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Abstract 
This survey investigates some developments in the second-order characterization of 

generalized convex functions using the coderivative of subdifferential mapping. More 
precisely, it presents the second-order characterization for quasiconvex, pseudoconvex 
and invex functions. Furthermore, it gives some applications of the second-order 
subdifferentials in optimization problems such as constrained and unconstrained 
nonlinear programming. 
 
Keywords: Second-order subdifferential; Positive semidefinite property; Regular second-order 
subdifferential; Second-order optimality conditions. 
Mathematics Subject Classification (2010): 26B25, 49J40, 49J52, 49J53, 90C33 
 

Introduction 
Second-order subdifferentials and their application in 

the optimization and characterization of various kinds of 
convexity have attracted the attention of the literature. It 
is well known that the second-order differential of a twice 
continuously differentiable function 𝑔:ℝ𝐧 → ℝ  is 
convex if and only if ∇ଶ𝑔 (its Hessian matrix) is positive 
semidefinite and 𝑔  is strictly convex when ∇ଶ𝑔  is 
positive definite everywhere. 

This result is true even in normed spaces: 
 
Theorem 1.1 (Flett, 1980) Let X be a real normed 

space and let g: X → ℝ be a twice Fréchet differentiable 
function, then g is convex if and only if dଶg(x)(y)ଶ ≥ 0 
for all x, y ∈ X. 

Convex functions and their generalizations have 
many applications in optimization, economy, control 
theory and several other sciences; thus the 
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characterization of convex functions is fundamental and 
useful. We know that when a 𝐶ଶ  function 𝑔:ℝ𝐧 → ℝ 
attains its minimum at 𝑥,  its Hessian is positive 
semidefinite and conversely, the positive definiteness of 
its Hessian is sufficient for 𝑔 to reach its minimum at 𝑥 
when (∇𝑔)(𝑥) = 0. Indeed the strict local convexity of 𝑔 
guaranteed by positive definiteness of ∇ଶ𝑔(𝑥).  Some 
authors have studied the characterization of convex 
functions and their generalizations by their 
subdifferentials. Also, the second-order optimality 
conditions have received much attention in optimization 
theory, in recent years; see (1,2,3) for example. 

Theorem 1.2 (4, Rockafellar 1970) The maximal 
monotonicity of Fréchet subdifferential of a lower 
semicontinuous function is a necessary and sufficient 
condition for its convexity.  

Characterization of generalized convex functions by 
second-order subdifferentials can be more useful, 
especially in optimization. 
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Second-order characterization of convex functions by 
generalized second-order directional derivatives have 
studied by some authors.  

The upper Dini-directional derivative of 𝑔 at 𝑥 ∈ 𝑋 
in direction 𝑣 ∈ 𝑋 is defined as an element of ℝ by  g′ା(x; v) = limsup୲↓଴  tିଵ(g(x + tv) − g(x)). (1) 

 The second-order upper Dini-directional derivative 
of 𝑔 at 𝑥 ∈ 𝑋  in direction 𝑣 ∈ 𝑋  for which 𝑔′ା(𝑥;𝑣) is 
defined by  gା" (x; v) = limsup୲↓଴  2tିଶ(g(x + tv) − g(x) −tg′ା(x; v)). (2) 

 In the case of an infinite 𝑔′ା(𝑥;𝑣),  the derivative 𝑔ା" (𝑥; 𝑣) will not be considered. 
 
Theorem 1.3 (5, Ginchev and Ivanov 2003) Let g: X → ℝ be u.s.c. Then g is convex on X if and only if 

the following Conditions (Cଵ)  and (Cଶ)  hold for each x, u ∈ X: (Cଵ) g′ା(x; v) + g′ା(x;−v) ≥ 0,  
  if  the  expression  on  the  left-hand  side  has the 

sense (Cଶ) g′ା(x; v) + g′ା(x;−v) = 0,   implies that  gା" (x; u) ≥ 0.  
  
Example 1.1 The function g(x) = −|x|, x ∈ ℝ, 

satisfies the equality gା" (x; v) = 0 for all x, v ∈ 𝐑. It is 
continuous, but not convex. Obviously, g′ା(x; v) +g′ା(x;−v) = −2.  

 
  
Example 1.2 The function g:ℝ → ℝ defined as  g(x) = ൜xଶ,   if x is rational ;0,  otherwise  

satisfies conditions (𝐶ଵ)  and (𝐶ଶ),  but 𝑔  is not 
convex. This function is not u.s.c. 

Some other authors used the second-order Fréchet 
(Second-order regular subdifferentials) and 
Mordukhovich (limiting) subdifferentials defined by the 
coderivative of the subdifferential mappings. See (6,7) 
for the following definitions and more details. 

Let 𝑋 be a Banach space endowed with a norm ∥. ∥,𝑋∗ its dual space, 𝑋∗∗ its second dual space and 〈. , . 〉 be 
the dual pairing between 𝑋  and 𝑋∗.  For a set-valued 
mapping 𝑇:𝑋 ⇉ 𝑌  between Banach spaces, we define 
the effective domain and the graph of 𝑇 by 𝑑omT = ሼx ∈ X: T(x) ≠ ∅ሽ,     gphT = {(x, y)∈ X × Y: y ∈ T(x)}. 

 The sequential Painlevé-Kuratowski upper limit of 𝑇 
at 𝑥 in the topology of 𝑌 is defined by limsup௫→௫̅𝑇(𝑥) = {𝑦 ∈ 𝑌:∃ sequences 𝑥௞ →�̅�,𝑦௞ → 𝑦   with 𝑦௞ ∈ 𝑇(𝑥௞), ∀𝑘 =                                                  1,2, . . . }.  

Given 𝜀 ≥ 0  and Ω ⊆ 𝑋 , the 𝜀 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑠  to Ω  at �̅� ∈ 𝑐𝑙(Ω) is defined by  N෡க(xത;Ω): = {x∗ ∈ X∗: limsup୶ಈ→୶ത
〈x∗, x − xത〉||x − xത|| ≤ ε}, 

where the symbol 𝑥 ఆ→ �̅� means that 𝑥 → �̅� with 𝑥 ∈Ω. When 𝜀 = 0, the set 𝑁෡଴(�̅�,Ω) = 𝑁෡(�̅�,Ω) is named the 
prenormal cone or Fréchet normal to Ω at �̅�. 

The limiting or Mordukhovich normal cone to Ω at �̅� 
is  N(xത;Ω): = limsup୶→୶ത,க↓଴N෡க(x;Ω), 

where the sequential Painlevé-Kuratowski upper 
limit is taking in the 𝑤𝑒𝑎𝑘∗ topology of 𝑋∗. When 𝑋 is 
an Asplund Banach space and Ω is closed, we can put 𝜀 = 0.  

 
Definition 1.1 (6) The Fréchet or regular coderivative 

of T at (xത, yത) is  D෡∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N෡((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
The limiting or Mordukhovich coderivative of T at (xത, yത) is  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
i.e.,  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩)  with  (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.2 (6) The mixed coderivative of T  at (xത, yത) is  D୑∗ T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩, y୩∗)→ (xത, yത, y∗), x୩∗ ୵∗ሱሮ x∗ with (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.3 (6) A single-valued mapping 𝑔:𝑋 → 𝑌 

is said to be strictly differentiable at �̅� if there is a linear 
continuous operator ∇𝑔(�̅�):𝑋 → 𝑌 such that  lim୳,୶→୶ത g(x) − g(u)− 〈∇g(xത), u − x〉∥ x − u ∥ = 0. 

