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Abstract 

Some social surveys address sensitive topics for which respondents do not report 
reliable responses. Randomized response techniques (RRTs) are employed to increase 
privacy levels and provide honest answers. However, estimates obtained from this 
method tend to exhibit increased variances. Repeating randomized responses for each 
individual increases the sample size, and the mean of observations for each individual 
reduces the variance of the parameter’s estimator, bringing them closer to reality. In this 
study, considering continuous additive repeated randomized responses (RRRs), we apply 
the averaged RR of each individual using the linear regression model for sensitive 
variable mean. Data on the income of family heads were collected from students, and 
each respondent was asked to randomize their responses five times. The maximum 
likelihood estimators of parameters are obtained by two methods. In the first method, the 
response variable is the first reported observation, and in the second method, we 
considered the averaged RR for each individual. The results emphasize that the estimators 
from the second method are closer to reality and have lower variance. 
 
Keywords: Randomized Response; Repeated Randomized Response; Linear Regression Model; 
Continuous Sensitive Variable; Repeated Individual Observations. 
 

Introduction 
In many social sampling surveys, some questions 

may be sensitive to respondents, leading to insecurity in 
providing honest answers. A sensitive variable has a high 
level of social privacy or pertains to individuals’ private 
lives. For example, research related to addiction, bribery, 
specific political views, socially undesirable behaviors, 
or income. The RR technique is a sampling process in 
which respondents are more willing and confident in 
providing honest answers to questions. 

As the pioneer paper, the RR technique for sensitive 
binary questions was introduced in 1965 (1). It included 
answering a sensitive question or its complement using a 
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Bernoulli trial (tossing a coin). Considering this trick, the 
sensitive answer remains hidden from the researcher, 
preserving the respondent’s privacy. Afterward, many 
methods were proposed to examine sensitive qualitative 
data, including the unrelated response method or Simon’s 
method  (2). Many authors extended this method (3-5). 
Another method is the forced response technique 
introduced in 1971 (6). An estimate of the sensitive 
proportion through the maximum likelihood method was 
obtained using the proposed RRR (7). The RRR 
technique increases privacy protection and provides a 
truthful answer by reporting different responses by an 
individual. The logistic regression parameters for RR 
data gathered using Warner’s method were estimated (8, 
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9). Subsequently, many researchers estimated the 
sensitive proportion and regression parameters using 
various RRTs for univariate or multivariate logistic 
regression models (10-16). The additive RR method was 
used when the sensitive attribute is a discrete quantitative 
variable, and the mean of the item-sum technique was 
estimated (17-18).  

For continuous sensitive variables, the mean estimate 
is obtained using the systematic random sampling design 
in the presence of a non-sensitive auxiliary variable (19). 
Additionally, methods for estimating the mean of 
sensitive variables in the presence of measurement error 
have been developed (20-21), and variance estimators for 
sensitive variables using RRT have also been proposed 
(22). Quantitative RRTs were investigated to enhance 
respondent trust (23- 24). The effect of the initial non-
response on the regression estimator in panel surveys was 
reduced using RRT (25). By assuming truthful responses 
about domain membership,  non-sensitive quantitative 
variables were estimated for specific sensitive domains 
(26). RRs can shorten the length of certain confidence 
intervals with a conditional coverage guarantee (27). 

Modeling for continuous RRs is a less explored topic. 
In many cases, the sensitive variable is continuous. For 
example, income, tax evasion, expenses for election 
campaigns, drug or alcohol consumption during a week, 
student grade point averages, and financial or ethical 
corruption. The unrelated question design was employed 
in 1971 (28) to estimate the mean of the quantitative 
sensitive variable. The sensitive response was added to a 
random number of the scramble variable (a variable with 
known-finite mean and variance) (29). The multiplicative 
method was introduced by multiplying the sensitive 
variable by the scramble variable (30). Additive and 
multiplicative approaches, the optional and mixture RR 
methods, increase reliability and reduce bias in the 
reported responses (31, 32). Regression-cum-ratio 
estimator estimates the sensitive variable mean (33).The 
authors apply several estimation methods. The regression 
parameters using forced RRT and the EM algorithm in a 
Poisson distribution were estimated (34). Multiplicative 
RR regression parameters were estimated using the least 
squares method (35). The regression coefficients were 
estimated using the maximum likelihood method for the 
multiplicative design when the scramble variable was 
distributed as uniform (36). Later, a multiplicative RR 
design was applied as the dependent variable, and the 
regression parameters were estimated using the least 
squares method (37). The regression parameters for the 
model introduced in (39) were estimated (38). The model 
parameters were estimated for a generalized linear mixed 
effects model employing the forced-response technique 
(40). There are some reasons for the limited research on 

modeling based on RRs, including the complexity of the 
model and the limited packages in commonly used 
software. Furthermore, changing the method of 
randomizing responses also affects the modeling, making 
it more complex (40). 

A privacy criterion was introduced (41). The larger 
this criterion, the more confidential the RRT becomes, 
and respondents  are expected to be more willing to 
participate in the study.  A measure for comparing 
quantitative RR methods based on the variance-to-
privacy was proposed (42). The smaller the value, the 
greater the privacy for the RRT. In this paper, we use this 
criterion to evaluate the privacy of quantitative RRTs.  

