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Abstract 
Given the importance of varentropy in information theory, and since a closed form 

cannot be derived for some discrete distributions, we aim to establish bounds for the 
varentropy of these distributions and introduce the past varentropy for discrete random 
variables. In this article, we first acquired lower and upper bounds for the varentropy of 
the Poisson, binomial, negative binomial, and hypergeometric distributions. Since the 
resulting upper bounds are expressed as squared logarithmic expectations, we provide an 
equivalent formulation using squared logarithmic difference coefficients. Similarly, we 
present lower bounds in terms of logarithmic difference coefficients. Furthermore, an 
upper bound is derived for the variance of a function of discrete reversed residual lifetime 
function. We also investigate inequalities involving moments of selected functions via 
the reversed hazard rate and characterize certain discrete distributions by the Cauchy-
Schwarz inequality. 
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Introduction 
If X is absolutely continuous with probability density 

function 𝑓(𝑥), then the entropy of X is given by 
  𝐻(𝑋) = ାஶିஶ׬− 𝑓(𝑥)log𝑓(𝑥)𝑑𝑥,                   (1) 
 
where −log 𝑓(𝑋)   is the information content of X. 

Notably, the existence of 𝐻(𝑋)  is not guaranteed. When 
it exists, its values range belongs to [−∞,∞], while the 
entropy of discrete random variables (RVs) does not take 
negative values. 

It is noteworthy that the variance entropy (for short 
varentropy) of a RV X is given by 𝑉(𝑋) = ାஶିஶ׬ 𝑓(𝑥)[log𝑓(𝑥)]ଶ𝑑𝑥 − [𝐻(𝑋)]ଶ.          (2) 

 

                                                        
* Corresponding Author: Tel: 03145249136; Email: f-goodarzi@kashanu.ac.ir 

The importance of this measure in the fields of 
mathematics and physics has been emphasized in various 
studies, such as those by (1), (2), and (3). 

As an application of varentropy, we consider a system 
with complex network. A complex network, in reality, 
contains a large amount of information necessary to 
describe the system’s behaviors. (1) stated that 
varentropy is utilized as a general measure of 
probabilistic uncertainty for a complex network in terms 
of the laws of thermodynamics. Next, we will mention 
the application of variance of entropy in computer 
science. One of the most significant threats internet users 
and cloud computing services face is denial-of-service 
(DDoS) attacks. The nonlinear time series model is 
employed to predict future network traffic states by (4) 
and used to predict the future values of entropy variance. 
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Also, they determined prediction errors by comparing the 
actual variance of entropy and the predicted variance of 
entropy. (5) have derived an explicit formula of the 
varentropy measure for the invariant density of one-
dimensional ergodic diffusion processes. 

Furthermore, (3) found an optimal varentropy bound 
applicable to log-concave distributions. (2) obtained a 
sharp varentropy bound on Euclidean spaces for convex 
probability measures. Another method to compute a 
bound for varentropy is given in (6) and (7) via reliability 
theory.  (8) proposed the concept of varentropy for 
doubly truncated RVs and extensively analyzed its 
theoretical properties. A method for computing 
varentropy measure for the order statistics is introduced 
by (9). (10) introduced the variance residual entropy 
measure. (11) and (12) obtained bounds for past 
varentropy for continuous RV. Also, (13) obtained a 
bound for residual varentropy of discrete RV. Moreover, 
(14) recently offered a few estimators for varentropy for 
a continuous RV. The lossless source coding research 
(15) stated that the source dispersion equals its 
varentropy for Markov sources. 

Suppose X is a discrete RV supporting 𝑆 ={0,1, … , 𝑏}, where 𝑏 is an integer and 0 < 𝑏 ≤ ∞. If we 
express the probability mass function (PMF) and 
distribution function of 𝑋  by 𝑝(𝑥)  and 𝐹(𝑥) , 
respectively, then, in comparison with (1) and (2), the 
entropy and varentropy of a nonnegative discrete RV X 
are given as follows. 𝐻(𝑋) = −∑ஶ௫ୀ଴ 𝑝(𝑥)log𝑝(𝑥), (3) 𝑉(𝑋) = ∑ஶ௫ୀ଴ 𝑝(𝑥)[log𝑝(𝑥)]ଶ − [𝐻(𝑋)]ଶ. (4) 

 
The entropy of a discrete RV is the average amount 

of information, measured in bits, gained from observing 
a single symbol. 

Characterizations of distributions are essential to 
many researchers in applied fields. In particular, in 
reliability theory, given an RV that often denotes a unit’s 
lifetime, aging functions are assigned to it and 
characterize this variable. Among the most used are 
reversed failure rate and reversed mean residual life. 

One can define the reversed hazard rate of X as 𝜑(𝑥) = 𝑃(𝑋 = 𝑥|𝑋 ≤ 𝑥) = 𝑝(𝑥)𝐹(𝑥), 
hence, 𝐹(𝑥) is specified as follows 𝐹(𝑥) = ∏௕௧ୀ௫ାଵ (1 − 𝜑(𝑡)),    𝑥 = 0, … , 𝑏 − 1. (5) 
 
Also, the reversed mean residual lifetime is given by 𝑟(𝑥) = 𝐸(𝑥 − 𝑋|𝑋 < 𝑥) = ଵி(௫ିଵ)∑௫௧ୀଵ 𝐹(𝑡 − 1), (6) 
  
with defining 𝑟(0) = 0. See (16) for more details. 
Definition 1. (a) F is said to be decreasing reversed 

hazard rate (DRHR) if 𝜑(𝑥) is decreasing in x. 
(b) F is said to  increase expected inactivity time 

(IEIT) if 𝑟(𝑥) increases in x. 
To derive variance bounds for functions of RVs, we 

employ Chernoff’s inequality. For a discrete RV 𝑋 with 
PMF 𝑝(𝑥), 𝑥 = 0,1,2, …, bounds for 𝑉𝑎𝑟[𝑔(𝑋)]  can be 
obtained using the forward difference of 𝑔(𝑋). Notably, 
these bounds were derived utilizing the Cauchy-Schwarz 
(C-S) inequality. We utilize the following lemma to 
derive these bounds, as presented in  (17). 