 
 When 𝑔 is single-valued and strictly differentiable at �̅�  or continuously differentiable around �̅� , with the 

adjoint operator ∇𝑔(�̅�)∗:𝑌∗ → 𝑋∗, we have  
 D∗g(xത)(y∗) = D෡∗g(xത)(y∗) = {∇g(xത)∗y∗} for all y∗ ∈Y∗. 
Let g: X → ℝഥ = [−∞, +∞]  be an extended real-

valued function. We define  domg = {x ∈ X: |g(x)| < ∞} and epi(g) = {(x, μ)∈ (X × ℝ):μ ≥ g(x)}. 
 The Fréchet subdifferential or presubdifferential of g 

at xത ∈ dom g is defined by  
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∂෠g(xത) = {x∗ ∈ X∗: (x∗,−1) ∈ N෡((xത, g(xത)), epi g)} 
and the basic or Mordukhovich limiting 

subdifferential is defined by  ∂g(xത) = {x∗ ∈ X∗: (x∗,−1) ∈ N((xത, f(xത)), epi g)}. 
For �̅� ∉ dom 𝑓, we put 𝜕መ𝑔(�̅�) = 𝜕𝑔(𝑥) = ∅. Also, 𝑔 is said to be lower regular at �̅� if 𝜕መ𝑔(�̅�) = 𝜕𝑔(�̅�).  
 
Definition 1.4 (6) Let g: X ⟶ℝഥ  be a function and its 

value at xത is finite, (i) For any yത ∈ ∂g(xത), the mapping ∂ଶg(xത, yത): X∗∗ ⇉X∗ with the values  ∂ଶg(xത, yത)(v) = (D∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the limiting or Mordukhovich second-order 

subdifferential of g at xത relative to yത. (ii) For any yത ∈ ∂෠g(xത), the mapping ∂෠ଶg(xത, yത): X∗∗ ⇉X∗ with the values  ∂෠ଶg(xത, yത)(v) = (D෡∗ ∂෠g)(xത, yത)(v), (v ∈ X∗∗), 
is called the Fréchet second-order subdifferential of g 

at xത relative to yത. (iii)  For any yത ∈ ∂g(xത),  the mapping ∂෰ଶg(xത, yത): X∗∗ ⇉ X∗ with the values  ∂෰ଶg(xത, yത)(v) = (D෡∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the Combined second-order subdifferential 

of g at xത relative to yത. (iv)  For any yത ∈ ∂g(xത) , the mapping ∂୑ଶ g(xത, yത): X∗∗ ⇉ X∗ with the values  ∂୑ଶ g(xത, yത)(v) = (D୑∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the mixed second-order subdifferential of g 

at xത relative to yത. When the function g is Cଶ around xത and v ∈ X∗∗, we have  ∂෠ଶg(xത)(v) = ∂ଶg(xത)(v) = ∂୑ଶ g(xത)(v) = ∂෰ଶg(xത)(v)= {(∇ଶg(xത))∗v}, 
where (∇ଶg(xത))∗  is the adjoint operator of the 

Hessian ∇ଶg(xത). 
 
Definition 1.5 (PSD) holds for g: X ⟶ℝഥ , in the 

Fréchet sense, when 〈z, v〉 ≥ 0 for every v ∈ X∗∗ and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. 
When 〈z, v〉 > 0 whenever v ≠ 0, (PD) holds in the 

Fréchet sense for g. 
Also, (PSD) holds in the limiting sense, when 〈z, v〉 ≥0  for every v ∈ X∗∗  and z ∈ ∂ଶg(x, y)(v)  with (x, y) ∈gph∂g. 
When 〈𝑧, 𝑣〉 > 0 whenever 𝑣 ≠ 0, (PD) holds in the 

limiting sense for 𝑔. 
Chieu and Huy considered these cases and extended 

those results for the class of 𝐶ଵ  functions 𝑔:𝑋 → ℝ , 
where 𝑋 is a Hilbert space or an Asplund space. 

 
Theorem 1.4 (8, Chieu, Huy 2011) Let g: X → R be a Cଵ function and X be an Asplund space. Then g is convex 

if the following condition holds:  

〈z, v〉 ≥ 0 for all v ∈ X∗∗, z ∈ ∂෠ଶg(x, y)(v)with (x, y)∈ gph ∂෠g. 
Results 

 Definition 2.1 A proper subdifferentials and their 
application in the optimization and characterization of 
various kinds of convexity have attracted the attention of 
the literature. It is well known that the second-order 
differential of a twice continuously differentiable 
function 𝑔:ℝ𝐧 → ℝ  is convex if and only if ∇ଶ𝑔  (its 
Hessian matrix) is positive semidefinite and 𝑔 is strictly 
convex when ∇ଶ𝑔 is positive definite everywhere. 

This result is true even in normed spaces: 
 
Theorem 1.1 (Flett, 1980) Let X be a real normed 

space and let g: X → ℝ be a twice Fréchet differentiable 
function, then g is convex if and only if dଶg(x)(y)ଶ ≥ 0 
for all x, y ∈ X. 

Convex functions and their generalizations have 
many applications in optimization, economy, control 
theory and several other sciences; thus the 
characterization of convex functions is fundamental and 
useful. We know that when a 𝐶ଶ  function 𝑔:ℝ𝐧 → ℝ 
attains its minimum at 𝑥,  its Hessian is positive 
semidefinite and conversely, the positive definiteness of 
its Hessian is sufficient for 𝑔 to reach its minimum at 𝑥 
when (∇𝑔)(𝑥) = 0. Indeed the strict local convexity of 𝑔 
guaranteed by positive definiteness of ∇ଶ𝑔(𝑥).  Some 
authors have studied the characterization of convex 
functions and their generalizations by their 
subdifferentials. Also, the second-order optimality 
conditions have received much attention in optimization 
theory, in recent years; see (1,2,3) for example. 

Theorem 1.2 (4, Rockafellar 1970) The maximal 
monotonicity of Fréchet subdifferential of a lower 
semicontinuous function is a necessary and sufficient 
condition for its convexity.  

Characterization of generalized convex functions by 
second-order subdifferentials can be more useful, 
especially in optimization. 

Second-order characterization of convex functions by 
generalized second-order directional derivatives have 
studied by some authors.  

The upper Dini-directional derivative of 𝑔 at 𝑥 ∈ 𝑋 
in direction 𝑣 ∈ 𝑋 is defined as an element of ℝ by  g′ା(x; v) = limsup୲↓଴  tିଵ(g(x + tv) − g(x)). (1) 

 The second-order upper Dini-directional derivative 
of 𝑔  at 𝑥 ∈ 𝑋  in direction 𝑣 ∈ 𝑋  for which 𝑔′ା(𝑥;𝑣) is 
defined by  gା" (x; v) = limsup୲↓଴  2tିଶ(g(x + tv) − g(x) −tg′ା(x; v)). (2) 

 In the case of an infinite g′ା(x; v),  the derivative 
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gା" (x; v) will not be considered. 
 
Theorem 1.3 (5, Ginchev and Ivanov 2003) Let g: X → ℝ be u.s.c. Then g is convex on X if and only if 

the following Conditions (Cଵ)  and (Cଶ)  hold for each x, u ∈ X: (Cଵ) g′ା(x; v) + g′ା(x;−v) ≥ 0,  
  if  the  expression  on  the  left-hand  side  has the 

sense (Cଶ) g′ା(x; v) + g′ା(x;−v) = 0,   implies that  gା" (x; u) ≥ 0.  
  
Example 1.1 The function g(x) = −|x|, x ∈ ℝ, 

satisfies the equality gା" (x; v) = 0 for all x, v ∈ 𝐑. It is 
continuous, but not convex. Obviously, g′ା(x; v) +g′ା(x;−v) = −2.  