The main focus of this article is to study models for 
continuous RRRs. Using RRs gets the parameter 
estimators closer to reality and improves efficiency; 
however, it increases the variance of the estimators. We 
consider the RRR model for the mean individual 
observations, which can remedy the variance growth by 
increasing the number of responses for each respondent. 
It is worth mentioning that the scramble variable with a 
known mean should be chosen so that the true sensitive 
value cannot be discerned from the participant’s reported 
value. Otherwise, they may lack confidence in providing 
honest answers. 

We studied repeated additive RR responses from 512 
students in 2018. The information included the number 
of family members, education, occupation, age of the 
family head, and the monthly income in millions of the 
family head. The monthly income of the family head was 
added to an existing random number of the scramble 
variable, and the result was reported, and this process was 
repeated five times. Regression parameter estimators 
were obtained using the first response of each respondent 
and the average of each respondent’s responses, which 
was reported. 

 The remainder of the paper is structured as follows. 
In the second section, the parameters for the additive, 
multiplicative, mixture, and optional techniques are 
estimated when considering the normal sensitive and 
scramble variable(s). The third section explains the real 
data application. In the fourth section, simulations are 
performed to evaluate the parameter estimates. Their 
privacy is compared using thecriteria above. The 
discussion is in the last section. 

 
1. Randomized Response Techniques (RRTs) 

Let Y~Nሺμ,σଶሻ , and S~Nሺμୱ,σୱଶሻ  denote the 
sensitive variable and the scramble variable (μୱ and σୱଶ 
known), respectively. We consider two cases. In the first 
case, to reduce response bias and enhance privacy, each 
respondent should add their response with a random 
value of the scramble variable, report only the result, and 
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then repeat the procedure m  times. Let RR variable 
denote byZ, then for individual i, the j-th RR is given by: z୧୨ = y୧ + s୧୨       i = 1, . . , n ,   j = 1, … , m, 

where y୧ and s୧୨ denote the true value of the sensitive 
variable and a random value of the scramble variable for 
the i-th individual in j-th repeat of RR. If T denotes the 
predictor variable for the sensitive variable, the unbiased 
prediction for i-th individual in j-th RR is as follows: t୧୨ = z୧୨ − μୱ,         i = 1, . . , n ,    j = 1, … , m.   

Then, the estimation of the sensitive variable mean 
and its variance are calculated as follows: μො୲ = zത − μୱ,          Vሺμොሻ = σଶ +  σୱଶn  

In the second case, considering the average of m RRs 
for each individual as observation, the predictor for i-th 
individual is t ̅ ୧ = zത୧ − μୱ, i = 1, . . , n , where Tഥ~N(μ,σଶ + ஢౩మ୫), and μො = zധ − μୱ , V(μො) = (஢మ୬ + ஢౩మ୬୫).   

The matrix form of the model for the sensitive 
variable y is as follows: y = Xβ + ε                                                                   (1) 

where X denotes the matrix of explanatory variables. 
Suppose the error term ε has zero mean and varianceν =σகଶI , where I  denote the identity matrix. Since its true 
value is not observable, the RR variable is used. 
Therefore, the model that uses the averaged RRs is as 
follows: zത = g(Xβ) + ξ                                                          (2) g(Xβ) = Xβ + μୱ , ξ = ε + δୱ , 

  
where δୱ = ( s̅ − μୱ)~N(0, τ)  is the error of 

selecting the scramble value, and τ = ஢౩మ୫ I  is the 
covariance matrix of the vector s̅ . Assuming 
independence of S  and Y , ξ  is distributed as N(0,ψ) 
where ψ = Σ + τ. 

The model parameters are estimated using the 
maximum likelihood method. The log-likelihood 
function is given by l୞(β,σகଶ) = −n2 log(2π)− 12 ln|ψ|−12 (zത − Xβ − μୱ)ᇱψିଵ(zത− Xβ − μୱ), 

and the maximum likelihood estimators (MLEs) of 
the unknown parameters are  β෠ = (XᇱX)ିଵXᇱ(zത − μୱ), σෝଶ = 1n ൫zത − Xβ෠ − μୱ൯ᇱ൫zത − Xβ෠ − μୱ൯ − σୱଶ mൗ . 

The distribution of the regression coefficient 
estimators is as follows: β෠~Nቆβ,ቆσଶ + σୗଶmቇ (XᇱX)ିଵቇ. 

Then, the use of RRTs can increase the variance of 
parameter estimates. 

 
1.1. Additive-Scrambled RR Technique 

Suppose respondents report RR variable Z = aY + bS 
instead of the sensitive value Y where a and b are known 
constant values, and S denotes a random value from the 
independent scramble variable S~N(μୗ,σୗଶ) . Then, Z~N(aμ + bμୗ, aଶσଶ + bଶσୗଶ) and, the j-th reported RR 
variable of individual i is z୧୨ = ay୧ + bs୧୨ ,    i = 1, … , n ,j = 1, … , m.  

The predictor variable based on one observation, T, is 
given by T = ୟଢ଼ାୠୗିୠஜ౏ୟ = ୞ ିୠஜ౏ୟ ~N(μ, (aଶσଶ + bଶσୗଶ)/aଶ), and the unbiased predictor of Y  using m repetitions 
is Tഥ = ୞ഥ ିୠஜ౏ୟ ~N(μ,σଶ + ୠమ୫ୟమ σୗଶ)).  

