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Abstract 

The study addresses the challenges of analyzing time-to-event data, particularly 
emphasizing the discrete nature of durations, such as the number of years until divorce. 
This frequently results in zero-inflated survival data characterized by a notable frequency 
of zero observations. To address this, the study employs the zero-inflated discrete Weibull 
regression (ZIDWR) model, which serves as a suitable framework for evaluating the 
impact of explanatory variables in survival analysis. However, challenges such as 
nonstationarity in the relationship between variables and responses and spatial 
heterogeneity across geographical regions can result in a model with too many parameters 
To mitigate this, we propose a spatial clustering approach to summarize the parameter 
space. This Paper leverages nonparametric Bayesian methods to explore the spatial 
heterogeneity of regression coefficients, focusing on the geographically weighted 
Chinese restaurant process (gwCRP) for clustering the parameters of the ZIDWR model. 
Through simulation studies, the gwCRP method outperforms unsupervised clustering 
algorithms clustering K-means and the standard Chinese restaurant process (CRP), 
exhibiting superior accuracy and computational efficiency, particularly in scenarios with 
imbalanced cluster sizes. This improved performance is quantitatively demonstrated 
through higher Rand indices, lower average mean squared error (AMSE) in parameter 
estimation and superior log pseudo-marginal likelihood (LPML) values. Applying this 
methodology to Iranian divorce data reveals distinct spatial clusters characterized by 
varying covariate effects on the probability of divorce within the first five years of 
marriage and the subsequent time to divorce. 
 
Keywords: Survival Analysis; Varying Coefficient; Spatial Clustering. 
 

Introduction 
Survival analysis is a statistical technique used to 

evaluate time-to-event data. While survival time is 
generally treated as a continuous random variable, it is 
often recorded at discrete intervals (e.g., 0, 1, 2, 3…). 

                                                        
* Corresponding Author: Tel:+989122066712; Fax:+982182883483: Email:mohsen_m@modares.ac.ir 

This discretization may result in zero observations, 
indicating events that occurred before the first time 
recording unit (e.g., daily, monthly, or yearly). These 
zero values, sometimes referred to as "sampling 
zeros"(1), arise from events that take place right at the 
)commencement of the study. Such occurrences are 
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prevalent across various domains. For example, in the 
healthcare sector, pregnant women might spend less than 
a day in the hospital before delivery. Likewise, in studies 
related to job placement, a zero survival time may signify 
an immediate job placement. Traditional survival models 
often struggle to accommodate these instances. As a 
result, researchers have turned to "zero-inflated survival 
models" to tackle these challenges more effectively. 
Applications of these models include zero-inflated Cox 
models for analyzing rat sleep time following ethanol 
exposure (2), Weibull models for investigating time until 
banking fraud occurs (3-4), and zero-inflated cure models 
employed in studies of labor duration and cervical cancer 
(5-6). The choice of the baseline distribution is crucial in 
zero-inflated discrete models. While the Poisson 
distribution is frequently used for its intuitive 
interpretation of count data, its inherent assumption of 
equality between mean and variance often fails in 
practice. This limitation leads to over- or under-
dispersion, resulting in inaccurate inferences and 
underestimated standard errors. Although the negative 
binomial distribution effectively addresses over-
dispersion, it is unsuitable for under-dispersed data. 
Furthermore, by modeling the probability of a specific 
number of events within a defined period and assuming 
independence, the Poisson distribution is not directly 
analogous to time-to-event distributions. Consequently, 
generalizing discrete distributions in survival analysis is 
necessary to accommodate all types of dispersion and 
relax the  independence assumption, mainly when 
dealing with correlated data. The Type I Discrete Weibull 
distribution proposed (7) is designed to mirror its 
continuous counterpart, is well-suited for discrete 
survival data and effectively handles both over- and 
under-dispersion. The Zero-Inflated Discrete Weibull 
(ZIDW) regression model is ideal for zero-inflated 
discrete survival data as it captures dispersion in zero and 
non-zero modes (8). This model includes two regression 
relationships:one for the effect of explanatory variables 
on the rate of non-zero responses and another for the 
probability of zero, allowing each explanatory variable to 
have two regression coefficients. Considering the spatial 
references of survival data, known as survival spatial 
analysis, enables the estimation and comparison of 
survival across different geographical areas, revealing 
spatial patterns. This helps identify areas with the highest 
and lowest survival rates. 

One notable aspect of spatial variability is the 
difference in the influence of explanatory variables on 
survival time across different locations, a phenomenon 
known as spatial heterogeneity. Spatial heterogeneity 
refers to how the relationship between explanatory and 
response variables alters with geographical displacement. 