Lemma 2. Let X be a nonnegative and integer-valued 
RV with probability function 𝑝(𝑥)  with support {0,1,2, … }  and let its mean be 𝜇. Additionally, let 𝑔(𝑋) 
be a real-valued function with 𝑉𝑎𝑟[𝑔(𝑋)] < ∞. Then 𝜎ଶ𝐸ଶ[𝑤(𝑋)Δ𝑔(𝑋)] ≤ 𝑉𝑎𝑟[𝑔(𝑋)]≤ 𝜎ଶ𝐸[𝑤(𝑋)(Δ𝑔(𝑋))ଶ],                              (7) 
where Δ𝑔(𝑥) = 𝑔(𝑥 + 1) − 𝑔(𝑥) and 𝑤(𝑥) satisfies  

 𝜎ଶ𝑝(𝑥)𝑤(𝑥) = ∑௫௞ୀ଴ (𝜇 − 𝑘)𝑝(𝑘).             (8) 
The equality satisfies iff 𝑔 is linear. 
 
The layout of the article is as follows. In Section 1, 

we compare two sequences by the coefficient of variation 
for coding a discrete source of information with three 
symbols and also define past varentropy for discrete RVs 
and obtain it by past entropy of order 𝜁 for the discrete 
case. In Section 2, we get an upper and lower bound for 
the varentropy of the binomial, Poisson, negative 
binomial, and hypergeometric distribution. An upper 
bound for the variance of a function of the discrete 
reversed residual life RV is obtained in Section 3. 
Furthermore, we characterize some distributions through 
functions that ensure reliability for discrete RVs. 
 
Coefficient of Variation and Past Varentropy 

The significance of entropy is widely recognized in 
information theory and various other fields. However, 
varentropy has received comparatively less attention. 
Notably, the discrete entropy (3) quantifies the average 
number of symbols needed to code an event generated by 
an information source governed by the PMF of X. 
Varentropy, on the other hand, quantifies the variability 
associated with this coding. If the entropy of two sources 
of information is identical, then, during coding, the 
number of digits needed for the codeword of a symbol is 
closer to the expected value for the source with the lower 
varentropy. 

Example 1.1. Suppose that X has the PMF 𝑝(0) = ଵଶ 
and 𝑝(1) = 𝑝(2) = ଵସ .  Also, let Y have Poisson 
distribution with parameter λ; then, it is easily calculated 
that 𝜆 ≈ 0.620675,  we have 𝐻(𝑌) ≈ 1.039721  and 𝑉(𝑌) = 0.515302 . Moreover, 𝐻(𝑋) ≈ 1.039721  and 
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𝑉(𝑋) = 0.120112; hence, the coding process is better 
suited for sequences produced by X. 

In the process of coding a discrete source of 
information with three symbols with probabilities p, q, 
and 1 − p − q, the quantifiers entropy and varentropy, 
respectively, are stated as: 𝐻(𝑝, 𝑞) = 𝐻(𝑋) = −𝑝 log 𝑝 − 𝑞 log 𝑞 − (1 − 𝑝 −𝑞)log(1− 𝑝 − 𝑞),                                                         (9) 𝑉(𝑝, 𝑞) = 𝑉(𝑋) = (𝑝 − 𝑝ଶ)(log𝑝)ଶ + (𝑞 −𝑞ଶ)(log𝑞)ଶ + (1 − 𝑝 − 𝑞 − (1 − 𝑝 − 𝑞)ଶ)(log(1− 𝑝 −𝑞))ଶ − 2𝑝𝑞log𝑝log𝑞 − 2𝑝(1 − 𝑝 − 𝑞)log𝑝log(1 − 𝑝 −𝑞) − 2𝑞(1 − 𝑝 − 𝑞)log𝑞log(1 − 𝑝 − 𝑞).                 (10)        

 
We sketch 𝐻(𝑋) and 𝑆𝐷(𝑋) = ඥ𝑉(𝑋) defined over 𝑝 and 𝑞 in Figure 1.  Regarding p and q, seven limit cases 

have no varentropy. These points are (0,0) , (0,0.5) , (1/3,1/3), (0.5,0), (0.5,0.5), (0,1), and (1,0). Notice 
that varentropy would be zero in case (1/3,1/3), with 
equiprobable sequences and maximum entropy. 

Now, we want to check the maximum variability in 
the information content. For this purpose,  we are looking 
into the behavior of ௗௌ஽(௣,௤)ௗ௣  and ௗௌ஽(௣,௤)ௗ௤ . By setting these 
terms equal to zero, we have (log𝑝)ଶ + 2log 𝑝 − (log(1 − 𝑝 − 𝑞))ଶ − 2log(1 − 𝑝− 𝑞) +(2(𝑝 log 𝑝 + 𝑞 log 𝑞 + (1 − 𝑝 − 𝑞)log(1− 𝑝 −𝑞)))(log(1 − 𝑝 − 𝑞) − log 𝑝) = 0, (11) 

and 
 (log𝑞)ଶ + 2log𝑞 − (log(1 − 𝑝 − 𝑞))ଶ − 2 log(1 −𝑝 − 𝑞)) +(2(𝑝log𝑝 + 𝑞 log 𝑞 + (1 − 𝑝 − 𝑞)log(1 − 𝑝 −𝑞)))(log(1 − 𝑝 − 𝑞) − log 𝑞) = 0. (12) 
 
Note that the seven points mentioned earlier have 

infinite derivative values (singular points). Thus, we  
apply the Newton-Raphson algorithm to obtain 

approximate roots of derivatives given in (11) and (12)  
(see (18)). The values 𝑝 = 0.0616518191 and 𝑞 =0.0616518191 were obtained with an initial  
value (0.06,0.06) to start the algorithm. It is clear 

that the points (0.0616518191,0.8766963618) and  (0.8766963618,0.0616518191)  also maximize 𝑆𝐷(𝑝, 𝑞) and their values is 0.8728128309.  
Additionally, we consider the intersection curves of 

the two surfaces of Figure 1, where 𝐻(𝑝, 𝑞) = 𝑆𝐷(𝑝, 𝑞). 
The intersection areas can be shown in Figure 2 using the 
implicit plot function in Maple. For example, if 𝑝 = 0.2, 
then entropy and the standard deviation of the entropy are 
equal for values of 𝑞  equal to 0.06929839562  and 0.7307016044. The range between the curves in Figure 
2, 𝑆𝐷(𝑝, 𝑞)  is less than 𝐻(𝑝, 𝑞), whereas, in the points 
outside of this region, for example, (𝑝, 𝑞) = (0.1,0.1), 

the entropy smaller than the standard deviation of the 
information content of RV. Now, considering the 
coefficient of variation of −log𝑝(𝑋), such that described 
as 𝐶𝑉(𝑋) = ௌ஽(௑)ு(௑) , if two sequences of symbols are 
generated by X and Y , a sequence with less coefficient 
of variation is more suitable for coding. 