The log-likelihood function for the predictor variable 
is given by l(μ,σଶ)= − 1

2൞nln2π + nln ൬σଶ + bଶmaଶ σୗଶ൰ + 1൬σଶ + bଶmaଶ σୗଶ൰ (Tഥ − μ)ᇱ(Tഥ − μ)ൢ. 
The MLEs of the model parameters are    μො = t ̿  and  σෝଶ = (୘ഥିஜෝ)ᇲ(୘ഥିஜෝ)୬ − ୠమୟమ σୗଶ  and, the variance of the 

estimator of  μො is  V(μො) = V൫t̿൯ = ୚(୞ഥ)୬ୟమ =  ஢మ୬ + ୠమ஢౏మ୬୫ୟమ. 
Let the model error for the sensitive variable 

distribute as ε~N(0,σଶI). Due to the lack of the latent 
variable, its predictor variable, t,̅ is used. The model is 
given by t ̅ = Xβ + ε∗,                                                                         (3) 

in which ε∗~N(0,σக∗ଶ I) , where σக∗ଶ = (aଶ σଶ +ୠమ஢౏మ୫ )/aଶ. 
The log-likelihood function for the RR model is 

l(β,σଶ) = −1/2൞nln2π + nlnቆ σଶ + bଶmaଶ σୗଶቇ
+ 1൬ σଶ + bଶmaଶ σୗଶ൰ (Tഥ − Xβ)ᇱ(Tഥ − Xβ)ൢ. 

The MLEs of the proposed model parameters are as 
follows:  β෠ = (XᇱX)ିଵXᇱTഥ , and σෝଶ = ଵ୬ ൫Tഥ − Xβ෠൯ᇱ൫Tഥ − Xβ෠൯ −ୠమ஢౏మ୫ୟమ . 

The distribution of the regression coefficients 
estimators is given by: 𝛽መ~𝑁ቆ𝛽,ቆ𝜎ଶ + 𝑏ଶ𝜎ௌଶ𝑚𝑎ଶ ቇ (𝑋ᇱ𝑋)ିଵቇ. 
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1.2. Additive-Scrambled-Scrambled Technique 
Suppose the respondents multiply their sensitive 

answer by a known constant value 𝑎 , and randomly 
selecte two independent values, 𝑆ଵ and  𝑆ଶ,from known 
scramble variables 𝑁൫𝜇ௌభ ,𝜎ௌభଶ ൯  and 𝑁൫𝜇ௌమ ,𝜎ௌమଶ ൯, 
respectively and it is reported the RR variable 𝑍 = 𝑎𝑌 +𝑏𝑆ଵ + 𝑐𝑆ଶ to the researcher for two known constants b 
and c . Then, the reported variable Z  is distributed as 𝑍~𝑁(𝑎𝜇 + 𝑏𝜇ௌభ + 𝑐𝜇ௌమ ,𝑎ଶ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ ). The j-
th reported value of Z for individual i is: 𝑧௜௝ = 𝑎𝑦௜ + 𝑏𝑠ଵ௜௝ + 𝑐𝑠ଶ௜௝ ,          𝑖 = 1, … ,𝑛,𝑗 = 1, … ,𝑚. 

The unbiased predictor variable for a single RR, T, is 
as follows: 𝑇 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎= 𝑍 − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎 ~𝑁ቆ𝜇,𝜎ଶ+ 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑎ଶ ቇ, 

where the averaged RR for each individual is: 𝑇ത = �̅�  − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎 ~𝑁ቆ𝜇,𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ. 
The log-likelihood function is given by 

𝑙(𝜇,𝜎ଶ) = −12⎩⎪⎨
⎪⎧𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛 ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ

+ 1ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ (𝑇ത − 𝜇)ᇱ(𝑇ത
− 𝜇)⎭⎪⎬

⎪⎫, 
The MLE’s of parameters are given by �̂� = 𝑡̿, and 𝜎ොଶ = ( ത்ିఓෝ)ᇲ( ത்ିఓෝ)௡ − ௕మఙೄభమ ା௖మఙೄమమ௠௔మ  where, The variance of �̂� 

is  𝑉(�̂�) = 𝑉൫𝑡̿൯ = ௏(௓ത)௡௔మ = ఙమ௡ + ௕మఙೄభమ ା௖మఙೄమమ௡௠௔మ . 
Consider the sensitive variable, which is defined 

using equation (1). Consequently, the variance of the 

model error is 𝜎ఌ∗ଶ = 𝜎ଶ + ௕మఙೄభమ ା௖మఙೄమమ௠௔మ  for the predictor 
variable in equation (3), where 𝜀∗~𝑁(0,𝜎ఌ∗ଶ 𝐼).  

The log-likelihood function for estimated MLE’s of 
model parameters is as follows: 

𝑙(𝛽,𝜎ଶ) = −1/2⎩⎪⎨
⎪⎧𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛 ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ
+ 1ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ (𝑇ത
− 𝑋𝛽)ᇱ𝐼(𝑇ത − 𝑋𝛽)⎭⎪⎬

⎪⎫, 
Then, the parameters MLE’s are  𝛽መ = (𝑋ᇱ𝑋)ିଵ𝑋ᇱ𝑇ത 

and 𝜎ොଶ = ଵ௡ ൫𝑇ത − 𝑋𝛽መ൯ᇱ൫𝑇ത − 𝑋𝛽መ൯ − ௕మఙೄభమ ା௖మఙೄమమ௠௔మ . 
The distribution of the regression coefficients 

estimators is 𝛽መ~𝑁 ൬𝛽, ൬𝜎ଶ + ௕మఙೄభమ ା௖మఙೄమమ௠௔మ ൰ (𝑋ᇱ𝑋)ିଵ൰. 
 