This variation arises because different locations exhibit 
different properties or values. Consequently, the values 
of regression coefficients can differ significantly from 
region to region. As a result, traditional regression 
models may fail to accurately capture the nature of these 
relationships in the context of spatial data analysis. Two 
main methods exist for estimating regression coefficients 
in models with spatially variable coefficients. The first is 
geographically weighted regression, a local method that 
estimates model parameters by weighting them at any 
point in the examined space. Unlike conventional 
regression, which describes general relationships 
between variables, geographically weighted regression 
provides spatial information on the variations in these 
relationships. The second method treats regression 
coefficients as random variables following spatial 
distributions. The spatial distribution can be assessed by 
selecting appropriate prior probability functions for the 
parameters. (9) examined the application of a 
geographically weighted regression model for 
accelerated failure time in spatial survival data.  (10)  
investigated the influence of explanatory variables 
through a geographically weighted regression model on 
the  Cox survival models, explicitly  applying the Weibull 
distribution to handle the data. 

The second method, Spatial Variable Coefficient 
(SVC), addresses this spatial heterogeneity by treating 
regression coefficients as spatial random variables. This 
method considers regression coefficients as spatial 
random variables that follow spatial distributions. By 
selecting suitable prior probability functions for the 
parameters, it is possible to assess the spatial variability 
of the parameters at different locations in the Bayesian 
spatially-varying coefficient (BSVC) model and to 
estimate the regression coefficients from their posterior 
probability (11). Simulation studies indicate that SVC 
processes outperform GWR by accurately estimating 
regression coefficients, so GWR must be considered a 
purely exploratory tool (12). In survival data analysis, the 
spatial variable coefficients (SVCs) method in the Cox 
model with a frequency-oriented perspective has been 
suggested by  (13). (14) have suggested an AFT model 
with prior spatial distributions for spatially variable 
regression coefficients. (15) have suggested a 
geographically weighted Cox regression model for sparse 
spatial survival data. 

 Although these methods enhance survival prediction 
accuracy by considering the spatial variability of 
regression coefficients, they also raise model fitting 
complexity for ZIDWR models, assuming spatial 
variability of parameters for both regression coefficient 
vectors. This is because not only can the effect of 
explanatory variables on non-zero response have spatial 
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variability, but their effect on the probability of zeroing 
can also be different in different places. Thus, all 
regression coefficients have spatial variability.  

Moreover, there are often censored observations in 
these data due to limited follow-up time that cannot be 
overlooked. Clustering the model parameters with 
similar spatial features is a proper method for efficiently 
reducing model dimensions and summarizing data. 
Spatial clustering methods, such as the 𝐾-means method, 
can be used to summarize data efficiently. Hence, 
Bayesian nonparametric processes, such as the Dirichlet 
mixture process, are used to investigate the spatial 
heterogeneity of regression coefficients (16). This 
process simultaneously considers intra-cluster 
correlation and heterogeneity between clusters in the 
spatial clustering structure. These processes turn the 
model into a simple parametric form by clustering with 
complex data on the model parameter space. Given its 
computational ease, the Dirichlet Process is one of the 
best random processes among nonparametric processes 
(for instance, the Gaussian process, Pólya tree process 
(17), and so on) for clustering parameters in models with 
SVCs. In this method, we can cluster coefficients into 
homogeneous groups by choosing prior probabilities on 
the distribution of discrete partitions, where several 
parameters get the same value simultaneously. 

As a representation of the infinite mixture Dirichlet 
process, the Chinese Restaurant Process (CRP) 
introduced by (18,19) allows for dividing model 
parameters into homogeneous clusters without 
predetermined assumptions about the cluster count. As 
our purpose of spatial clustering of parameters is to 
reduce the spatial heterogeneity in the data, it is necessary 
to consider the geographical location of the units in the 
allocation of clusters because the presence of common 
factors in close areas causes the parameters in them to be 
similar. In other words, each member's allocation within 
each cluster will be such that if that member is closer to 
the other cluster members regarding geographical 
distance, it has a better chance of being in that cluster. 
Hence, the distance between regions has a significant role 
in this clustering. (20) offers a compelling alternative:the 
distance-dependent Chinese restaurant process (ddCRP). 
This model directly incorporates the probability of 
assigning data points to existing clusters, making the 
assignment dependent on the distance between data 
points. An excellent way to do this is to make this 
function one of the weighting functions in geographically 
weighted regression models. Recently (21) introduced a 
Geographically Weighted Chinese Restaurant Process 
(gwCRP) to analyze the spatial heterogeneity of 
regression coefficients. This method simultaneously 
considers intra-cluster correlation and spatial clustering 

structure heterogeneity and estimates the number of 
clusters using a nonparametric Bayesian approach. While 
recent studies have explored the spatial heterogeneity of 
regression coefficients in count data models (22) and 
zero-inflated models (23), the spatial clustering of 
coefficients within survival models incorporating both 
zero-inflated and right-censoring remains an uncharted 
area of research. 