R �́� nyi entropy of order ζ for a discrete RV is 
expressed as 𝐻఍(𝑥) = ଵଵି఍ log∑௫ 𝑝఍(𝑥) for 𝜁 ≠ 1. 𝐻఍(𝑋) is additionally named the spectrum of R�́�nyi 
information. R�́�nyi information and the loglikelihood are 
related via the gradient, 𝐻ሶ఍(𝑋), of the spectrum at 𝜁 = 1. 
A straightforward computation demonstrates, assuming 
that the differentiation operations are legitimate, that 

 𝐻ሶଵ(𝑋) =

 
Figure 1. Plots of H(X) and SD(X) on p and q. 

 

 
 

Figure 2. The curve of intersection of the two surfaces. 
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lim఍→ଵ (ଵି఍)(∑ೣ௣അ(௫))షభ ∑ೣ (௣അ(௫)୪୭୥௣(௫))ା୪୭୥∑௣അ(௫)(ଵି఍)మ  

 = −ଵଶ lim఍→ଵ ൜∑ೣ௣അ(௫)୪୭୥మ௣(௫)∑ೣ௣അ(௫) −ቀ∑ೣ௣അ(௫)୪୭୥௣(௫)∑ೣ௣അ(௫) ቁଶൠ = −ଵଶ𝑉(𝑋).                                        (13) 

 
Therefore, the varentropy is obtained as 𝑉(𝑋) =−2𝐻ሶଵ(𝑋). In addition, the discrete past entropy is defined 

as 𝐻(𝑋; 𝑗) = −∑௝௫ୀ଴ ௣(௫)ி(௝) log ቀ௣(௫)ி(௝)ቁ .                           (14) 
 
The past entropy of order 𝜁  for a discrete case is 

expressed by 𝐻఍(𝑋; 𝑗) = ଵଵି఍ log ൤∑௝௫ୀ଴ ቀ௣(௫)ி(௝)ቁ఍൨,       (15) 

 
for 𝜁 ≠ 1 and 𝜁 > 0. It is well known that when 𝜁 

tends to 1, 𝐻఍(𝑋; 𝑗) tends to 𝐻(𝑋; 𝑗). Similarly, also, we  
 
can show that 𝑉(𝑋; 𝑗) = −2𝐻ሶଵ(𝑋; 𝑗) , in which we 

call 𝑉(𝑋; 𝑗),  𝑉(𝑋; 𝑗) = ∑௝௫ୀ଴ ௣(௫)ி(௝) ቀlog ௣(௫)ி(௝)ቁଶ − (𝐻(𝑋; 𝑗))ଶ,      (16) 
 as the past varentropy.  
 
Example 1.2. If X is distributed geometrically with 

parameter p, then 𝐻఍(𝑋; 𝑗) = ଵଵି఍ log ቂ∑௝௫ୀ଴ ௣അ௤ೣഅ(ଵି௤ೕశభ)അቃ =ଵଵି఍ ቄlog ௣അଵି௤അ + 𝑙og ଵି௤(ೕశభ)അ(ଵି௤ೕశభ)അቅ, (17) 
 
where q = 1 − p and therefore, 𝑉(𝑋; 𝑗) = −2lim఍→ଵ𝐻ሶ఍(𝑋; 𝑗) = ௤(୪୬௤)మ(ଵି௤)మ − ((௝ାଵ)୪୬௤)మ௤ೕశభ(ଵି௤ೕశభ)మ .         (18) 
 
It is observed that, for 𝑗 = 0, the past varentropy is 

zero and increases for 𝑗, as shown in Figure 3. 
To estimate 𝑉(𝑋; 𝑗), we generate a sample of size 𝑛 = 100  from a geometric distribution with 1000 

replicates. For this sample, we set 𝑝଴ = 0.6. Then, the 
Maximum Likelihood Estimator (MLE) for �̂�  is 
calculated to be 0.5978. For example by plugging �̂� into 
(18) for j=1, the MLE of 𝑉(𝑋; 𝑗) is 0.1697. 

Like the discrete case, (19) has previously obtained a 
relationship between varentropy and Rényi information 
for continuous RV. He expressed that varentropy can 
identify a distribution’s shape, while the kurtosis measure 
is not applicable. 

 
Bounds for Varentropy 

Obtaining expressions for the entropy and varentropy 
of well-known distributions is significant in information 

and communication theory, physics, probability and 
statistics, and economics. An exact expression and closed 
form for the varentropy were obtained for most 
distributions. Among these distributions, we can mention 
the uniform, Bernoulli, geometric, exponential, Beta, 
Cauchy, Cramér, F, gamma, Gumbel, Laplace, Lévy, 
logistic, log-logistic, lognormal, normal, parabolic, 
Pareto, power exponential, t-distribution, triangular, von 
Mises and Weibull distribution. However, for many 
distributions, there is no closed form and an explicit 
expression for the varentropy using elementary functions. 
In such cases, we can obtain an upper and lower bound 
for varentropy via the expectation of a function of a 
logarithmic function. 

In this section, we find bounds for the varentropy of 
some nonnegative RVs. If X follows a discrete 
nonnegative RV, with variance σ2, then by utilizing 
Lemma 2, we have 𝜎ଶ𝐸ଶ[𝑤(𝑋)Δlog𝑝(𝑋)] ≤ 𝑉𝑎𝑟[−log𝑝(𝑋)] ≤𝜎ଶ𝐸[𝑤(𝑋)(Δlog𝑝(𝑋))ଶ]. (19) 

 
Example 2.1. Suppose X has a binomial distribution 

distribution 𝐵𝑖𝑛(𝑛,𝑝) then, since 𝑤(𝑥) = ௡ି௫௡(ଵି௣), hence 𝑉(𝑋) ≤ 𝑛𝑝(1 −𝑝)∑௡௫ୀ଴ ௡ି௫௡(ଵି௣) ቀ−log (௡ି௫)௣(௫ାଵ)(ଵି௣)ቁଶ ൫௡௫൯𝑝௫(1− 𝑝)௡ି௫ =𝑛𝑝(1 − 𝑝)𝐸௡ିଵ ቂ(log (௡ି௑)௣(௑ାଵ)(ଵି௣))ଶቃ, (20) 
 
where 𝐸௡ିଵ  denotes expected value under the 

binomial distribution 𝐵𝑖𝑛(𝑛 − 1,𝑝). 
  