1.3. Optional RR Technique 
In the additive-optional RRT, respondents either 

report the sensitive value or add it with a random value 
of the scramble variable. Let 𝑌~𝑁(𝜇,𝜎ଶ), and G be the 
sensitive variable and a Bernoulli random variable with 
probability p, respectively, then the reported variable is 𝑍 = 𝑌𝐺 + (𝑌 + 𝑆)(1 − 𝐺). It shows that the sensitivity 
level of the variable Y  is  (1 −  p) . The j -th reported 
value of Z  for individual  i  is as follows: 𝑧௜௝ = ൜𝑦௜ ,                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑦௜ + 𝑠௜௝ ,     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1− 𝑝 ,                𝑖= 1, … ,𝑛, 𝑗 = 1, … ,𝑚 

Then, the additive-optional RR variable has the 
following mixture density function 𝑓௓(𝑍)= 𝑝𝜑 ቀ𝑦 − 𝜇𝜎 ቁ+ (1 − 𝑝)𝜑 ቆ𝑦 + 𝑠 − (𝜇 + 𝜇௦)ඥ𝜎ଶ + 𝜎௦ଶ ቇ .                       (4) 

 
From density (4), we have the following equation:  𝐸௣(𝐸ோ൫(𝑍|𝐺)൯)) = 𝐸௣(𝑝𝑌 + (1 − 𝑝)(𝑌 + 𝑆)). 
The mean and variance of Z are 𝜇௭ = 𝜇 + (1 − 𝑝)𝜇ௌ 

and, 𝜎௭ଶ = (𝑝 − 𝑝ଶ)𝜇௦ଶ + (1 − 𝑝)𝜎௦ଶ + 𝜎ଶ  respectively 
and, the MLE’s of the parameters are �̂� = 𝑧̅ − (1 − 𝑝)𝜇ௌ 
and 𝜎ොଶ = ቀ(௓ିఓෝ೥)ᇲ(௓ିఓෝ೥)௡ − (1 − 𝑝)𝜎௦ଶ − (𝑝 − 𝑝ଶ)𝜇௦ଶቁ 
where, the variance of �̂� is:  𝑉(�̂�) = (𝑝 − 𝑝ଶ)𝜇ௌଶ + (1 − 𝑝)𝜎ௌଶ + 𝜎ොଶ𝑛 .𝑉(�̂�). 

The unbiased predictor variable, T, and the averaged 
RR, 𝑇ത, have variances  𝜎௧ଶ = 𝜎ଶ + (1 − 𝑝)𝜎௦ଶ and 𝜎௭̅ଶ =𝜎௧̅ଶ = 𝜎ଶ + (1 − 𝑝)𝜎௦ଶ 𝑚⁄ + (𝑝 − 𝑝ଶ)𝜇ௌଶ/𝑚 , 
respectively where, 𝑇 = 𝑍 − (1 − 𝐺)𝜇ௌ and,     𝑇ത = �̅� −
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(1 − 𝑝)𝜇ௌ. Based on 𝑇ത , the log-likelihood function for 
the predictor variable is: 
  𝑙(𝜇,𝜎ଶ) ∝෍𝑙𝑛 ቆ 1𝜎௭̅ 𝑒𝑥𝑝 ቊ−12 ൬𝑧௜̅ − 𝜇௭𝜎௭̅ ൰ଶቋቇ

= ෍𝑙𝑛൭ 1𝜎௧̅ 𝑒𝑥𝑝 ൝−12ቆ𝑡௜̅ − 𝜇𝜎௧̅ ቇଶൡ൱. 
Furthermore, the MLE’s of the parameters are: �̂� = 𝑧̿ − (1 − 𝑝)𝜇ௌ , 𝜎ොଶ = ቆ(𝑡̅ − �̂�)ᇱ(𝑡̅ − �̂�)𝑛 − (1 − 𝑝)𝜎௦ଶ 𝑚⁄− (𝑝 − 𝑝ଶ)𝜇ௌଶ/𝑚ቇ                          (5) 

Consider regression equation (1) for the sensitive 
variable, the log-likelihood function is rewritten as 𝑙(𝜇,𝜎ଶ) = −1/2 ቊ𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛(𝜎௭̅ଶ)+ 1𝜎௭̅ଶ (�̅� − (𝑋𝛽 + (1 − 𝑝)𝜇ௌ))ᇱ(�̅�− (𝑋𝛽 + (1 − 𝑝)𝜇ௌ))ቋ   = −1/2 ቊ𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛൫𝜎௧̅ଶ൯ + 1𝜎௧̅ଶ (𝑡̅ − 𝑋𝛽)ᇱ(𝑡̅ − 𝑋𝛽)ቋ 

Then, the MLE’s of parameters are as follows:  𝛽መ = (𝑋ᇱ𝑋)ିଵ𝑋ᇱ(�̅� − (1 − 𝑝)𝜇ௌ ), 𝜎ොଶ = 1𝑛 ൫�̅� − 𝑋𝛽መ − (1 − 𝑝)𝜇ௌ൯ᇱ൫�̅� − 𝑋𝛽መ − (1 − 𝑝)𝜇ௌ൯− (1 − 𝑝)𝜎௦ଶ 𝑚⁄ − (𝑝 − 𝑝ଶ)𝜇௦ଶ𝑚 . 
Therefore, the distribution of the regression 

coefficients estimators is given by: 𝛽መ~𝑁൫𝛽, ൫(1 − 𝑝)𝜎௦ଶ 𝑚⁄ + (𝑝 − 𝑝ଶ)𝜇௦ଶ/𝑚+ 𝜎ଶ൯(𝑋ᇱ𝑋)ିଵ൯. 
 