 
 Example 1.2 The function g:ℝ → ℝ defined as  g(x) = ൜xଶ,   if x is rational ;0,  otherwise  

satisfies conditions (𝐶ଵ)  and (𝐶ଶ),  but 𝑔  is not 
convex. This function is not u.s.c. 

 
 Some other authors used the second-order Fréchet 

(Second-order regular subdifferentials) and 
Mordukhovich (limiting) subdifferentials defined by the 
coderivative of the subdifferential mappings. See (6,7) 
for the following definitions and more details. 

Let 𝑋 be a Banach space endowed with a norm ∥. ∥,𝑋∗ its dual space, 𝑋∗∗ its second dual space and 〈. , . 〉 be 
the dual pairing between 𝑋  and 𝑋∗.  For a set-valued 
mapping 𝑇:𝑋 ⇉ 𝑌  between Banach spaces, we define 
the effective domain and the graph of 𝑇 by dom𝑇 = {𝑥 ∈ 𝑋:𝑇(𝑥) ≠ ∅},     gph𝑇 = {(𝑥, 𝑦)∈ 𝑋 × 𝑌:𝑦 ∈ 𝑇(𝑥)}. 

 The sequential Painlevé-Kuratowski upper limit of 𝑇 
at 𝑥 in the topology of 𝑌 is defined by limsup௫→௫̅𝑇(𝑥) = {𝑦 ∈ 𝑌:∃ sequences 𝑥௞ →�̅�,𝑦௞ → 𝑦   with 𝑦௞ ∈ 𝑇(𝑥௞), ∀𝑘 =                                                  1,2, . . . }.  

Given 𝜀 ≥ 0  and Ω ⊆ 𝑋 , the 𝜀 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑠  to Ω  at �̅� ∈ 𝑐𝑙(Ω) is defined by  N෡க(xത;Ω): = {x∗ ∈ X∗: limsup୶ಈ→୶ത
〈x∗, x − xത〉||x − xത|| ≤ ε}, 

where the symbol 𝑥 ఆ→ �̅� means that 𝑥 → �̅� with 𝑥 ∈Ω. When 𝜀 = 0, the set 𝑁෡଴(�̅�,Ω) = 𝑁෡(�̅�,Ω) is named the 
prenormal cone or Fréchet normal to Ω at �̅�. 

The limiting or Mordukhovich normal cone to Ω at �̅� 
is  N(xത;Ω): = limsup୶→୶ത,க↓଴ N෡க(x;Ω), 

where the sequential Painlevé-Kuratowski upper 

limit is taking in the 𝑤𝑒𝑎𝑘∗ topology of 𝑋∗. When 𝑋 is 
an Asplund Banach space and Ω is closed, we can put 𝜀 = 0.  

 
Definition 1.1 (6) The Fréchet or regular coderivative 

of T at (xത, yത) is  D෡∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N෡((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
The limiting or Mordukhovich coderivative of T at (xത, yത) is  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
i.e.,  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩)→ (xത, yത), (x୩∗ , y୩∗) ୵∗ሱሮ (x∗, y∗)   with  (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.2 (6) The mixed coderivative of T  at (xത, yത) is  D୑∗ T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩, y୩∗)→ (xത, yത, y∗), x୩∗ ୵∗ሱሮ x∗ 
  with (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.3 (6) A single-valued mapping 𝑔:𝑋 → 𝑌 

is said to be strictly differentiable at �̅� if there is a linear 
continuous operator ∇𝑔(�̅�):𝑋 → 𝑌 such that  lim௨,௫→௫̅ 𝑔(𝑥) − 𝑔(𝑢) − 〈∇𝑔(�̅�),𝑢 − 𝑥〉∥ 𝑥 − 𝑢 ∥ = 0. 

 
 When 𝑔 is single-valued and strictly differentiable at �̅�  or continuously differentiable around �̅� , with the 

adjoint operator ∇𝑔(�̅�)∗:𝑌∗ → 𝑋∗, we have  𝐷∗𝑔(�̅�)(𝑦∗) = 𝐷෡∗𝑔(�̅�)(𝑦∗) = {∇𝑔(�̅�)∗𝑦∗} for all 𝑦∗∈ 𝑌∗. 
Let 𝑔:𝑋 → ℝഥ = [−∞, +∞]  be an extended real-

valued function. We define  dom𝑔 = {𝑥 ∈ 𝑋: |𝑔(𝑥)| < ∞} and epi(𝑔) = {(𝑥,𝜇)∈ (𝑋 × ℝ): 𝜇 ≥ 𝑔(𝑥)}. 
 The Fréchet subdifferential or presubdifferential of 𝑔 

at �̅� ∈ dom 𝑔 is defined by  
 𝜕መ𝑔(�̅�) = {𝑥∗ ∈ 𝑋∗: (𝑥∗,−1) ∈ 𝑁෡((�̅�,𝑔(�̅�)), epi 𝑔)} 
and the basic or Mordukhovich limiting 

subdifferential is defined by  
 𝜕𝑔(�̅�) = {𝑥∗ ∈ 𝑋∗: (𝑥∗,−1) ∈ 𝑁((�̅�,𝑓(�̅�)), epi 𝑔)}. 
For �̅� ∉ dom 𝑓, we put 𝜕መ𝑔(�̅�) = 𝜕𝑔(𝑥) = ∅. Also, 𝑔 is said to be lower regular at �̅� if 𝜕መ𝑔(�̅�) = 𝜕𝑔(�̅�).  
 
Definition 1.4 (6) Let 𝑔:𝑋 ⟶ ℝഥ  be a function and its 

value at �̅� is finite, (𝑖)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕ଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  
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𝜕ଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷∗𝜕𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the limiting or Mordukhovich second-order 

subdifferential of 𝑔 at �̅� relative to 𝑦ത. (𝑖𝑖)  For any 𝑦ത ∈ 𝜕መ𝑔(�̅�) , the mapping 𝜕መଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕መଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷෡∗𝜕መ𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the Fréchet second-order subdifferential of 𝑔 

at �̅� relative to 𝑦ത. (𝑖𝑖𝑖)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕෰ଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕෰ଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷෡∗𝜕𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the Combined second-order subdifferential 

of 𝑔 at �̅� relative to 𝑦ത. (𝑖𝑣)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕ெଶ 𝑔(�̅�, 𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕ெଶ 𝑔(�̅�,𝑦ത)(𝑣) = (𝐷ெ∗ 𝜕𝑔)(�̅�, 𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the mixed second-order subdifferential of 𝑔 

at �̅�  relative to 𝑦ത . When the function 𝑔 is 𝐶ଶ  around �̅� 
and 𝑣 ∈ 𝑋∗∗, we have  𝜕መଶ𝑔(�̅�)(𝑣) = 𝜕ଶ𝑔(�̅�)(𝑣) = 𝜕ெଶ 𝑔(�̅�)(𝑣) = 𝜕෰ଶ𝑔(�̅�)(𝑣)= {(∇ଶ𝑔(�̅�))∗𝑣}, 

where (∇ଶ𝑔(�̅�))∗  is the adjoint operator of the 
Hessian ∇ଶ𝑔(�̅�). 

