-means is 
computationally efficient for fixed clusters but lacks 
flexibility, CRP is more adaptable but computationally 
intensive. The gwCRP method offers a balance of robust 
clustering performance and improved efficiency. 
Simulation studies confirm that gwCRP outperforms 
standard CRP in clustering accuracy and parameter 
estimation, with carefully designed parameters reflecting 
realistic scenarios in geographical data, highlighting the 
strengths of the proposed research. 

 
1. Analysis of Divorce Data 

Understanding the dissolution of marriages is crucial 
in addressing the social issue of divorce through Survival 
analysis. Recent studies show a worrying inflation of 
divorce in the first five years of marriage. To further 
investigate, we have partitioned the time axis into six 5-
year periods, [0,5), [5,10), … , [30,35) . The starting 
points of these intervals, namely 0,1, … ,6,  define the 
discrete survival times. Fifty couples who had 
experienced one or more marriages between 1989 and 
2019 were selected from each of Iran's 31 provinces. The 
final dataset comprised 1,550 couples, of which 874 had 
experienced divorce. Other couples who did not 
experience divorce by the end of 2019 were considered 

Table 3. Performance of parameter estimates under the two true cluster scenarios with AMSE (h = 2.6) 
 Balanced  Imbalanced 

Method 𝛼଴ 𝛼ଵ 𝛾଴ 𝛾ଵ   𝛼଴ 𝛼ଵ 𝛾଴ 𝛾ଵ 
gwCRP 0.0115 0.0266 0.0029 0.0350  0.0023 0.0023 0.0143 0.0009 
CRP 0.0268 0.0214 0.1059 0.0901  0.0137 0.0319 0.0269 0.0401 
K-mean 0.1810 0.0815 0.0297 0.3112  0.0997 0.1069 0.1018 0.1704 

 

 
Figure 2.  Histogram and Zero-inflated distributions of marriage duration among couples. 
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right-censored data. Approximately %36  of divorces 
occurred within the initial five years of marriage. 
Consequently, it is imperative to employ censored zero-
inflated discrete distributions to model the data. The 
dispersion index represents the ratio of the observed 
variance from the data to the observed mean. In this case, 
the dispersion index equals 1.69, indicating over-
dispersion in the data.  Three distributions, namely Zero-
Inflated Discrete Weibull (ZIDW), zero-inflated negative 
Binomial, and zero-inflated Poisson, have been fitted to 
the time data to reach the divorce event. Based on the 
observation in (Figure 2), it is evident that the ZIDW is 
better suited for these data than the other two 
distributions. 

Due to the multidimensional nature of the divorce 
issue and the existence of various economic, social, 
cultural, demographic, etc. factors influencing the risk of 
divorce during the marriage period and also the 
probability of divorce less than five years, the 
demographic information of people such as the age 
difference of spouses,  employment status are included in 
the CZIDW model as auxiliary variables according to 
(Table 4). In this study, we also examine the effect of 
spousal similarity. 

To fit the distribution 𝑇ℓ௜ ∣ 𝑋,𝑍(𝑠௜) ∼𝑍𝐼𝐷𝑊൫𝑝ℓ௜൫𝑋(𝑠௜)൯, 𝑞ℓ௜൫𝑋(𝑠௜)൯,𝛽൯ to the data, first, it is 
necessary to build the 5 × 𝑛  scenario matrix 𝑋 =(1,𝑋ଵ, … ,𝑋ସ),  including the covariates "Husband's 
employment status" 𝑋ଵ, "Similarity" 𝑋ଶ, "Age gap" 𝑋ଷ, 
and "Wife's Financial Autonomy" 𝑋ସ. Then we have: log (−log (𝑞௜ℓ) = 𝛼଴ℓ(𝑠௜) + ∑  ସ௠ୀଵ  𝛼௠ℓ(𝑠௜)𝑥௠ℓ(𝑠௜)    
(7) logit(𝑝௜ℓ) = 𝛾଴ℓ(𝑠௜) + ∑  ସ௠ୀଵ  𝛾௠ℓ(𝑠௜)𝑥௠ℓ(𝑠௜) .          
(8) 