1.4. Productive RR Technique 
Assume that respondents multiply their sensitive 

value 𝑌 by a known value from the scramble variable 𝑆. 
Then, the RR variable is 𝑍 = 𝑌𝑆, and the j-th answer for 
individual i is given by: 𝑧௜௝ = 𝑦௜𝑠௜௝  ,          𝑖 = 1, … ,𝑛 , 𝑗 = 1, … ,𝑚. 

Then, the unbiased predictor variable 𝑇 = ௓ఓೞ  is 
defined for a single RR. The mean and variance 
estimators of the sensitive variable are  �̂� = 𝑡̅ and 𝜎ොଶ =൬(೟షഋෝ)ᇲ(೟షഋෝ)೙ ିഋమ഑ೞమഋೞమ ൰൬ଵା ഑ೞమഋೞమ൰  respectively when, the variance of �̂� is (�̂�) = 𝜎ଶ + (ఓమାఙమ௡ ) ఙೞమఓೞమ . 

The averaged RR for each individual is 𝑇ത = ௓തఓೞ which 
is an unbiased predictor variable with the mean and 
variance 𝜇 and, 𝜎ଶ + (ఓమାఙమ௠ ) ఙೞమఓೞమ, respectively. Then, the 
estimators of the mean and variance are �̂� = 𝑡̿, and 𝜎ොଶ =൬(೟షഋෝ)ᇲ(೟షഋෝ)೙ ିഋమ഑ೞమ೘ഋೞమ൰൬ଵା ഑ೞమ೘ഋೞమ൰ , respectively where, the variance of �̂� is 𝑉(�̂�) = ఙమ௡ + (ఓమାఙమ௠௡ ) ఙೞమఓೞమ  and the privacy level is 

calculated as 𝑃௅ = (𝜇ଶ + 𝜎ଶ) ቀఙೞమ௠ + (𝜇௦ − 1)ଶቁ. 
The log-likelihood equation using the predictor 

variable 𝑇ത is given by  

𝑙(𝜇,𝜎ଶ) = 𝑙𝑜𝑔⎝⎛න 12𝜋|�̅�|ට𝜎ଶ𝜎௦ଶ𝑚 𝑒𝑥𝑝ቆ−𝑚2 ൬�̅� − 𝜇௦𝜎௦ ൰ଶஶ
ିஶ
− 12𝜎ଶ ൬ 𝑧̅𝜇௦ − 𝜇൰ଶቇ𝑑𝑠⎠⎞. 

 
Numerical methods estimate these parameters since 

the likelihood equation does not lead to a closed-form 
solution 

Considering the regression equation (1) for sensitive 
variable, the log-likelihood function using equation (3), 
is as follows: 

𝑙(𝛽,𝜎ଶ) = 𝑙𝑜𝑔⎝⎛න 12𝜋|�̅�|ට𝜎ଶ𝜎௦ଶ𝑚 𝑒𝑥𝑝 ቆ−𝑚2 ൬�̅� − 𝜇௦𝜎௦ ൰ଶஶ
ିஶ
− 12𝜎ଶ (𝑇ത − 𝑋𝛽)ଶቇ𝑑𝑠⎠⎞. 

where = 𝜎ఌ∗ଶ + (ఓమାఙమ௠ ) ఙೞమఓೞమ . The likelihood equations 
do not have closed-form solutions, so numerical methods 
are used. 

 
2. Application 

In this section, the real data is applied to investigate 
the proposed RR method. In the data collection, fifty 
random values from the normal scramble variable 𝑆~𝑁(3.6, 0.5ଶ) are selected and recorded in fifty cards. 
The income of the family head is one of the sensitive 
questions in social sciences studies. In a questionnaire, 
512 bachelor’s students at Shahid Chamran University 
were asked to report the number of family members, 
education level, occupation, and age of the head of the 
family. they also summed up the monthly income (of 
millions) of the family head with one of the given random 
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scramble values and repeated this process five times. The 
students randomly selected one card from the deck of 50 
cards and without anyone noticing, added the income of 
their family head to the number on the card and returned 
the card to the deck. The cards were then shuffled to 
maintain privacy, and only the sum of two values was 
reported. We repeated the process five times and reported 
the results for each repetition. The 𝑗-th RR for an 𝑖-th 
individual was as follows: 𝑍௜௝ = 𝑌௜ + 𝑆௜௝       𝑖 = 1, … , 512, 𝑗 = 1, … ,5. 

Considering the RR Model (case one), the MLEs of 
the mean and variance of the family head income were 
obtained as �̂�௒ = 3.50662 and 𝜎ොଶ = 1.97, respectively. 
The explanatory variables include the number of family 
members, the age of the family head, the level of 
education (coded as a binary variable: 1 for university 
attendance and 0 for non-attendance), and the occupation 
of the family head. Occupation is treated as a nominal 
variable with five categories: "others" (used as the 
reference level), "self-employed," "doctor," "engineer," 
and "retired or deceased". 