 
Definition 1.5 (PSD) holds for g: X ⟶ℝഥ , in the 

Fréchet sense, when 〈z, v〉 ≥ 0 for every v ∈ X∗∗ and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. 
When 〈z, v〉 > 0 whenever v ≠ 0, (PD) holds in the 

Fréchet sense for g. 
Also, (PSD) holds in the limiting sense, when 〈z, v〉 ≥0  for every v ∈ X∗∗  and z ∈ ∂ଶg(x, y)(v)  with (x, y) ∈gph∂g. 
When 〈𝑧, 𝑣〉 > 0 whenever 𝑣 ≠ 0, (PD) holds in the 

limiting sense for 𝑔. 
Chieu and Huy considered these cases and extended 

those results for the class of 𝐶ଵ  functions 𝑔:𝑋 → ℝ , 
where 𝑋 is a Hilbert space or an Asplund space. 

 
Theorem 1.4 (8, Chieu, Huy 2011) Let g: X → R be a Cଵ function and X be an Asplund space. Then g is convex 

if the following condition holds:  〈z, v〉 ≥ 0 for all v ∈ X∗∗, z ∈ ∂෠ଶg(x, y)(v)with (x, y)∈ gph ∂෠g. 
  

Convex case 
 The following questions were raised (8, Chieu, Huy 

2011): 
  1. Is it true that, for any Fréchet differentiable 

function 𝑔:𝑋 ⟶ ℝഥ , 𝑃𝑆𝐷 implies convexity? 
2. Which class of locally Lipschitz functions does 𝑃𝑆𝐷, imply the convexity of the corresponding function? 
3. How to extend the characterizations to a general 

Banach setting? 
We proved in (11), that (PSD) holds for any function 𝑔:𝑋 → ℝഥ , defined on an arbitrary Banach space, where 𝑔 is a lower semicontinuous strongly convex. 
 
Theorem 2 .1 (11, Nadi, Yao, Zafarani) Let X be a 

Banach space and g: X ⟶ℝഥ  be a lower semicontinuous 
strongly convex function. Then  (PSD)  holds. 

 
 The foregoing result also holds when we replace 

second-order Fréchet coderivative with mixed second-
order coderivative: 

 
Corollary 2.1 (11, Nadi, Yao, Zafarani) Let X be a 

Banach space and g: X → ℝഥ  be a lower semicontinuous 
strongly convex function. Then (PSD) holds in the mixed 
second-order sense, that is  

 〈z, v〉 ≥ 0 for any v ∈ X∗∗ and z ∈ D୑∗ ∂g(xത, yത)(v) =∂୑ଶ g(xത, yത)(v). 
Also, (PSD) guarantees the convexity of 𝑔:𝑋 → ℝ 

for some classes of functions. For example, (PSD) 
guarantees convexity for the class of continuously 
differentiable functions ( 𝐶ଵ  functions) defined on 
Asplund spaces. Theorem 2.1 of (8, Chieu, Huy, 2011) 
and (PSD) imply convexity of lower-𝐶ଶ functions on ℝ௡ 
(12, Theorem 4.1). In the following, we illustrate that 
(PSD) is not a sufficient condition for convexity, when 
the function is differentiable at a point. 

 
Example 2.1 (11, Nadi, Yao, Zafarani)  Consider the 

function g:ℝ⟶ ℝ as follows:  

 g(x) = ቐ ଵ୬మ , x ∈]0,1], ଵ୬ାଵ < x ≤ ଵ୬ , n ∈ ℕ0, x ≤ 02, x > 1,  

It is clear that 𝑔 is differentiable at zero, but is not 
convex. Also, by an easy calculation, we can show that 
(PSD) holds for 𝑔. 

In the following theorem, we showed that (PD) 
guarantees the convexity of 𝑔:𝑋 → ℝ  when 𝑔  is 
differentiable on 𝑋 and 𝜕መ𝑔 is non-empty on 𝑋. 

We proved it for 𝑋 = ℝ and afterwards for Banach 
spaces. 

 
Theorem 2.2 (11, Nadi, Yao, Zafarani) Let g:ℝ → ℝ 

be a differentiable function and (PSD)   holds in the 
Fréchet sense and ∂෠gᇱ  be nonempty on ℝ.  Then g  is 
convex. 

We concluded the following corollary for 𝑔  on 
Banach spaces by using the above argument. For 
arbitrary 𝑎, 𝑣 ∈ 𝑋,  𝑔:𝑋 → ℝ  and 𝑠 ∈ ℝ,  define 𝑔௔,௩(𝑠) = 𝑔(𝑎 + 𝑠𝑣). We know that 𝑔 is convex on 𝑋 if 
and only if 𝑔௔,௩  is convex on ℝ for any 𝑎, 𝑣 ∈ 𝑋; See, 
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(13) for more details. 
Corollary 2.2 Let g: X → ℝ  be a differentiable 

function on X, (D෡∗∇g)(x)(v) be non empty for any x, v ∈X  and 〈z, v〉 ≥ 0  for every x, v ∈ X  and z ∈(D෡∗∇g)(x)(v). Then g is convex. 
Corollary 2.3 Let g: X → ℝ  be a differentiable 

function on X, (D෡∗∇g)(x)(v) be non empty for any x, v ∈X  and 〈z, v〉 ≥ 0  for every x, v ∈ X  and z ∈(D∗∇g)(x)(v) or z ∈ (D୑∗ ∇g)(x)(v). Then g is convex. 
We concluded that (PSD) and differentiability, imply 

the continuity of differential mapping. 
Corollary 2.4 Let g: X → ℝ  be differentiable on X 

and D෡∗(∇g)(x)(v)  be non-empty for any x, v ∈ X . If (PSD) holds in the Fréchet sense, then g is of class Cଵ. 
  
Theorem 2.3 (14, Nadi, Zafarani) Let g: X → ℝ be a 

locally Lipschitz approximately convex function and X 
be an Asplund Banach space. Then g is convex, if (PSD) 
holds in the regular sense: 〈z, v〉 ≥ 0,∀v ∈ X  and  z ∈ ∂෠ଶg(x, y)(v)  with  (x, y)∈  gph  ∂෠g 

 
Theorem 2.4 (15, Nadi, Zafarani) Let g: X → ℝ be a 

lower semicontinuous approximately convex function, X 
be an Asplund space and (PSD) holds. Then g is convex.  

For 𝑋 = ℝ௡, two classes of lower-𝐶ଵ  functions and 
lower semicontinuous approximately convex functions 
are the same (16, Daniilidis, Georgiev, 2004). The class 
of lower- 𝐶ଵ  functions was initially introduced by 
Spingarn (1981) and afterwards, the smaller class of 
lower- 𝐶௞  functions was introduced in 1982 by 
Rockafellar. The function 𝑔:ℝ௡ → ℝ is said to be lower-𝐶௞  for ( 𝑘 ∈ ℕ ) if, for each �̅� ∈ ℝ௡,  there exists a 
neighbourhood of �̅�  as 𝑉  such that 𝑔  has the 
representation  𝑔(𝑥) = max௦∈ௌ 𝑔௦(𝑥), 

 where the index set 𝑆 is compact, the functions 𝑔௦ 
are of class 𝐶௞  on 𝑉,  and 𝑔௦(𝑥)  and all of the partial 
derivatives of the functions 𝑔௦  of order 𝑘  are jointly 
continuous on (𝑠, 𝑥). 

 
Definition 2.4 We say that a locally Lipschitz 

function g: X → ℝ  is directionally Clarke regular (d-
regular) at z if, for every v ∈ X, the Clarke directional 
derivative of g  at z  in the direction v  coincides with dିg(z, v), where  dିg(z, v): = liminf୲→଴శ g(z + tv) − g(z)t . 