Likewise, we can derive a lower bound for 

 
 

Figure 3. The curve of intersection of the two surfaces. 
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𝑉𝑎𝑟[−log𝑝(𝑋)] as follows  𝑉(𝑋) ≥ 𝑛𝑝(1 − 𝑝)𝐸௡ିଵଶ ቂlog (௡ି௑)௣(௑ାଵ)(ଵି௣)ቃ. (21) 
 
 If 𝑛 = 1, then, since −log 𝑝(𝑥) has a linear relation 

with 𝑥, hence the upper and lower bounds are equal to 
varentropy 𝑝(1 − 𝑝)(−log( ௣ଵି௣))ଶ  in the Bernoulli 
distribution. 

Example 2.2. Assume X is distributed according to a 
Poisson distribution with parameter 𝜆 = 1 , then since 𝑤(𝑥) = 1, the upper bound for varentropy is given as 𝑉(𝑋) ≤ 𝜆𝐸 ቂlog ௑ାଵఒ ቃଶ. (22) 

 When 𝑛 → ∞ and 𝑝 → 0 so that 𝑛𝑝 = 𝜆, the upper 
bound (21) and (22) are approximately equal. Also,  

since log𝑥 ≤ 𝑥 − 1, we can obtain the upper bound 1 + ଵఒ for varentropy of Poisson distribution 
Conversely, the lower bound for V (X) is computed as 

follows 
 𝑉(𝑋) ≥ 𝜆𝐸ଶ ቂlog ௑ାଵఒ ቃ. (23) 
 
In this section, we compute the equivalent 

expressions for the upper and lower bounds of varentropy 
according to series and integral expressions. To achieve 
a general expression for expectation of squared 
logarithmic function, that is, expressions like 𝐸[logଶ(𝑋 + 𝜔)], we recall the 𝑖𝑡ℎ forward difference of 
a function 𝑔(𝜔) is defined as  Δ௜[𝑔](𝜔): = ∑௜௞ୀ଴ ൫௜௞൯(−1)௜ି௞𝑔(𝑘 + 𝜔), (24) 

 
 where Δ଴[𝑔](𝜔) = 𝑔(𝜔). Moreover, Newton series 

expansion of a function 𝑔 around point 𝜔 is  
 𝑔(𝑘 + 𝜔) = ∑ஶ௜ୀ଴ ൫௫௜൯Δ௜[𝑔](𝜔). (25) 
 
 By considering 𝑔(𝑥) = (log 𝑥)ଶ in equation (24), as 

(20) stated for log 𝑥, we have   
 Δ௜[log]ଶ(𝜔) = ∑௜௞ୀ଴ ൫௜௞൯(−1)௜ି௞logଶ(𝑘 + 𝜔) =(−1)௜ାଵ𝑑ఠ(𝑖 + 1),      (26) 
where 𝑑ఠ(𝑖) = −෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ logଶ(𝑘 + 𝜔), 
so that, by using (26), we can obtain (log(𝑥 + 𝜔))ଶ = ෍ஶ௜ୀ଴ ቀ𝑥𝑖 ቁ (−1)௜ାଵ𝑑ఠ(𝑖 + 1). 
Now, to find the generating function for the 

coefficient dω, we use of Lerch transcendent such that it 
was recalled by (20), as follows: 

Φ(𝑧, 𝑠,𝜔): = ∑ஶ௞ୀ଴ ௭ೖ(௞ାఠ)ೞ = ଵ୻(௦)׬ାஶ଴ ௧ೞషభ௘షഘ೟ଵି௭௘ష೟ 𝑑𝑡.     (27)           
 
By evaluating the second derivative of (27) for s, we 

have ௗమௗ௦మ Φ(𝑧, 𝑠,𝜔) = ∑ஶ௞ୀ଴ 𝑧௞(𝑘 + 𝜔)ି௦(log(𝑘 + 𝜔))ଶ (28) 
and thus Φఠᇱᇱ(𝑧): = ௗమௗ௦మ Φ(𝑧, 𝑠,𝜔)|௦ୀ଴ = ∑ஶ௞ୀ଴ logଶ(𝑘 + 𝜔)𝑧௞. (29) 
 
Next, putting 𝜔 = 1  and using polylogarithm 

function 𝐿𝑖௦(𝑧): = ∑ஶ௞ୀଵ 𝑧௞𝑘ି௦, (29) can be written as Φᇱᇱ(𝑧): = Φଵᇱᇱ(𝑧) = 𝑑ଶ𝑑𝑠ଶ 𝐿𝑖௦(𝑧)/𝑧|௦ୀ଴. 
 In fact, we have  ௗమௗ௦మ 𝐿𝑖௦(𝑧)/𝑧 = ∑ஶ௞ୀଵ 𝑧௞ିଵ(−log𝑘)ଶ𝑘ି௦.               (30) 
 At the same,  Φᇱᇱ(𝑧): = Φଵᇱᇱ(𝑧) = ෍ஶ௞ୀ଴ 𝑧௞(log(𝑘 + 1))ଶ

= ෍ஶ௞ୀଵ 𝑧௞ିଵ(log(𝑘))ଶ, 
which is the equation of (30) for s = 0. 
Using (27) and generating the function of the 

binomial transform, we get 
 𝐷ఠ(𝑧) =−∑ஶ௜ୀଵ 𝑧௜ ∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯logଶ(𝑘 + 𝜔) 
 =∑ஶ௞ୀ଴ ∑ஶ௜ୀ௞ାଵ (−1)௞ାଵ𝑧௜൫௜ିଵ௞ ൯logଶ(𝑘 + 𝜔) 
 = ∑ஶ௞ୀ଴ logଶ(𝑘 +𝜔)(−1)௞ାଵ ௭ೖశభ(ଵି௭)ೖశభ 
                              = ି௭ଵି௭Φఠᇱᇱ( ି௭ଵି௭).                             
Consider now the coefficient sequence (−𝑑ఠ(𝑖 +1))௜ୀ଴ஶ , that is, the binomial transform of the sequence (logଶ(𝑘 + 𝛼))௞ୀ଴ஶ . Let 𝐷ఠ(𝑧): = ∑ஶ௜ୀ଴ 𝑑ఠ(𝑖)𝑧௜,   
be the generating function for   (𝑑ఠ(𝑗))௝ୀ଴ஶ , where 𝑑ఠ(0) is defined as 0. 𝐸logଶ(𝑋 + 𝜔) = ෍ஶ௜ୀ଴ 𝐸[(𝑋)௜𝑖! ](−1)௜ାଵ𝑑ఠ(𝑖 + 1) = ∑ஶ௜ୀଵ (−1)௜𝑞(𝑖 − 1)𝑑ఠ(𝑖).   
The moment generating function 𝑀(𝑡) of the Poisson 