The results summarized in Table 1 indicate that the 
number of family members and the age of the family head 
were not statistically significant. Considering “others” as 
the reference level for the occupation, levels of “doctor” 
and “engineer” had a significant impact on income 
compared to employees. The results also showed that 

having university attendance compared to non-
attendance led to a significant increase in income.  

Table 1 also shows that the family head jobs “doctor” 
and “engineer” had a significantly increasing effect on 
family head income compared to “others”. However, 
“self-employed” and “retired” did not significantly affect 
family head income compared with “others”. Our 
findings indicated that the variance of the sensitive 
variable was estimated at 1.83. 

For RR model 1 (case two), the estimated mean and 
variance of the family head income were              �̂�௒ =3.579  and, 𝜎ොଶ = 1.932,  respectively. The estimated 
parameters and their significant levels are presented in 
Table 2 where the estimated variance of the sensitive 
variable is 2.09.  

The results of Tables 1 and 2, are consistent with 
previous ones; however, the standard error of estimates 
decreased (Table 2). 

 
3. Simulation Study  

For the models presented in Section 2, simulation and 
comparison were conducted using privacy criteria. Let 𝛽଴ = 5 and 𝛽ଵ = 2, and the covariate 𝑋 and model error 𝜀  were generated from normal 𝑁(1,4)  and 𝑁(0,1) , 
respectively. Therefore, the sensitive variable had a 
normal distribution of 𝑁(5 + 2𝑥, 1). On the other hand, 
the distribution of the scramble variables must be such 
that their mean falls within the parameter space of the 

 
Table 1. Estimated Parameters of the RR model (case one) 

p-value SE Coefficient 
 

Parameter 
< .001 0.65 2.46 

 
Intercept 

0.414 0.01 0.0091 
 

Age 
- - - non-attendance Education 

< .001 0.2 1.13 university attendance 
0.447 0.06 -0.04 

 
Family number 

-- -- -- others Occupation of 
the family head 0.449 0.21 -0.16 self-employed 

< .001 0.48 2.6 Doctor 
< .001 0.37 2.37 Engineer 
0.765 0.35 0.1 Retired 

 
Table 2. Estimated Parameters for averaged RR (case two). 

p-value t -value 95% CI SE Coefficient 
 

Parameter 
< .000 3.51 [ 1.18, 3.75] 0.62 2.16 

 
Intercept 

0.11 1.6 [-0.01, 0.03] 0.01 0.017 
 

Age 
- - - - - Non-attendance Education 

< .001 5.96 [ 0.73, 1.53] 0.19 1.146 University attendance 
0.45 -0.76 [-0.16, 0.07] 0.055 -0.042 

 
Family number 

-- -- -- -- -- Others Occupation of the 
family head 0.317 -1 [-0.57, 0.25] 0.2 -0.2 self-employed 

< .001 6.08 [ 1.65, 3.55] 0.46 2.77 Doctor 
< .001 6.45 [ 1.64, 3.11 0.35 2.28 Engineer 
0.815 0.23 [-0.57, 0.78] 0.33 0.076 Retired 
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sensitive variable. The parameters were estimated using 
the maximum likelihood method. The simulation was 
repeated 𝐾  times, and the results included the average 
parameter estimatesand the bias and mean squared error 
(MSE) of these estimates. 

The simulations are as follows: 
3.1 We considered the additive model with one 

scramble variable. This variable was sampled from 
normal 𝑁(6,4) . We consider 𝑎 = 3  and 𝑏 = 2 , so the 
RR variable has a normal distribution of 𝑍~𝑁(27 +6𝑥, 25).  For 𝑚 = 5  times repeat of RR for each 
individual, the averaged RR variable has a normal 
distribution of �̅�~𝑁(27 + 6𝑥, 12.2). 

Tables 3 and 4 present the simulation results for 𝑘 =2000 repetitions for both RR and averaged RR models, 
respectively.  

3.2. We considered the additive-scrambled-
scrambled RR model with two scramble variables. The 
scramble data were generated from a normal distribution 
of  𝑆ଵ~𝑁(6,4) and𝑆ଶ~𝑁(8,16). Setting       𝑎 =  3, 𝑏 = 2 and, 𝑐 =  2, the RR variable 𝑍 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ had 
a normal distribution of 𝑁(43 + 6𝑥, 89). The mean of m 
= 5 times the repeat of RR for each individual had a 
normal distribution of �̅�~𝑁(27 + 6𝑥, 25).  Simulation 
results for both cases are provided in Tables 5 and 6, 
respectively. 

 
3.3. Given a normal distribution 𝑁(6,4) , and a 

sensitivity level of 0.6, we used an optional RRT model. 
So, the probability of answering the sensitive variable 
was 𝑝 = 0.4. The regression model is as follows: 𝑦௜ = 5 + 2𝑥௜ + 𝜀௜ , 𝑖 = 1, … ,𝑛 , 𝜀~𝑁(0,1). 