Remark 2.1 The above Theorem is the lower-𝐶ଵ 
version of Theorem 4.1 (12, Chieu, Lee, Mordukhovich, 
Nghia, 2016). We know that in finite dimensional spaces, 
a lower- 𝐶ଵ  function 𝑔  is approximately convex and 

locally Lipschitz (16, Daniilidis, Georgiev, 2004). Also, 
we answer question 2 posed in (8, Chieu, Huy, 2011) by 
this result. By a similar proof, we concluded that (PSD) 
holds for d-regular and semismooth functions defined on 𝑋 = ℝ௡. 

We show by the following example that in the 
foregoing theorem, approximate convexity is essential. It 
means that, the class which was asked in question 2 of (8, 
Chieu, Huy, 2011) is approximately convex functions 
(the class of lower-𝐶ଵ functions when the space is finite-
dimensional). We show that the following function which 
is Lipschitz and was given in (8, Chieu, Huy, 2011), 
theorem 4.2, is not approximately convex (lower-𝐶ଵ). 

 
Example 2.2 (15, Nadi, Zafarani) For all x ∈ ℝ ; 

define g(x) = ୶଴׬ χ୉(t)dt, where 𝐸 is a subset of ℝ which is 
measurable and the intersection of both 𝐸  and its 
complement with each nonempty open interval of ℝ has 
positive Lebesgue measure. The function 𝑔 is Lipschitz, 
and (PSD) holds but it is not convex. 

  
Corollary 2.5 (15, Nadi, Zafarani) Let g: X → ℝ be a 

lower semicontinuous approximately convex function 
and X be a Hilbert space. Then the function g is strongly 
convex (with modulus κ > 0) if and only if  

 〈z, v〉 ≥ κ ∥ v ∥ଶ,∀v ∈ X and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. (3) 
  

Convex mappings 
We assume that the spaces  𝑋  and 𝑌   are Banach 

spaces and 𝑋 is reflexive, 𝐾 ⊆ 𝑌 is a closed convex and 
pointed cone (𝐾 ∩ −𝐾 = 0) and 𝐾∗ is the positive dual 
cone of 𝐾; that is 𝐾∗ = {𝑦∗ ∈ 𝑌∗:𝑦∗(𝑘) ≥ 0, for all 𝑘 ∈𝐾}.  

Definition 2.5 Let g: X ⟶ Y  be a vector valued 
function. g  is K-convex on X  if for any xଵ, xଶ ∈ X  and λ ∈ [0,1],  

 g(λxଵ + (1 − λ)xଶ) ≤୏ λg(xଵ) + (1 − λ)g(xଶ). 
Theorem 2.5 (15, Nadi, Zafarani) Let g: X → Y be a Cଵ mapping. If (PSD) holds in the limiting sense, then g 

is K-convex. 
Also, the converse holds for twice continuously 

differentiable case: 
 
Theorem 2.6 (15, Nadi, Zafarani) Let Y and X be 

Banach spaces and 𝑔:𝑋 → 𝑌 be a 𝐶ଶ  mapping. Then 
(PSD) holds if and only if g is K-convex. 

 
The following example illustrates the foregoing 

theorem. 
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Example 2.3 (15, Nadi, Zafarani) Consider 𝑔:ℝଶ →ℝଶ  with 𝑔(𝑧) = g(𝑧ଵ, 𝑧ଶ) = (zଵଶ + 𝑧ଶଶ, zଵଶ + 𝑧ଵ) and 𝐶 ={(𝑧ଵ, 𝑧ଶ) ∈ ℝଶ: 𝑧ଵ, 𝑧ଶ ≥ 0 and 𝑧ଶ ≤ 𝑧ଵ}. Then g is a C-

convex mapping, twice continuously differentiable and 
(PSD) holds because for every 𝑧 = (𝑧ଵ, 𝑧ଶ) and 𝑣 =(𝑣ଵ, 𝑣ଶ) ∈  ℝଶ  we have: 

 ∇ଶ𝑔(𝑧)(𝑣) = 2𝑣ଵ ቀ1 00 0ቁ + 2𝑣ଶ ቀ0 10 0ቁ + 2𝑣ଵ ቀ0 01 0ቁ= ቀ𝑣ଵ + 𝑣ଶ𝑣ଵ ቁ. 
But this means that  
 ∇ଶ𝑔(𝑧)(𝑣) = ൬2𝑣ଵଶ + 2𝑣ଶଶ2𝑣ଵଶ ൰ ∈ 𝐶. 
 
 

Quasi convex functions 
 Characterization of pseudoconvexity and 

quasiconvexity by their second-order subdifferentials 
and their applications are studied in the literature. For 
twice differentiable pseudoconvex and quasiconvex 
functions 𝑔:𝐶 ⊆ ℝ௡ → ℝ , where ∇𝑔  is locally 
Lipschitz,  the second-order characterization has been 
extended by (13, Crouziex and Ferland, 1996). 

Given a normed linear space 𝑋 and a convex subset 𝐾 of 𝑋, a function 𝑔:𝐾 → ℝ is called  
(i) quasiconvex on 𝐾, where for every 𝑥,𝑦 ∈ 𝐾 and 𝑡 ∈]0,1[,  g(x + t(y − x)) ≤ max{g(x), g(y)}, 
or equivalently where its level sets (𝐿𝑒𝑣ఈ𝑔)  are 

convex, i.e.,  
for every 𝛼 ∈ ℝ , Lev஑g =: {x ∈ K: g(x) ≤ α}  is 

convex, 
(ii) pseudoconvex on 𝐾 if for every 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦 

and 𝑥∗ ∈ 𝜕መ𝑔(𝑥),  〈x∗, y − x〉 ≥ 0 ⟹ g(y) ≥ g(x). 
Definition 2.6 [(14), Nadi, Zafarani] Let X  be a 

Banach space and F: X ⇉ X∗  be a set-valued mapping 
and, for every xത ∈ X and v ∈ X∗∗, define: D෡ାF(xത, v): = sup{〈z, v〉: z ∈ D෡∗F(x, y)(v), x → xത, y→ yത, y ∈ F(x)}. D෡ିF(xത, v): = inf{〈z, v〉: z ∈ D෡∗F(x, y)(v), x → xത, y → yത, y∈ F(x)}. 

 
Here we mention a result for the quasiconvex case: 
 Theorem 2.7 (14, Nadi, Zafarani) Let g: X → R be a 

locally Lipschitz function. If the following assertions 
hold for every xത, u ∈ X: 

(i) φ୳(xത) = inf{〈y, v〉: y ∈ ∂ୡg(xത)} = 0  implies that D෡ା ∂ୡg(xത, v) ⩾ 0; 
(ii) φ୳(xത) = 0 , D෡ା ∂ୡg(xത, v) ≥ 0, D෡ି ∂ୡg(xത, v) ≤ 0 

and 〈y୲̅, v〉 > 0  (for some t ̅ < 0  and y୲̅ ∈ ∂ୡg(xത + t ̅v) ), 
implies that there exists t̂ > 0 such that 〈y୲, v〉 ≥ 0 for 
every t ∈ [0, t̂] and y୲ ∈ ∂ୡg(xത + tv). 

(iii) g is approximately convex. 
Then g is quasiconvex. 
 
Example 2.4 (14, Nadi, Zafarani) Consider the 

function g: S = {z: ∥ z ∥< ଵଶ} ⊆ ℝଶ → ℝ defined as  g(zଵ, zଶ) = f(z) = −∥ z ∥ଶ +∥ z ∥. 
It is easy to see that g is continuously differentiable 

on S\{(0,0)}. Also, the Clarke subdifferential at (0,0) is  
  
For every 0 ≠ 𝑣 ∈ ℝଶ,  we have inf{〈y, v〉: y ∈∂ୡg((0,0))} < 0,  because the closed unit ball is a 

balanced subset of ℝଶ. Therefore, clearly (i) holds. 
For (ii), assume that v ≠ (0,0) is arbitrary. Now, an 

easy calculation shows that  〈∇g(tv), v〉 = (vଵଶ + vଶଶ)(−2t + 1ඥvଵଶ + vଶଶ) ≥ 0, 
for every t ∈ [0, t̂]  with t̂: = 2(vଵଶ + vଶଶ)ିభమ,  which 

means that (ii) holds. 
 