We first fit the two-part ZIDW model for each area 
using the covariates selected. Before being visualized, 
the covariates are adjusted to have a mean of 0 and a 

standard deviation of 1. According to the geographical 
patterns specified in (Figure 2-5) for each of the four 
covariates in both models, the probability of divorce in 
less than five years (zeroing the marriage survival time) 
and the duration of cohabitation provided that the couple 
has lived together for at least five years (non-zero count 
values), emphasizes the necessity of using SVC model. 
Also, it is seen that some provinces have similar 
characteristics, not limited to only adjacent counties, 
indicating possibilities of globally discontiguous 
clusters. In more detail, (Figure 3) shows significant 
spatial variation in divorce rates across Iranian provinces, 
strongly influenced by the husband's employment status 
(temporary, permanent, or unemployed). This variation 
reflects substantial socioeconomic disparities, including 
unemployment rates, job security, access to social 
services, and cultural and religious factors. These factors 
affect the relationship between a husband's employment 
and divorce probability, leading to stronger associations 
in some provinces than others. This is demonstrated by 
the varying regression coefficients for the husband's 
employment status across the country, as mapped in 
(Figure 3) for both models (6 and 7). 

Additionally, according to spatial disparities shown 
in (Figure 4), the regression coefficient for both models 
in (7) and (8) for the wife's financial autonomy covariate 
in Iran is expected to vary spatially due to significant 
regional differences in socioeconomic development and 
cultural norms. More developed provinces with higher 
female education and employment may show weaker 
links between financial autonomy and divorce, while less 
developed, more conservative regions might exhibit 
stronger negative correlations, reflecting societal 
pressures and differing views on gender roles and 
responsibilities. 

Moreover,  As shown in (Figure 5) the impact of 
spousal similarity (education, socioeconomic status, 

Table 4. Demographic characteristics. 
Variable Group NumberPercent 

Husband's employment status 

Fixed 514 8.3 
Temporary 907 58.5 

Unemployed 129 33.2 

Wife's Financial Autonomy 
Independent 1128 72.8 
Dependent 422 27.2 

Age gap 
Less than fifteen years 1128 72.8 
More than fifteen years 422 27.2 

Similarity No 1283 82.8 
Yes 267 17.2 
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religious observance, ethnicity, and attitudes/personality) 
on time until the divorce event occurs in Iran varies 
significantly across provinces. For example, educational 
similarity is greater in provinces with higher literacy 
rates, while socioeconomic disparity's negative impact is 
stronger in provinces with high-income inequality. 
Similarly, religious similarity matters more in religiously 
conservative provinces, and ethnic similarity is more 
impactful in ethnically diverse regions.  

Finally, we visualize how the impact of age 
differences in couples varies significantly across 
provinces of Iran (Figure 6). Societies with traditional 

values or limited opportunities may show less adverse 
effects from larger age gaps than those with more liberal 
views or better opportunities.  

We run 10,000 MCMC iterations, dropping the first 
2000 as burn-in. We retained every fifth observation to 
reduce autocorrelation. We adopted a non-informative 
prior for the bandwidth and estimated the optimal 
bandwidth by the LPML method, choosing an optimal 
value of ℎ at 4.2. The maximum distance between any 
two points is 10. The result from Dahl's method for the 
gwCRP model suggests that all couples are to be 
classified into five groups. However, our proposed 

 
(a)                                                                      (b) 

Figure 3. The spatial varying covariate effects of Husband's employment on the two-part ZIDW model of provinces in Iran a:the 
probability of marriage survival becoming zero, b:the duration of time to divorce. 

 
(a)                                                                           (b) 

Figure 4. The spatial varying covariate effects of Wife's Financial Autonomy on the two-part ZIDW model of provinces in Iran 
a:the probability of marriage survival becoming zero, b:the duration of time to divorce. 
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gwCRP model, with its unique features, presents a 
different perspective. The sizes of the five groups in our 
model are7,9,4,6 and 5, respectively. The arrangement of 
these cluster assignments is based on Dahl's method, and 
the mode is depicted in (Figure 7), which illustrates their 
spatial distribution.  

From (Figure 7), our gwCRP approach effectively 
identifies spatially connected and disconnected clusters. 
Provinces in the "light green" cluster exhibit spatial 
contiguity, and provinces in the "dark green" cluster 
display spatial discontinuity. Several interesting 

observations can be made from (Figure 6 and Table 5): 
1. WestAzarbaijan, Kermanshah, Ilam, Khuzestan, 

Isfahan, Qom, Semnan, Khorasan North, Sistan, and 
Baluchestan all four covariates have moderate hazard 
effects compared with other counties. 