Table 3. MSE and bias of parameter Estimations for additive-scrambled RR.  
n 𝛔𝐘 𝛃𝟏 𝛃𝟎 

Est. 100 0.944 2 4.995 
Bias -0.056 0? -0.005 
MSE 0.046 0.019 0.104 
Est. 50  0.893 1.993 5.021 
Bias -0.107 -0.007 0.021 
MSE 0.11 0.04 0.219 
Est. 20 0.817 1.993 5.005 
Bias -0.183 -0.007 0.005 
MSE 0.177 0.07 0.378 

 
Table 4. MSE and bias of parameter Estimations for averaged-additive-scrambled RR.  

n 𝛔𝐘 𝛃𝟏 𝛃𝟎 
Est. 100 0.984 2.001 5 
Bias -0.016 0.0006 0.0004 
MSE 0.0094 0.0095 0.049 
Est. 50 0.96 2.001 4.998 
Bias -0.04 0.0008 -0.002 
MSE 0.019 0.019 0.105 
Est. 20 0.9 2.006 4.98 
Bias -0.101 0.006 -0.021 
MSE 0.052 0.054 0.279 

 
 

 
Table 5. MSE and bias of parameter Estimations for additive-scrambled-scrambled RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.793 1.997 5.012 
Bias -0.207 -0.003 0.012 
MSE 0.398 0.0675 0.364 
Est. 50 0.731 2.003 4.986 
Bias -0.27 0.003 -0.014 
MSE 0.55 0.138 0.752 
Est. 20 0.707 2.016 4.938 
Bias -0.293 0.016 -0.061 
MSE 0.662 0.254 1.32 
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The optional RR variable had a mean of 8.6 + 2𝑋 and 
variance of 12.04. The mean of RRs for 𝑚 = 5 
observations per individual had the same mean and a 
variance of 10.12. Parameter estimatesand their MSE and 
biases are provided for k =2000 repetitions in Tables 7 
and 8. 

3.4. Finaly, simulation results were provided for the 
multiplicative RR. The scramble variable data were 
sampled from 𝑁(6,4), so the mean and variance of the 
multiplicative RR variable were  𝜇௭ = 30 + 12𝑥 
and𝜎௭ଶ = 16(5 + 2𝑥)ଶ + 52, respectively. 

The mean of the multiplicative RRs for 𝑚 = 5 
observations per individual had the same mean and 
variance 𝜎௭̅ଶ = 3.2(5 + 2𝑥)ଶ + 39.2 . The simulation 
results are provided for k=2000 repetitions in Tables 9 
and 10. 

According to the simulation results, the maximum 
likelihood estimates were very close to the true values 
with high accuracy. Moreover, as the number of 

simulated data, n, increases, the accuracy of estimates 
improves, whereas the variance and bias of the estimates 
decrease. 

3.5 Privacy criteria 
The privacy criterion, 𝑃௅, (the privacy level), is the 

mean squared difference between the RR, Z, and the true 
response Y or 𝑃௅ = 𝐸(𝑍 − 𝑌)ଶ . The measure  𝛿 = ௏(ఓෝ)௉ಽ  
was proposed for comparing quantitative RR methods 
(42). The privacy evaluation criteria for single and 
repeated observations of techniques are presented in 
Table 11. For each n, the techniques in terms of the 𝑃௅ 
criterion are sorted as follows: 

The technique with two scramble variables is the best, 
and after that, the techniques are sorted as follows: The 
technique with one scramble variable, the multiplicative 
technique, and the optional technique. However, 
considering the 𝛿 criterion, the multiplicative technique 
came first, followed by the techniques with one and two 

Table 6. MSE and bias of parameter Estimations for averaged-additive-scrambled-scrambled RR.  
n 𝝈𝒀 𝜷𝟏 𝜷𝟎 

Est. 100 0.953 2 5.001 
Bias -0.047 0? 0.001 
MSE 0.043 0.019 0.103 
Est. 50 0.893 2.008 4.975 
Bias -0.106 0.0078 -0.025 
MSE 0.102 0.04 0.211 
Est. 20 0.743 1.991 5.037 
Bias -0.257 -0.009 -0.037 
MSE 0.243 0.114 0.607 

 

 
Table 7. MSE and bias of parameter Estimates for optional RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.791 2.005 5 
Bias -0.209 0.005 -0.001 
MSE 0.318 0.079 0.444 
Est. 50 0.686 2.001 5.006 
Bias -0.314 0.001 0.006 
MSE 0.422 0.17 0.911 
Est. 20 0.615 1.984 5.029 
Bias -0.385 -0.016 0.029 
MSE 0.521 0.301 1.61 

 
Table 8. MSE and bias of parameter Estimates for averaged-optional RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.924 2.001 4.998 
Bias -0.076 0.001 -0.002 
MSE 0.066 0.022 0.116 
Est. 50 0.849 2.005 4.991 
Bias -0.15 0.005 -0.008 
MSE 0.138 0.048 0.246 
Est. 20 0.717 2.007 4.985 
Bias -0.283 0.007 -0.015 
MSE 0.276 0.129 0.69 
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scramble variables, and the optional technique was the 
last one. 