distribution is exp(𝜆(𝑒௧ − 1)), so as given in Theorem 1 
in (20), we have 𝑄(𝑧) = 𝑀(log(𝑧 + 1)) = 𝑒ఒ௭ = ෍ஶ௜ୀ଴ 𝜆௜𝑖! 𝑧௜ , 

and hence  𝑞(𝑖) = ఒ೔௜! . Furthermore, by using the 
equation 
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𝐸𝑙𝑜𝑔(𝑋 + 𝜔) = ∑ஶ௜ୀଵ (−1)௜𝑞(𝑖 − 1)𝑐ఠ(𝑖) ାஶ଴׬= ௘ష೟ି௘షഘ೟ெ(ି௧)௧ 𝑑𝑡,   
 
in (20), where  𝑐ఠ(𝑖) = −∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯log(𝑘 +𝜔), the lower bound  
of varentropy of Poisson distribution is given as 

follows 𝜆𝐸ଶ ൤log𝑋 + 1𝜆 ൨
= 𝜆 ൝෍ஶ௜ୀଵ (−𝜆)௜ିଵ(𝑖 − 1)! ൥෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ log ൬𝑘 + 1𝜆 ൰൩ൡଶ = 𝜆 ቄ׬ஶ଴ ௘ష೟௧ (1 − 𝑒ఒ(௘ష೟ିଵ))𝑑𝑡 − log𝜆ቅ.   

Moreover, the upper bound for the varentropy of 
Poisson distribution is 𝜆𝐸 ൤log𝑋 + 1𝜆 ൨ଶ = 𝜆 ൝෍ஶ௜ୀଶ (−𝜆)௜ିଵ(𝑖 − 1)! ൥෍௜ିଵ௞ୀ଴ (logଶ(𝑘 + 1)

− 2log𝜆log(𝑘 + 1))൩ + logଶ(𝜆)ൡ = 𝜆 ቄ∑ஶ௜ୀଵ (ିఒ)೔షభ(௜ିଵ)! ቂ∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯(log(௞ାଵఒ ))ଶቃቅ.                                                                  
Example 2.3. Let X follow a negative binomial 

distribution with a PMF 𝑝(𝑥) = ൫௫ା௥ିଵ௥ିଵ ൯𝑝௥𝑞௫ି௥ for x = 
0, 1, ... . Then, since 𝑤(𝑥) = 𝑝(1 + ௫௥), the upper bound 
for varentropy is computed by 𝑉(𝑋)≤ 𝑟(1 − 𝑝)𝑝ଶ ෍ஶ௫ୀ଴ 𝑝(1

+ 𝑥𝑟)(log (𝑟 + 𝑥)(1 − 𝑝)𝑥 + 1 )ଶ ൬𝑥 + 𝑟 − 1𝑟 − 1 ൰ 𝑝௥(1 − 𝑝)௫ = ௥(ଵି௣)௣మ 𝐸௥ାଵ ቂlog (ଵି௣)(௥ା௑)௑ାଵ ቃଶ,  (31) 
where 𝐸௥ାଵ is the expected value of negative binomial 

distribution with parameters parameters 𝑟 + 1 and 𝑝.  
The lower bound for the distribution is determined as 
  𝑉(𝑋) ≥௥(ଵି௣)௣మ ቀ𝐸௥ାଵ ቂlog (ଵି௣)(௥ା௑)௑ାଵ ቃቁଶ. (32) 
 
It is trivial that if 𝑋 has a geometric distribution with 

parameter 𝑝, then varentropy is equal to the upper and 
lower bounds given in (31) and (32) for r = 1 and hence 
Var[−logp(X)] =ଵି௣௣మ (log(1− 𝑝))ଶ. 

 Now, by using equation (44) in (20), we can obtain 
an equivalent expression for the lower bound (32). We 
first have 

𝐸௥ାଵ ൤log (1 − 𝑝)(𝑟 + 𝑋)𝑋 + 1 ൨
= ෍ஶ௜ୀଵ (− 1 − 𝑝𝑝 )௝ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ቎෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ൜log(𝑘
+ 𝑟) + log ൬𝑘 + 11 − 𝑝൰ൠ቏, 

and therefore 𝑉𝑎𝑟[−log𝑝(𝑋)]≥ 𝑟(1 − 𝑝)𝑝ଶ ቌ෍ஶ௜ୀଵ (−1 − 𝑝𝑝 )௜ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ቎෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ቊlog (1− 𝑝)(𝑘 + 𝑟)𝑘 + 1 ቋ቏ቍଶ. 
Also 𝑉𝑎𝑟[−log𝑝(𝑋)]≤ 𝑟(1 − 𝑝)𝑝ଶ ቌ෍ஶ௜ୀଵ (−1 − 𝑝𝑝 )௜ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ൥෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ቊlog (1 − 𝑝)(𝑘 + 𝑟)𝑘 + 1 ቋଶ൩
 
Example 2.4. Let 𝑋  have a hypergeometric 

distribution with PMF 𝑝(𝑥) = ൫೘ೣ൯൫೙ష೘ೝషೣ ൯൫೙ೝ൯ ,    𝑚𝑎𝑥(0, 𝑟 −𝑛 + 𝑚) ≤ 𝑥 ≤ 𝑚𝑖𝑛(𝑟,𝑚) . Then, since 𝑤(𝑥) =௡(௡ିଵ)(௠ି௫)(௥ି௫)(௡ି௠)(௡ି௥)௠௥ , the upper bound for varentropy is 
computed by  

 𝑉𝑎𝑟[−log𝑝(𝑋)] ≤𝜎ଶ ∑௥௫ୀ଴ ௡(௡ିଵ)(௠ି௫)(௥ି௫)(௡ି௠)(௡ି௥)௠௥ log( (௠ି௫)(௥ି௫)(௫ାଵ)(௡ି௠ି௥ା௫ାଵ)) ൫೘ೣ൯൫೙ష೘ೝషೣ ൯൫೙ೝ൯  

 =𝜎ଶ𝐸௠ିଵ,௡ିଶ;௥ିଵ ቂlog( (௠ି௑)(௥ି௑)(௑ାଵ)(௡ି௠ି௥ା௑ାଵ))ቃଶ,  
 where 𝐸௠ିଵ,௡ିଶ;௥ିଵ  denotes expected value under 

the hypergeometric distribution with parameters 𝑚− 1, 𝑛 − 2, and 𝜎ଶ = ௥௠௡ (1 − ௠௡) ௡ି௠௡ିଵ .  
 