Pseudo convex functions 
 A similar result holds for the pseudoconvex case: 
Theorem 2.8 (14, Nadi, Zafarani) Let g: X → ℝ be a 

locally Lipschitz function. Suppose that the following 
conditions hold for every xത, v ∈ X: 

(i) φ୴(xത) = inf{〈y, v〉: y ∈ ∂ୡg(xത)} = 0  implies that D෡ା ∂ୡg(xത, v) ⩾ 0; 
(ii) φ୴(xത) = 0, D෡ା ∂ୡg(xത, v) ≥ 0 and D෡ି ∂ୡg(xത, v) ≤0, implies that: there exists t̂ > 0 such that 〈y୲, u〉 ≥ 0 

for every t ∈ [0, t̂] and y୲ ∈ ∂ୡf(xത + tu). 
(iii) 𝑔 is approximately convex. 
Then 𝑔 is pseudoconvex. 
For the case of strictly pseudoconvex functions, the 

following result is interesting: 
Theorem 2.9 (17, Khanh Phat 2020) Let g:ℝ୬ → ℝ 

be a Cଵ,ଵ-smooth function satisfying x ∈ ℝ୬, v ∈ ℝ୬\{0}, 〈∇g(x), v〉 = 0,⇒ 〈z, v〉> 0, for all  z ∈ ∂ଶg(x)(v). 
Then 𝑔 is a strictly pseudoconvex function. 
Also, for the case of strictly quasiconvex functions, 

the following result is interesting: 
Theorem 2.10 (17, Khanh Phat 2020)  Let g:ℝ୬ →ℝ be a Cଵ,ଵ-smooth function satisfying x ∈ ℝ୬, v ∈ ℝ୬\{0}, 〈∇g(x), v〉 = 0,⇒ 〈z, v〉> 0, for   all  z∈ ∂෠ଶg(x)(v) ∪ −∂෠ଶg(x)(−v). 
Then 𝑔 is a strictly quasicoconvex function. 
Invex function 
 In recent years, the mathematical landscape has 

witnessed numerous extensions and generalizations of 
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classical convexity, particularly through the invex 
functions by Hanson in 1981(18). This pivotal 
advancement sparked a wave that has substantially 
enriched the applications of invexity within nonlinear 
optimization and related fields. Notably, Hanson 
demonstrated that the Kuhn-Tucker conditions, which 
are fundamental in optimization theory, serve as 
sufficient criteria for optimality when dealing with invex 
functions. This revelation has prompted further 
exploration into the properties and applications of 
generalized convexity.  

Definition 2.7 A set C is said to be invex with respect 
to η: X × X → X, when for any x, y ∈ C and 0 ≤ λ ≤ 1, y + λη(x, y) ∈ C. 

 
Definition 2.8 A vector valued function η: X × X → X 

is said to be skew, if  η(x, y) + η(y, x) = 0,   for any   x, y ∈ X. 
The following assumptions are frequently used in the 

literature: 
ASSUMPTION A: Let 𝐶 be an invex set with respect 

to 𝜂, and 𝑔:𝐶 → ℝ. Then  g൫y + η(x, y)൯ ≤ g(x)  for any   x, y ∈ C. 
 
ASSUMPTION C: Let 𝜂:𝑋 × 𝑋 → 𝑋. Then, for any 𝑥,𝑦 ∈ 𝑋 and for any  ∈ [0,1],  𝜂(𝑦,𝑦 + 𝜂(𝑥,𝑦)) = −𝜂(𝑥,𝑦), 𝜂(𝑥,𝑦 + 𝜂(𝑥,𝑦)) = (1 − )𝜂(𝑥,𝑦) 
  
 Definition 2.9 A differentiable function g: X → ℝ is 

said to be invex with respect to η, if for any x, y ∈ C, one 
has  〈∇g(y),η(x, y)〉 ≤ g(x) − g(y). 

 
 Definition 2.10 A locally Lipschitz function g: C ⊆X → ℝ is called invex with respect to η, if for any x, y ∈C and any ξ ∈ ∂g(x), one has  〈ξ,η(x, y)〉 ≤ g(x) − g(y). 
 
 Remark 2.2 Note that, in the above definitions by 

letting η(x, y) = x − y,  we reduce to the convex case. 
Indeed, invex functions reduce to convex functions, and 
invex sets, to convex sets.  

 
Proposition 2.1 (19, Nadi, Zafarani) Let g:ℝ୬ → ℝ 

be an invex function with respect to a skew η:ℝ୬ ×ℝ୬ → ℝ୬, be twice differentiable at x ∈ ℝ୬ and η(. , x) 
be differentiable at x. Then 〈η୶(x, x)v, Dଶg(x)v〉 ≥ 0 for 
any v ∈ ℝ୬. 

 
 Theorem 2.11 (19, Nadi, Zafarani) Suppose that g:ℝ୬ → ℝ is Cଵ,ଵ, invex function with respect to a skew η:ℝ୬ × ℝ୬ → ℝ୬, where η is differentiable in the first 

argument at x and continuous. Then 〈η୶(x, x)v, x∗v〉 ≥ 0, 
for any v ∈ ℝ୬ and x∗ ∈ ∂gᇱ(x). 

  
Remark 2.3 The above results are the natural 

extensions of the convex case. In fact, by replacing η(x, y) with x − y, we have the classical form of Hessian. 
In the following example, we show that sometimes 

characterizing the invexity of a function by the second-
order condition is easier than using the first order 
condition. 

 
Example 2.4 (19, Nadi, Zafarani) Consider the 

following Cଵ,ଵ function g:ℝ → ℝ,  g(x) = ൝−xଶ + x, x ≤ 0xଶ + x, x > 0. 
Consider, also η(x, y) = xଷ − yଷ.  An easy 

calculation implies that  ∂gᇱ(x) = ൞−2, x < 0{[−2,2]}, x = 02, x > 0, 
which means that 〈η୶(x, x)v, x∗v〉 = 3xଶx∗ < 0,  by 

letting x = −1 and any arbitrary v ∈ ℝ. 
  
Theorem 2.12 (19, Nadi, Zafarani) Let g:ℝ୬ → ℝ be 

a twice differentiable function, g  and η  satisfy 
Assumptions A and C, η(. , y) be onto for any y ∈ ℝ୬ and 
skew. If 〈η୶(x, x)v,∇ଶg(x)v〉 ≥ 0 , for any x, v ∈ ℝ୬ , 
then g is invex with respect to η. 

 
 Optimization 

 Consider the nonlinear programming (NLP) as 
follows, with Cଵ  data ( f, g୧: X → ℝ  for 1 ≤ i ≤ n  are 
continuously differentiable):  minimize    f(x)  subject to g୧(x) = 0,   for  i ∈ E  and  g୧(x) ≤ 0  for  i ∈ I, 

 Where for the constrains, E: = {1, . . . , nଵ}  and I: ={nଵ + 1, . . . , nଵ + nଶ} are finite index sets and n: = nଵ +nଶ. The point x is called a feasible point of the foregoing 
(NLP) problem if  x ∈ Γ: = {y ∈ X: g୧(y) = 0 for i ∈ E and g୧(y) ≤ 0 for i∈ I}. 