Here, we demonstrate the adaptability of the 
geographically weighted Chinese restaurant process 
(gwCRP) clustering method for zero-inflated and right-
censored survival models and show that compared to 
traditional CRP and k-means methods, gwCRP 
consistently estimates the number of clusters regarding 
distances while maintaining precise parameter estimation 
of each component of our two-part generalized linear 
regression model. To our knowledge, we are the first to 
introduce the spatial varying coefficients in the ZIDW 
regression model.  Finally,   we demonstrate how a Zero-
Inflated Discrete Weibull (ZIDW) model, incorporating 
covariates such as the husband's employment status, 
wife's financial autonomy, age gap, and spousal 
similarity, could best fit the data. By spatial analysis, we 
will reveal significant regional variations in the effects of 
these covariates on both the probability of early divorce 
and the duration of marriage when divorce occurs later. 
Our novel approach, combining survival analysis with 
spatial clustering, provides a more nuanced 
understanding of divorce than traditional CRP and k-
mean methods and offers valuable insights for targeted 
policy interventions. 

The remainder of the paper is organized as follows. 
Section 2 summarizes ZIDW regression models. Section 
3 defines the variability of SVC regression coefficients in 
ZIDW survival data and provides an overview of CRP 
and gwCRP methods. Section 4 presents the Bayesian 
analysis with a Gibbs sampling algorithm for clustering 
parameters of the ZIDW model with spatial variability of 
regression coefficients. Section 5 compares the existing 
methods in a simulation study. Then, numerical results 
on divorce data are presented in Section 6. 

 

Materials and Methods 
Let the random variable 𝑇  has a discrete Weibull 

distribution 𝑇 ∼ 𝐷𝑊(𝑞,𝛽)  with probability mass 
function 𝑓(𝑡) = 𝑃(𝑇 = 𝑡) = 𝑞௧ഁ − 𝑞(௧ାଵ)ഁ , 𝑡 = 0,1,2, … 
One uses the discrete Weibull regression model with 
some link functions of the parameters 𝑞 or 𝛽 to consider 
the effects of some covariates on 𝑇. To define a ZIDW 
regression model, let the survival time 𝑇  be a non-
negative random count variable with the probability mass 
function 
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𝑃(𝑇 = 𝑡 ∣ 𝑋,𝑍)= ቊ𝑝(𝑍) + (1 − 𝑝(𝑍))(1 − 𝑞(𝑋)), 𝑡 = 0(1 − 𝑝(𝑍)) ቀ𝑞(𝑋)௧ഁ − 𝑞(𝑋)(௧ାଵ)ഁቁ , 𝑡 = 1,2, … 

denoting by 𝑇 ∣ 𝑋,𝑍 ∼ ZIDW(𝑝(𝑍), 𝑞(𝑋),𝛽), where the 
parameters 𝑞 ≡ 𝑞(𝑋)  and 𝑝 ≡ 𝑝(𝑍)  depend on the 
covariates 𝑋௡×(௠భାଵ) = ൫1,𝑋ଵ, … ,𝑋௠భ൯  and 𝑍௡×(௠మାଵ) =  ൫1,𝑍ଵ, … ,𝑍௠మ൯,  respectively, through the 
link functions (24): log൫− log൫𝑞(𝑋)൯൯ = 𝑋ᇱ𝜶,  ⇒  𝑞 ≡ 𝑞(𝑋) = 𝑒ି௘೉ᇲ𝜶               (1)logit(𝑝(𝑍)) = 𝑍ᇱ𝜸,  ⇒  𝑝 ≡ 𝑝(𝑍) = 𝑒௓ᇲ𝜸1 + 𝑒௓ᇲఊ = ൫1 + 𝑒ି௓ᇲ𝜸൯ିଵ(2) 