Characterization by Cauchy-Schwarz Inequality 
(13) attained an upper bound for the variance of a 

function of the residual lifetime RV and characterized the 
type III and type I discrete Weibull distributions and the 
geometric distribution with the help of C-S inequality. 
Here, we derive a bound for the variance of a function of 
RV 𝑋௫ = (𝑥 − 𝑋|𝑋 < 𝑥)  and characterize some 
distributions using inequalities involving the expectation 
of functions of reversed hazard rate. 

The subsequent theorem gives an upper bound for 𝑉𝑎𝑟[𝑔(𝑋௫)]  and characterizes the right-truncated 
geometric distribution. 

Theorem 3.1. Let 𝑋 be a discrete and nonnegative 
RV with PMF 𝑝(𝑥)  and distribution function 𝐹(𝑥) . 
Suppose 𝑔 is a function such that its forward difference 
is 𝛥𝑔(𝑥) then  𝑉𝑎𝑟[𝑔(𝑋௫)] ≤ 𝐸 ൤(Δ𝑔(𝑋(௫)))ଶ( ଵఝ(௫ି௑(ೣ)))൫𝑟(𝑥 −



Bounds for the Varentropy of Basic Discrete Distributions and … 

239 

𝑋(௫) + 1) − 𝑟(𝑥) + 𝑋(௫) − 1൯൨. (33) 

 
 Proof. We know 𝑃(𝑋(௫) = 𝑡) = 𝑃(𝑋 = 𝑥 − 𝑡)𝑃(𝑋 < 𝑥) , 𝑡 = 1, … , 𝑥. 
By applying Lemma 2 and noting that 𝐸[𝑋(௫)] =𝑟(𝑥), it follows that ෍௫௞ୀ௧ (𝑘 − 𝑟(𝑥))𝑃(𝑋 = 𝑥 − 𝑘)𝑃(𝑋 < 𝑥) = 1𝑃(𝑋 < 𝑥) [෍௫௞ୀ௧ 𝑘𝑃(𝑋

= 𝑥 − 𝑘) − 𝑟(𝑥)෍௫௞ୀ௧ 𝑃{𝑋 = 𝑥 − 𝑘}]
= 𝑃{𝑋 < 𝑥 − 𝑡 + 1}𝑃{𝑋 < 𝑥} [𝑟(𝑥 − 𝑡 + 1)+ 𝑡 − 1 − 𝑟(𝑥)] 

                          = ଵఝ(௫ି௧) [𝑟(𝑥 − 𝑡 + 1) + 𝑡 − 1 −𝑟(𝑥)] ௉{௑ୀ௫ି௧}௉{௑ழ௫} ,                                    (34) 
and again using Lemma 2 and replacing the right-

hand side of (34) in inequality (7), we obtain 𝑉𝑎𝑟[𝑔(𝑋௫)] ≤෍௫௧ୀଵ [Δ𝑔(𝑡)]ଶ 1𝜑(𝑥 − 𝑡) [𝑟(𝑥 − 𝑡 + 1)+ 𝑡 − 1 − 𝑟(𝑥)]𝑃{𝑋(௫) = 𝑡} 

 = 𝐸 ൜[Δ𝑔(𝑋(௫))]ଶ ଵఝ(௫ି௑(ೣ)) [𝑟(𝑥 −𝑋(௫) + 1) + 𝑋(௫) − 1 − 𝑟(𝑥)]ൠ, 
 
Let 𝑔(𝑡) = −log ௣(௫ି௧)ி(௫ିଵ) , then Δ𝑔(𝑡) =−log ௣(௫ି௧ିଵ)௣(௫ି௧) = log(1 − 𝜂௫ି௧ିଵ), hence  
 𝑉𝑎𝑟[−log𝑝(𝑋(௫))] ≤ 𝐸 ൜[log(1 −𝜂௫ି௑(ೣ)ିଵ)]ଶ ଵఝ(௫ି௑(ೣ)) [𝑟(𝑥 − 𝑋(௫) + 1) + 𝑋(௫) − 1 −𝑟(𝑥)]ൠ.                                                     (35) 

 
Under Lemma 2, the above equality holds iff 𝑔(𝑡) =−log𝑝(𝑥 − 𝑡) + log𝐹(𝑥 − 1)  is linear in 𝑡 , which is 

equivalent to log𝑝(𝑥 − 𝑡)  being linear in 𝑡 . 
Consequently, log𝑝(𝑥 − 𝑡) = 𝑎ଵ𝑡 + 𝑏ଵ  for some 
constants 𝑎ଵ  and 𝑏ଵ , and therefore 𝑝(𝑦) =𝑒ି௔భ௬𝑒௔భ௫ା௕భ = 𝑑𝑒ି௔భ௬ for 𝑦 = 0, … , 𝑥 − 1, where 𝑑 =𝑒௔భ௫ା௕భ is a constant. 

We thus conclude that the equality holds in (35), iff  𝑝(𝑥) = ௖ିଵ௖೤ିଵ 𝑐௫, 𝑥 = 0, … ,𝑦 − 1, 𝑐 > 0  ,  which is the 
right truncated geometric distribution.  

Remark 3.2. In Theorem 3.1, if X is a nonnegative 
RV and F is DRHR, then since the DRHR property 
implies the IEIT property (21), then 

𝑉𝑎𝑟[𝑔(𝑋(௫))] ≤ 𝐸 ቂ(Δ𝑔(𝑋))ଶ( ଵఝ(௑) − 1)(𝑋 − 1)ቃ.   (36) 
 Next, we aim to characterize certain distributions. 