2. East Azarbaijan, Golestan, Bushehr, Hormozgan, 
Kohgiluyeh, Buyer Ahmad, Chahar Mahall, and 
Bakhtiari starkly contrast in risk effects. Husband's 
employment status demonstrates significantly higher risk 
effects than Wife's Financial Autonomy status. 

3. North Khorasan, Razavi Khorasan, Yazd, Gilan, 

 
(a)                                                                           (b) 

Figure 5. The spatial varying covariate effects of Similarity on the two-part ZIDW model of provinces in Iran a:the probability of 
marriage survival becoming zero, b:the duration of time to divorce. 

 
(a)                                                               (b) 

Figure 6. The spatial varying covariate effects of the Age gap on the two-part ZIDW model of provinces in Iran a:the probability 
of marriage survival becoming zero, b:the duration of time to divorce. 
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Ghazvin, Hamedan, and Lorestan are similar and have 
the highest risk effects in both model parts. 

4. Mazandaran, Tehran, Kerman, and Fars:The 
spouses' Age differences have a negative risk effect in the 
model of non-zero count values and a positive effect in 
the probability of survival time becoming zero. The 
husband's employment has the most impact compared to 
other provinces. 

5. Ardebil, Kordestan, Markazi, Alborz:The Wife's 
Financial Autonomy has the least hazard on the average 
duration of cohabitation, provided that the couple has 
lived together for at least 5 years. 

 Table 5 shows that the Bayes estimates of our spatial 
varying regression covariates coefficients through the 
gwCRP approach are quite different across different 
clusters.  αෝ, and γො   are respectively the estimated regression 
coefficients for the models (7) and (8) in each cluster. 
They represent the effect of predictor variables 
(Husband's employment status, Wife's Financial 
Autonomy, Age gap, Similarity) on the duration of 
cohabitation provided that the couple has lived together 
for at least five years, within each cluster. For example, 

in Cluster 1, the estimated coefficient for Husband's 
employment status is 0.135. This means, that within 
Cluster 1, a one-unit increase in this covariate is 
associated with a 0.135 unit increase in c-log-log(q) in 
(1), holding all other variables constant. The intercept 𝛼଴ෞ 
represents the value of c-log-log(q) when all predictor 
variables are zero within that cluster. Also, in this cluster, 
the coefficient  𝛾ොଵ  is 0.975 for the same covariate 
Husband's employment status in the logit model (8), 
suggesting a positive relationship between the Husband's 
employment status and the probability of divorce in less 
than five years represented by p. The effect is more 
substantial here than in the c-log-log model. 

Finally, to show that our proposed clustering method, 
gwCRP,  performs better than the two methods, 
traditional CRP and K-mean, in clustering regression 
coefficients in models 7 and 8 and determine which 
method yields estimation that best suits the data, the 
LPML values are calculated. As a more considerable 
LPML value indicates a better fit, we base our conclusion 
on the gwCRP results (Table 6). 

It can be seen in (Figure 8) that the traditional 𝐾-
mean method, high dimensional supervised 

 
Figure 7. Clustering by gwCRP for the mean of estimated coefficients of the model 

 
Table 5. Dahl's method estimates regression coefficients by gwCR 

Cluster 𝜶𝟎ෞ  𝜶𝟏ෞ  𝜶𝟐ෞ  𝜶𝟑ෞ  𝜶𝟒ෞ  𝜸ෝ𝟎 𝜸ෝ𝟏 𝜸ෝ𝟐 𝜸ෝ𝟑 𝜸ෝ𝟒 
1 0.216 0.135 0.535 1.419 1.063 1.052 0.975 0.988 0.999 1.1103 
2 2.492 0.364 0.785 1.668 1.110 0.965 0.981 0.065 1.000 0.3042 
3 0.304 0.066 0.428 1.056 1.066 1.013 0.936 0.072 0.152 0.2587 
4 1.975 -0.280 0.578 2.011 1.197 -0.259 0.753 -0.588, -1.633 1.089 
5 -0.801 0.135 0.047 -0.441 0.583 -0.417 1.539 2.444 -0.821 0.876 
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classification, and clustering, categorizes the provinces 
into 8 clusters, which leads to over-clustering. 