For techniques with averaged RRs, the best-
performing technique in terms of the 𝑃௅ criterion was the 

multiplicative technique.The technique with two 
scramble variables was the second one, followed by the 
technique with a single scramble variable.The last was 
the optional technique. The behavior of the 𝛿 criterion 

Table 9. MSE and bias of parameter Estimates for multiplicative RR.  
n 𝝈𝒀 𝜷𝟏 𝜷𝟎 

Est. 100 3.246 2.002 4.998 
Bias 2.246 0.002 -0.002 
MSE 0.078 0.084 0.27 
Est. 50 3.18 2.003 4.988 
Bias 2.18 0.003 -0.012 
MSE 0.145 0.166 0.57 
Est. 20 3.039 1.993 4.983 
Bias 2.038 -0.007 -0.017 
MSE 0.352 0.5 1.73 

 
Table 10. MSE and bias of parameter Estimates for averaged-multiplicative RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 1.61 1.999 5.008 
Bias 0.613 -0.001 0.008 
MSE 0.017 0.02 0.08 
Est. 50 1.695 1.992 5.014 
Bias 0.695 -0.008 0.014 
MSE 0.034 0.048 0.18 
Est. 20 1.67 1.997 5.01 
Bias 0.67 -0.003 0.01 
MSE 0.088 0.124 0.511 

 
Table 11. Privacy criteria of the RR techniques. 

Results for the mean of 𝒎 = 𝟓 observations 
Results from one 

observation 
Privacy 

evaluation 
criteria 

n 
 

 
Var. Mean Var. Mean 

 

5719.02 928 5209.87 943.1 𝑃௅ 20  𝑍 = 𝑎𝑌 + 𝑏𝑆, 
  

 𝟓𝟓 × 𝟏𝟎ି𝟕 -0.0011 3 × 10ି଼ 0.0016 𝛿 
  

2280.68 932.19 3193.87 944.36 𝑃௅ 50 
 𝟏𝟖 × 𝟏𝟎ି𝟗 -0.00045 54 × 10ିଽ 0.00098 𝛿 

  

1155.3 930.127 1597.88 943.58 𝑃௅ 100 
 𝟐 × 𝟏𝟎ି𝟗 -0.00012 69 × 10ିଵ଴ 0.00049 𝛿 

  

17363.07 2165.62 31578.69 2214.71 𝑃௅ 20 𝑍 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ,  𝟏𝟓 × 𝟏𝟎ି𝟖 0.0011 14 × 10ି଼ 0.0018 𝛿 
  

7626.24 2159.43 17797.91 2219.29 𝑃௅ 50 
 𝟏𝟏 × 𝟏𝟎ି𝟗 0.00045 29 × 10ିଽ 0.0011 𝛿 

  

3702.596 2158.821 9425.88 2225.44 𝑃௅ 100 
 𝟏𝟑 × 𝟏𝟎ି𝟏𝟎 0.00023 42 × 10ିଽ 0.00054 𝛿 

  

6.13 15.17 24.81 23.93 𝑃௅ 20  
 
 𝑍 = 𝑌𝐺 + (𝑌 + 𝑆)(1 − 𝐺), 
 
  

 

0.0001 0.04 0.00016 0.111 𝛿 
  

2.5 15.14 14.77 24.05 𝑃௅ 50 
 𝟏𝟎 × 𝟏𝟎ି𝟔 0.017 37 × 10ି଺ 0.066 𝛿 

  

1.21 15.16 7.61 24.1 𝑃௅ 100 
 𝟏𝟒 × 𝟏𝟎ି𝟕 0.009 64 × 10ି଺ 0.033 𝛿 

  

126752 2280.34 122.42 88.32 𝑃௅ 20  𝑍 = 𝑌𝑆 
 
  

 𝟒𝟔 × 𝟏𝟎ି𝟏𝟏 0.0001 39 × 10ିଵ଴ 0.0004 𝛿 
  

47221.5 2266.81 47.41 87.75 𝑃௅ 50 
 𝟐𝟗 × 𝟏𝟎ି𝟏𝟐 0.00004 29 × 10ିଵଵ 0.00015 𝛿 

  

22501.78 2271.15 23.23 87.88 𝑃௅ 100 
 𝟑𝟖 × 𝟏𝟎ି𝟏𝟑 0.00002 37 × 10ିଵଶ 0.00008 𝛿 
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for this case is consistent with the single-observation 
case. 

When comparing privacy criteria between single-
observation models and models with averaged RRs, the 𝑃௅ criterion significantly increased for the multiplicative 
model with averaged observations. Models with one and 
two scramble variables showed a slight reduction in 𝑃௅, 
while the optional model had nearly a halving of 𝑃௅. The 𝛿 criterion favors single-observation responses across all 
techniques, emphasizing the preference for models with 
averaged RRs. 

 

Results and Discussion 
In social surveys, when studying a sensitive variable, 

respondents may refuse to answer questions or provide 
socially desirable responses. The RR techniques help 
mitigate this issue. The RRR technique is one approach 
that increases privacy levels while moderating the 
increase in estimates variance. When studying 
continuous RR data, collecting multiple observations 
from each increases the sample size and improves 
parameter estimates. Averaging the observations for each 
respondent helps achieve more precise estimations. 
Linear models are applied for the mean of observations. 
The findings of this study demonstrate that the averaged 
RRs for each individual in various RR techniques yield 
more accurate estimations and reduce their variance. 

 In the study of the family head income, modeling the 
RR techniques are evaluated with demographic variables, 
including the number of family members and age, 
education level, and occupation of the family head. The 
results of the averaged RR model indicate that the 
number of family members and the age of the family head 
are not statistically significant. Levels of “doctor” and 
“engineer” of occupation variable, have a significant 
impact on income compared to the reference category, 
“others”. The results also show that having a university 
education may lead to a significant increase in income. 
This finding provides a valuable avenue for further 
investigations in this field. 
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