Throughout the theorems presented below, we assume 
that Z is a discrete RV with a finite support S = {0,1,...,b}. 

Given that  𝐸( ଵఝ(௓)) = 𝑏 + 1 − 𝐸(𝑍), we can derive a 
useful lower bound for E[φ(Z)], as presented in the next 
theorem. 

Theorem 3.3. For any nonnegative discrete RV Z, 𝐸[ ଵఝ(௓)] ≥ ଵா(ఝ(௓)). (37) 
 The equality satisfies iff for constant 𝜃  
 𝐹(𝑧) =൜(1 − 𝜃)௕ି௭ , 𝑧 = 0,1, … , 𝑏,    0 < 𝜃 < 1,    𝑏 < ∞,1, 𝑥 ≥ 𝑏.  (38) 

  
Proof. To achieve (37), we make use of C-S 

inequality. The equality in (37) satisfies iff there’s a 
positive constant A so that, for all z ∈ {0,1,...,b}, ඥ௉(௓ୀ௭)ඥఝ(௭) = 𝐴ඥ𝜑(𝑧)𝑃(𝑍 = 𝑧),  

which is equivalent to 𝜑(𝑧) = 𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Now, using (5), we have a
(38).                                                                                                                    

Theorem 3.4. Let Z be a nonnegative discrete RV. Then 
 𝐸[ఝ(௓)௓ ] ≥ ଶ௕(௕ାଵ)ିா(௓(௓ିଵ)),  
 
 with equality iff 𝑍 distributed as,  𝐹(𝑧) = ቊ∏௕௧ୀ௭ାଵ (1 − 𝜃𝑡), 𝑧 = 0,1, … , 𝑏 − 1,    0 < 𝜃 < ଵ௕ ,1, 𝑧 ≥ 𝑏.

 (39) 
 where 𝜃 is a constant.  
  
Proof. By the C-S inequality, we have  1 = (∑௕௭ୀ଴ 𝑃{𝑍 = 𝑧}ට௭ி(௭)௭ி(௭))ଶ ≤∑௕௭ୀ଴ ௉మ{௓ୀ௭}௭ி(௭) ∑௕௭ୀ଴ 𝑧𝐹(𝑧)  = ∑௕௭ୀ଴ ఝ(௭)௭ 𝑃{𝑍 =𝑧}(∑௕௭ୀ଴ 𝑧 − ∑௕௭ୀ଴ 𝑧𝑃{𝑍 > 𝑧}). (40) 
 Now, since  ෍௕௭ୀ଴ 𝑧𝑃{𝑍 > 𝑧} = 𝐸 ൬𝑍(𝑍 − 1)2 ൰, 
 
 (40) reduces to 1 ≤ 𝐸(𝜑(𝑍)𝑍 )[𝑏(𝑏 + 1)2 − 𝐸 ൬𝑍(𝑍 − 1)2 ൰], 
and the desired result is obtained. The equality is 

gotten iff there’s some positive constant 𝜃 so that  
 𝑃(𝑍 = 𝑧)ඥ𝑧𝐹(𝑧) = 𝜃ඥ𝑧𝐹(𝑧). 
It follows that 𝜑(𝑧) = 𝜃𝑧, which, using equation (5),  
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again satisfies iff 𝑍  has distribution given in equation 
(39).  

  
The following two theorems derive lower bounds for 𝐸(𝑍𝜑(𝑍)). 
Theorem 3.5.   Let 𝑍  be a discrete RV with 𝐸(𝑍𝜑(𝑍)) < ∞ and 𝐸( ଵ௓ఝ(௓)) < ∞. Then  𝐸[ ଵ௓ఝ(௓)] ≥ ଵா(௓ఝ(௓)), (41) 
 and equality holds iff 𝑍 is distributed as  𝐹(𝑧) =ቊ(௕ିఏ)!௭!௕!(௭ିఏ)! , 𝑧 = 𝜃, … , 𝑏 − 1,    𝜃 = 1,2, … ,𝑏 − 11, 𝑧 ≥ 𝑏.   

Proof. As in the proof of Theorem 3.4, the result is stablished. 
Theorem 3.6. For any nonnegative discrete RV Z, 

 

𝐸(𝑍𝜑(𝑍)) ≥ ଶாమ(௓)௕(௕ାଵ)ିா(௓(௓ିଵ)). (42) 
 The equality satisfies iff 𝑍  has the distribution 

function (38). 
  
Proof. By the C-S inequality, we find that   (𝐸(𝑍))ଶ ≤ 𝐸( 𝑍𝜑(𝑍))𝐸(𝑍𝜑(𝑍))

= [෍௕௭ୀ଴ 𝑧𝐹(𝑧)]𝐸(𝑍𝜑(𝑍)) = [௕(௕ାଵ)ିா(௓(௓ିଵ))ଶ ]𝐸[𝑍𝜑(𝑍)],  
and thus (42) is obtained. 
The equality satisfies iff there exists some 

nonnegative constant 𝐴 so that, for all 𝑧 ∈ {0, … , 𝑏},  ඨ 𝑧𝜑(𝑧) = 𝐴ඥ𝑧𝜑(𝑧). 
This implies that φ(z) = θ = constant, and therefore the 

result is obtained.  
Now, we proceed to compare the bounds utilized for 𝐸(𝑍𝜑(𝑍)) in inequalities (41) and (42). 
Assume 𝑍  follows a discrete uniform distribution 

with support on {1, … , 𝑏} . In this case, 𝜑(𝑧) = ଵ௭ ,and 
consequently, the lower bound in (41) becomes 1𝐸( 1𝑍𝜑(𝑍)) = 1. 

Besides that, the lower bound (42) is 2(𝐸(𝑍))ଶ𝑏(𝑏 + 1) − 𝐸(𝑍(𝑍 − 1)) = 3(𝑏 + 1)2(2𝑏 + 1). 
 
Accordingly, for the distribution, we deduce that the 

bound (41) is superior to the bound (42) for 𝑏 > 1. 
 

Theorem 3.7. Let 𝑍 be a nonnegative discrete RV. 
Then 𝐸[𝑐ି௓𝜑(𝑍)] ≥ (𝐸[𝑐ି௓])ଶ(𝑐 − 1)𝑐𝐸(𝑐ି௓) − 𝑐ି௕ , 

for constant 𝑐 ≠ 1, where equality satisfies iff 𝑍 has 
the distribution function given in equation (38). 