Also, the classical Lagrange function is:  L(x, λ): = f(x) + 〈λ, g〉(x),   for  x ∈ X  and  λ ∈ ℝ୪. 
 
When xത  is a solution for (NLP), the first order 

necessary condition is that there exist λ୧ for i = 1, . . . n, 
which are said to be the Lagrange multipliers, with  
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λ୧g୧(xത) = 0  (for i= 1, . . . , n)  and  ∇f(xത) + ෍୬୧ୀଵ λ୧∇g୧(xത)= 0 
 and the standard second-order sufficient condition 

(SSOSC) is that there exists 𝑘 > 0 such that  ∇୶ଶL(xത, λത)(v, v) ≥ k ∥ v ∥ଶ   with λത = (λതଵ, . . . , λത୪) (4) 
 for all v ∈ X, with 〈∇g୧(xത), v〉 = 0 for i ∈ E ∪ Iା(λത) 

and 〈∇g୧(xത), v〉 ≤ 0 for i ∈ I଴(λത), where  Iା(λത) = {i ∈ I: λത୧ > 0}  and  I଴(λത) = {i ∈ I: λ୧ = 0}. 
 
Also, when 𝑋  is finite-dimensional, we can change 

the inequality (4) as follows:  ∇୶ଶL(xത, λത)(v, v) > 0  with λത = (λതଵ, . . . , λത୪). (5) 
 Indeed, when X  is finite-dimensional, the second-

order sufficient condition implies optimality of xത  (the 
critical point) for Lagrange multipliers λത, when ∇୶ଶL(xത, λത) 
is positive definite on the critical cone of (NLP) at (xത, λത); 
it means that C(xത) =: {v: 〈∇g୧(xത), v〉= 0 for Iା(λത) ∪ E and 〈∇g୧(xത), v〉≤ 0 for i ∈ I଴(λത)}. 

We continue with the following second-order 
sufficient condition for optimality of a KKT-point of 
(NLP). In the following, 𝑋 is a reflexive Banach space. 

 
Theorem 3.1 (20, Nadi, Zafarani) (Point-based 

sufficient condition) Assume the foregoing stated (NLP) 
problem with zത ∈ Γ a KKT-point of (NLP) and Lagrange 
multipliers λത.  Suppose that the second-order condition 
holds:  D෡ି∇L(zത, λത, v) > 0    for all  v ∈ C(zത)\{0}. (6) 

 Then zത is a strictly local minimum for (NLP). 
In condition (6), we use the coderivative of the 

differential mapping and it is more efficient than the other 
similar second-order optimality conditions which have 
been introduced by the various kinds of generalized 
second-order directional derivatives. As illustrated by the 
following example, the following theorem due to (21, 
Ben-Tal and Zowe) and its constrained version can not 
be used for the 𝐶ଵ  data case. 

Let g:ℝ୬ → ℝ be differentiable at xത. We denote by gᇱᇱ(xത, v), the second-order directional derivative of g at x 
in direction v ∈ ℝ୬  which is defined as an element of ℝഥ = ℝ ∪ {−∞} ∪ {+∞}; that is  gᇱᇱ(xത, v): = lim୲→ାஶ 2tଶ (g(xത + tv) − g(xത)− t∇g(xത)v). 

  
Theorem 3.2 (21, Ben-Tal and Zowe) Suppose that g ∈ Cଵ,ଵ(ℝ୬) , ∇g(xത) = 0  and gᇱᇱ(xത, v) > 0  for all v ∈ℝ୬\{0}. Then xത is a strict local minimizer of g. 
 

  
Example 3.1 (20, Nadi, Zafarani) Consider the 

function g:ℝଶ → ℝ defined as  g(zଵ, zଶ): = (max(0, zଶ − 2zଵସଷ))ଷଶ + (max(0, zଵସଷ − zଶ))ଷଶ. 
 One can show that gᇱᇱ(xത, v) > 0  for xത = (0,0)  and 

all nonzero direction v,  but xത  is not a strict local 
minimum of g  since g(z) = 0  for all z  between the 

curves zଶ = zଵరయ and zଶ = 2zଵరయ. 
Letting (z୩)  be an arbitrary sequence which 

converges to zero, we have (z୩, ଷଶ z୩రయ) → (0,0). It is trivial 

that ∇g(z୩, ଷଶ z୩రయ) = 0  because g  is equal to zero in a 

neighbourhood of (z୩, ଷଶ z୩రయ). 
Now, it is easy to see that 0 ∈ D෡∗∇g(z୩, ଷଶ z୩రయ)(v) for 

all v ∈ ℝଶ,  which implies that D෡ି∇g(xത, v) ≤ 0.  This 
means that condition (6) in the above theorem does not 
hold. 

Pseudoconvexity of the cost function in addition to 
the quasiconvexity of constrained functions implies the 
optimality of the point that satisfies the Karush Kahn-
Tucker conditions. More precisely, if the cost function or 
one of the active constrained functions with positive 
Lagrange multipliers is pseudoconvex and the rest are 
quasiconvex, then the Lagrange function is 
pseudoconvex. Booth of quasiconvexity and 
pseudoconvexity of constrained functions imply the 
convexity of the feasible set and optimality of a KKT-
point will be obtained. But we know that the convexity 
of the feasible set is not necessary in (NLP). As 
mentioned below, the pseudoconvexity of the cost 
function and quasiconvexity of constraint functions at a 
KKT-point is sufficient for its optimality. 

 
Theorem 3.3 (Mangasarian) Let the set constraint be 

open. The functions f  and g୧  for i = 1, . . . , nଵ  are the 
functions defined on X and xത is a feasible point. Assume 
that f  is pseudoconvex at xത ,  f  and g୧  for i ∈ I(xത)  are 
differentiable at xത, and g୧ for i ∈ I(xത) are quasiconvex at xത.  If there exist Lagrange nonnegative multipliers λଵ, . . . , λ୪భ  with λ୧g୧(xത) = 0  for i = 1, . . . , nଵ  and ∇L(xത) = 0  where L = f + ∑୪భ୧ୀଵ λ୧g୧,  then xത  is a global 
minimizer of (NLP). 

The following example shows that the 
pseudoconvexity at a point for the cost function in the 
foregoing Theorem is more than what is required. 

 
Example 3.2 (20, Nadi, Zafarani) Consider the 

following (NLP) with Cଵ,ଵ data:  
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minimize    f(x): = − 12 zଵ|zଵ| + zଵzଶ − zଵ + zଶ  for  z= (zଵ, zଶ) subject to   gଵ(z): = zଵଶ + zଵ − zଶ ≤ 0,  gଶ(z): = zଵ + zଶ − 1 ≤ 0,   gଷ(z): = −2zଵ + zଶ ≤ 0. 
 
The Lagrangian function for λ = (λଵ, λଶ, λଷ) is  L(z, λ) = − 12 zଵ|zଵ| + zଵzଶ + λଵ(zଵଶ + zଶ − 1) + λଶ(zଵ+ zଶ − 2) − λଷzଵ. 
 Now, we can show that zത = (0,0) is a KKT-point for 

(NLP) with Lagrange multipliers λത = (1,0,0). Also, for 
all z ∈ ℝଶ we have  ∇L(z) = (−|zଵ| + zଶ + 2zଵ, zଵ). 