To determine the optimal number of clusters (k), the 
Elbow method is used in k-means clustering, an 
empirical approach. This method is based on examining 
a graph that shows the value of the Within-Cluster Sum 
of Squares (WCSS) in terms of the number of clusters. 
WCSS is the sum of the squares of the distances of each 
data point to the center of its corresponding cluster. In 
(Figure 9), the horizontal axis represents the number of 
clusters (k), and the vertical axis represents WCSS. In 
this graph, the value of WCSS usually decreases as k 
increases. This decrease is significantly rapid at first, but 
after reaching a certain point (number 8), this decrease 
loses its speed and the downward trend becomes slower. 
This point, which resembles an elbow, indicates the 
optimal number of clusters.  

Also, Comparing the clustering results using the 
traditional CRP method shown in (Figure 10) with the 
proposed method, we see that our proposed method 
successfully detects both spatially continuous clusters 
and discontinuous clusters simultaneously, however in 
the traditional CRP clustering method, neighboring 
provinces are more likely to be in the same cluster. 

 

Discussion 
In the present study, we propose an innovative 

Bayesian clustered coefficients regression model that 
employs a gwCRP to capture the spatial homogeneity of 
the regression coefficient proficiently. Our gwCRP 
models effectively address the intricate challenges 
associated with spatially varying coefficients in datasets 
characterized by right censoring and zero inflation. 
Through a combination of theoretical foundations and 
empirical evaluations, we provide compelling evidence 
that our methodologies yield precise parameter estimates 
within the ZIDW model while adeptly identifying the 
number of clusters and their configurations, even amidst 
varying proportions of zero counts. Furthermore, a 
comparative analysis with established clustering 
methodologies, such as K-means and traditional Chinese 
restaurant processes, illustrates that our approach 
achieves superior clustering concordance without 
additional tuning parameters, as indicated by higher Rand 
indexes, lower average mean squared error (AMSE), and 
improved log pseudo-marginal likelihood (LPML). 
Extensive simulation results are carried out using R 
version 4.3.3., to show that our proposed method has 
better clustering performance than the others.  No issues 
with likelihood calculation were encountered in the 
simulations or the application to Iranian divorce data, 
however, the existence of two indicator functions often 
leads to extremely small likelihood functions, 
complicating the modeling process and requiring careful 

Table 6. LPML values for different methods in modeling divorce data 
Method gwCRP CRP K-mean 
LPML -367700.24 -406588.20 -416597.30 

 

 
(a)                                                                           (b) 

Figure 8. Clustering by the k-mean with 8 clusters for the mean of a:�̂� and b:�̂� 
 



Vol. 35  No. 3  Summer 2024 S. Asadi, M. Mohammadzadeh. J. Sci. I. R. Iran 

218 
 

consideration. While the discrete Weibull distribution 
proved beneficial for simulation data generation, using 
two-part regression models increased computational 
demands due to high-dimensional parameter spaces, 
resulting in extended convergence times. Furthermore, 
spatial heterogeneity and the inherent complexity of 
Bayesian hierarchical models contributed to substantial 
computational costs, particularly when analyzing the 
Iranian divorce dataset. Despite these computational 
challenges, our gwCRP model provides a robust and 
superior approach for analyzing spatially varying 
coefficients in complex datasets. 

There are several possible directions for further 

investigation. The current model needs to be adapted to 
handle other related data (e.g., number of events) and 
longitudinal data (repeated measurements over time). 
Additionally, in this paper, our posterior sampling is 
based on the Chinese restaurant process, allowing for the 
inference of the number of clusters based on the unique 
latent cluster labels. To enhance the model, we suggest 
using a Mixed Finite Mixture (MFM) prior, allowing for 
the joint estimation of both regression coefficients and 
the probabilities of zero inflation (23) along with their 
associated clustering information. Finally, research is 
needed to improve computational efficiency, particularly 
for handling high-dimensional and sparse datasets, which 

 
Figure 9.  a: Elbow curve to determine the number of optimal clusters (k = 8), b:visualize the clustering results in the 𝐾-mean 
method 

 
(a)                                                                           (b) 

 
Figure 10. Clustering by the CRP with 5 clusters for the mean of a:𝛼ො and b:𝛾ො 
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can be challenging to analyze. 
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