 Proof. By utilizing the C-S inequality, we have  (𝐸[𝑐ି௓])ଶ ≤ 𝐸[𝑐ି௓𝜑(𝑍)]𝐸[ 𝑐ି௓𝜑(𝑍)]. 
 Besides that, since  𝐸 ቈ 𝑐ି௓𝜑(𝑍)቉ = ෍௕௭ୀ଴ 𝑐ି௭𝐹(𝑧) = ෍௕௬ୀ଴ ෍௕௭ୀ௬ 𝑐ି௭𝑃{𝑍 = 𝑦} 

= ෍௕௬ୀ଴ 𝑐ି௬ − 𝑐ି௕ିଵ1 − 𝑐ିଵ 𝑃{𝑍 = 𝑦} 

= 𝑐𝐸[𝑐ି௓] − 𝑐ି௕𝑐 − 1 . 
 Thus, the result is obtained. The equality holds iff 

there exists some nonnegative constant 𝐴 so that, for all 𝑧 ∈ {0, … , 𝑏},  ඨ 𝑐ି௭𝜑(𝑧) = 𝐴ඥ𝑐ି௭𝜑(𝑧). 
 This concludes that 𝜑(𝑧) is a constant, and the result 

is obtained. 
 

Results 
In this work, we first introduced the past varentropy 

for discrete RVs. Then, we obtained bounds for the 
varentropy of some discrete distributions. In the 
following, by considering the resulting upper 

bounds, the squared logarithmic expectation, we 
obtained an expression for the bounds in terms of the 
squared logarithmic difference coefficients 𝑑ఠ(𝑗) . In 
future work, we propose obtaining similar results for 
continuous distributions using logarithmic and log-
gamma expectations. Moreover, we evaluated an upper 
bound for 𝑉𝑎𝑟[𝑔(𝑋௫)]  and derived bounds for the 
expected values of specific functions in reliability theory.  

 

Acknowledgments 
I would like to express my sincere gratitude to 

Professor Mohsen Mohammadzadeh for his invaluable 
suggestion, which improved this article. 

 
 

References 
1. Jiang J, Wang  R., Pezeril M. and Wang QA. Application of 

varentropy as a measure of 
     probabilistic uncertainty for complex networks, Science 



Bounds for the Varentropy of Basic Discrete Distributions and … 

241 

Bulletin. 2011; 56: 3677–3682. 
2. Li J, Fradelizi M. and Madiman M. Information 

concentration for convex measures, IEEE 
      International Symposium on Information Theory, 

Barcelona. 2016; 1128-1132. 
3. Fradelizi M, Madiman M. and Wang L. Optimal 

concentration of information content for 
    logconcave densities. In C. Houdré, D. Mason, P. Reynaud-

Bouret & J. Rosin ́nski (eds.), High               Dimensional 
Probability VII. Progress in Probability, vol. 71, Cham, 
Springer. 2016;  45-60. 

4. Gupta BB and Badve OP. GARCH and ANN-based DDoS 
detection and filtering in cloud computing environment, 
International Journal of Embedded Systems. 2017; 9: 391-
400. 

5. De Gregorio A and Iacus SM. On Rényi information for 
ergodic diffusion processes, Information Sciences. 2009; 
179: 279-291. 

6. Goodarzi F, Amini M and Mohtashami Borzadaran GR. 
Characterizations of continuous distributions through 
inequalities involving the expected values of selected 
functions, Applications of Mathematics. 2017(a);  62: 493–
507. 

7. Goodarzi F, Amini M and Mohtashami Borzadaran GR. On 
lower bounds for the variance of functions of random 
variables, Applications of Mathematics. 2021; 66: 767–
788. 

8. Sharma A and Kundu C. Varentropy of doubly truncated 
random variable, Probability in the 

      Engineering and Informational Sciences. 2022; 37(3): 
852–871. 

 9. Maadani S, Mohtashami Borzadaran GR and Rezaei 
Roknabadi AH. Varentropy of order statistics and some 
stochastic, Communication in Statistics-Theory and 
Methods. 2022; 51: 6447-6460. 

 10. Goodarzi F, Amini M and Mohtashami Borzadaran GR. 
Some results on upper bounds 

    for the variance of functions of the residual life random 
variables, Journal of Computational and Applied 

    Mathematics. 2017(b); 320, 30-42. 
 11. Goodarzi F, Amini M and Mohtashami Borzadaran GR. 

On upper bounds for the variance 
    of functions of the inactivity time, Statistics and Probability 

Letters. 2016; 117: 62–71. 
12. Buono F, Longobardi M. Varentropy of past lifetimes, 

Mathematical Methods of Statistics. 2022; 31: 57-73. 
 13. Goodarzi F, Characterizations of some discrete 

distributions and upper bounds on discrete 
     residual varentropy, Journal of the Iranian Statistical 

Society. 2022; 21(2): 233–250. 
 14. Alizadeh Noughabi H and Shafaei Noughabi M. 

Varentropy estimators with applications in 
    testing uniformity, Journal of Statistical Computation and 

Simulation. 2023; 93: 2582-2599. 
 15. Kontoyiannis I and Verdú. S. Optimal lossless data 

compression: non-asymptotics and asymp- 
      totics, IEEE Transactions on Information Theory. 2014; 

60: 777-795. 
16. Nair NU and Sankaran PG. Characterizations of discrete 

distributions using reliability concepts in reversed time, 
Statistics and Probability Letters. 2013; 83: 1939–1945. 

17. Cacoullos T and Papathanasiou V. Characterizations of 
distributions by variance bounds, Statistics and 
Probabability Letters. 1989; 7: 351-356. 

18. Kelley CT. Solving nonlinear equations with Newtonś 
method, SIAM, Philadelphia, 2003. 

19.  Song K.-S. Rényi information, loglikelihood and an 
intrinsic distribution measure, Journal of 

     Statistical Planning and Inference. 2001; 93: 51-69. 
20. Cheraghchi M. Expressions for the entropy of basic 

discrete distribution, IEEE Transactions on 
    Information Theory. 2019; 65: 3999-4009. 
 21. Gupta L. Properties of reliability functions of discrete 

distributions, Communication in 
     Statistics-Theory and Methods. 2015; 44: 4114-4131. 

 