 For zଵ > 0 and v = (vଵ, vଶ) ∈ ℝଶ,  ∇ଶL(z)(v) = ቀ1 11 0ቁ ቀvଵvଶቁ = ቀvଵ + vଶvଵ ቁ 
 and for zଵ < 0 and v = (vଵ, vଶ) ∈ ℝଶ we have  ∇ଶL(z)(v) = ቀ3 11 0ቁ ቀvଵvଶቁ = ቀvଵ + vଶvଵ ቁ. 
 Thus, for zଵ > 0  and p ∈ D෡∗(∇L)(z)(v) =∇ଶL(z)(v) we derive  〈p, v〉 = vଵଶ + 2vଶvଵ. 
 
Also, for zଵ < 0  and p ∈ D෡∗(∇L)(z)(v) =∇ଶL(z)(v) we deduce  〈p, v〉 = 3vଵଶ + 2vଵvଶ. 
 
On the other hand, the set of active indexes in zത is I(zത) = {1,3}  and Iା(λത) = {1}  and I଴(λത) = {3}. 

Therefore, by an easy calculation, we conclude that the 
critical direction cone at xത is  C(zത) = {v: 〈∇gଵ(zത), v〉 = 0 and 〈∇gଷ(zത), v〉 ≤ 0}   = {(vଵ, vଶ): vଵ = vଶ and − 2vଵ + vଶ ≤ 0} = {(vଵ, vଶ): vଵ = vଶ and vଵ, vଶ ≥ 0}. 

 This means that 〈p, v〉 > 0 for all p ∈ D෡∗(∇L)(z)(v) 
with z ≠ 0 and v ∈ C(zത)\{0}. It is not difficult to see that D෡∗(∇L)(z)(v) = ∅  for all z = (0, zଶ).  Therefore, the 
second-order sufficient condition D෡ି(∇L)(z, v) > 0 
holds for all v ∈ C(zത)\{0} by our Theorem. Moreover, it 
is easy to see that the cost function f  is strictly 
pseudoconvex in direction v = (1,1) ∈ C(zത), because for 
all t > 0: f(zത + tv) = f(t, t) = − 12 tଶ + tଶ − t + t = 12 tଶ > f(zത) = 0. 

 But for u = (1,0) ∉ C(zത) and all t > 0:  f(zത + tu) = f(t, 0) = −12 tଶ − t < f(zത) = 0 
 This means that 𝑓  is not pseudoconvex at 𝑧̅ in the 

direction 𝑢. Therefore, 𝑓 is not pseudoconvex at 𝑧̅, but 𝑧̅ 
is a minimizer for (NLP).  

Instead of pseudoconvexity and quasiconvexity at a 
point, we use the pseudoconvexity and quasiconvexity at 

a point in a direction and present the following extension 
of Mangasarian’s theorem in the case of local solution. 

 
Theorem 3.4 (20, Nadi, Zafarani) Let the set 

constraint be open. The functions f  and g୧  for i =1, . . . , nଵ  are defined on X  and zത  is a feasible point. 
Suppose that there exist Lagrange nonnegative 
multipliers λଵ, . . . , λ୪భ  with λ୧g୧(zത) = 0  for i = 1, . . . , nଵ 
and ∇L(zത) = 0  where L = f + ∑୪భ୧ୀଵ λ୧g୧.  If f  and g୧  for i ∈ I(z) are differentiable at z, f is pseudoconvex at zത in 
all critical directions v ∈ C(zത)  and g୧  for i ∈ I(zത)  are 
quasiconvex at xത in all critical directions v ∈ C(zത), then zത 
is a local minimizer of (NLP). 

Now, we give some applications in tilt-stability 
theory, as an application of our results in classical 
optimization. 

 
Proposition 3.1 (14, Nadi, Zafarani) Let (PSD) hold 

for g: X → ℝ  that is a differentiable function and D෡∗(∇g)(z)(v) be non-empty for any z, v ∈ X. If ∇g(zത) =0, then zത is a global minimizer of g. 
 
Definition 3.1 (22, Tilt Stability, Poliquin- 

Rockafellar 1998) Given g: X → ℝഥ , a point zത ∈ domf is a 
tilt-stable local minimizer of g, if there is γ > 0 such that 
the mapping  Mஓ: z∗ ⟼ argmin{f(z) − 〈z∗, z〉: z ∈ Bஓ(zത)} 

is a single-valued mapping and Lipschitz continuous 
on some vicinity of 0 ∈ 𝑋∗ with 𝑀ఊ(0) = 𝑧̅. 

  
Proposition 3.2 (14, Nadi, Zafarani) Let g: X ⟶ℝ 

be a strongly convex lower semicontinuous function and X be a Banach space. Then the following conditions hold: (i) If zത is a global minimizer for g, then it is the tilt-
stable local minimum of g. (ii) The point zത is a local minimizer for g when X is 
an Asplund space. Also, there exist numbers r ∈ (0, ଵச) 
and ε > 0 such that  g(x) ≥ g(xത) + 〈yത, z − yത〉 − r2κ ∥ z − zത ∥ଶ   whenever  z∈ Bக(zത). 

 
Proposition 3.3 (20, Nadi, Zafarani) Let g:ℝ୬ → ℝ 

be a twice differentiable function which satisfies 
Assumption A with respect to some η and ∇g(zത) = 0. 
Moreover, suppose that one of the following holds: 

(i) 〈η୸(z, z)v,∇ଶg(z)(z)v〉 ≥ 0 , for any z, v ∈ ℝ୬ , 
where η is skew and satisfies Assumption C and η(. , y) 
is onto for any y ∈ ℝ୬. 

(ii) 〈η(y, zത),∇ଶg(zത)η(y, zത)〉 ≥ 0, for any y ∈ ℝ୬. 
Then 𝑧̅ is a local minimizer of 𝑔. 
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 Consider the following constrained optimization 
problem:  min  𝑔଴(𝑧) subject to  𝑔௜(𝑧) ≤ 0   (𝑖 = 1, . . . ,𝑚), (7) 

 which g଴, gଵ, . . . , g୫  are twice differentiable 
functions defined on ℝ୬. 

Let g(z) = (g଴(z), . . . , g୬(z)) . We know that the 
existence of a vector λ = (λଵ, . . . , λ୬) ∈ ℝ୬  which 
satisfies the following conditions, (Kuhn-Tucker 
conditions) is necessary for zത to solve this problem:  ∇g(zത) + 〈λ,∇g(zത)〉 = 0 (8) 〈λ, g(zത)〉 = 0 (9) λଵ, . . . , λ୬ ≥ 0. (10) 

 Hanson 1981 showed that the Kuhn-Tucker 
conditions are also sufficient for 𝑧̅ to be a solution of (4), 
when each 𝑔௜ is invex with respect to the same 𝜂. Indeed, 
only the invexity in a neighbourhood of 𝑧̅ for each 𝑔௜ 
guarantees that the foregoing conditions are sufficien 
(Craven 1982). 

Now, we give some second-order sufficient 
conditions for constrained optimization problems, by 
using our results. 

 
Proposition 3.4 (20, Nadi, Zafarani) Suppose we 

have the constrained optimization problem (4). If the 
Kuhn-Tucker conditions hold in zത,  each g୧  satisfies 
Assumption A, and one of the following second-order 
conditions holds (with respect to the same η): 

(i) 〈η୸(z, z)v,∇ଶg୧(z)v〉 ≥ 0 , for any z, v ∈ ℝ୬ , 
where η is skew and satisfies Assumption C and η(. , y) 
is onto for any y ∈ ℝ୬, 

(ii) 〈η(y, zത),∇ଶg୧(z)η(y, zത)〉 ≥ 0 for any y ∈ ℝ୬, 
then zത is a solution for the constrained optimization 

problem (4). 
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