where 𝛼 = ൫𝛼଴, … ,𝛼௠భ൯  and 𝜸 = ൫𝛾଴, … , 𝛾௠మ൯  are 
the vectors of regression coefficients. 
The ZIDW regression models assume that the effect of 
explanatory variables on the response variable is the 
same in different places. However, other conditions in 
each region may cause spatial heterogeneity. Here, we 
consider the spatial variability for all regression 
coefficients. Let 𝑇ℓ௜ ,  for 𝑖 = 1, … ,𝑛,  and ℓ = 1, … ,𝑛௜ 
denote the survival time for the case ℓ  at site 𝑠௜ =(𝑢௜ , 𝑣௜),𝑛௜ denotes the number of subjects at site 𝑠௜ , and 𝑋ℓ(𝑠௜),𝑍ℓ(𝑠௜)  are the vectors of covariates. Let 𝑇ℓ௜ ∣𝑋,𝑍 ∼ 𝑍𝐼𝐷𝑊(𝑝ℓ௜(𝑍), 𝑞ℓ௜(𝑋),𝛽), then the equations (1) 
and (2) considering the spatial variability of regression 
coefficients 𝛼ℓ௜ and 𝛾ℓ௜ will be as follows: 𝑝ℓ௜(𝑍) = 𝑒௓ℓ(௦೔)ఊ(௦೔)1 + 𝑒௓ℓ(௦೔)ఊ(௦೔) ,  𝑞ℓ௜(𝑋) = 𝑒ି௘೉ℓ൫ೞ೔൯ഀ൫ೞ೔൯ 

Where 𝛾(𝑠𝒊) = ቀ𝛾଴(𝑠௜), … , 𝛾௣(𝑠௜)ቁ  and 𝜶(𝑠௜) =ቀ𝛼଴(𝑠௜), … ,𝛼௣(𝑠௜)ቁ are the model components that can 
be estimated by fitting two separate models. So  

 
 

Zero-Inflated Discrete Weibull (CZIDW) model, if Tℓ୧ is 
the survival time of the ℓ-th unit and 𝐶ℓ௜  the censored 
from the right that is independent of 𝑇ℓ௜ ,  then for a 
censored unit, the only available information is 𝐶ℓ௜ < 𝑇ℓ௜. 
By defining 𝑌ℓ௜ = min(𝑇ℓ௜ ,𝐶ℓ௜),𝛿௜ℓ = 1 if 𝑇ℓ௜ ≥ 𝐶ℓ௜ and 𝐽ℓ௜ = 1,  if 𝑌ℓ௜ = 0,  we can divide all the data, 𝑫 =൛൫𝑇ℓ௜ , 𝛿ℓ௜ ,𝑋ℓ(𝑠௜)൯, 𝑖 = 1, … ,𝑛, ℓ = 1, … ,𝑛௜ൟ, as follows ቐ𝐽ℓ௜ = 1, 𝛿ℓ௜ = 0 𝑌ℓ௜ is zero and not right-censored 𝐽ℓ௜ = 0, 𝛿ℓ௜ = 0 𝑌ℓ௜ is non-zero and not right-censored 𝐽ℓ௜ = 0, 𝛿ℓ௜ = 1 𝑌ℓ௜ is non-zero and right-censored 

 

In this case, the likelihood of the CZIDW model can 
be defined as follows 𝐿(𝛽,𝜶, 𝛾 ∣∣ 𝑛,𝑌,𝑋,𝑍 ) = Π௜ୀଵ௡ Πℓୀଵ௡೔ ሾ𝐹ℓ௜ + (1 − 𝐹ℓ௜)(1 − 𝐺ℓ௜)ሿ௃ℓ೔(ଵିఋℓ೔) × ൤(1 − 𝐹ℓ௜) ൬𝐺ℓ௜௬೔ℓഁ − 𝐺ℓ௜(௬ℓ೔ାଵ)ഁ൰൨(ଵି௃ℓ೔)(ଵିఋℓ೔) ቂ1 − 𝐹ℓ௜ − (1 − 𝐹ℓ௜) ቀ1 − 𝐺ℓ௜஼ഁቁቃఋℓ೔    (3) 

where 𝐹ℓ௜ = ൫1 + 𝑒ି௓ℓ(௦೔)ఊ(௦೔)൯ିଵ and 𝐺ℓ௜ = 𝑒ି௘೉ℓ൫ೞ೔൯ഀ൫ೞ೔൯. 
 

1. Clustering of Model Coefficients 
For each particular location 𝑠௜ , 𝑖 = 1, … ,𝑛, we define 𝜽(𝑠௜) = (𝜶(𝑠௜)ୃ,𝜸(𝑠௜)ୃ)ୃ the collection of parameters. 

CRP assumes 𝑛  customers enter a Chinese restaurant 
with 
unlimited tables (5). In our setting, we assume that the 𝑛 
parameter vectors can be clustered into 𝑘  groups, i.e., 𝜽(𝑠௜) = 𝜽ఒ೔ ∈ ሼ𝜽ଵ, … ,𝜽௞ሽ,  where 𝜆௜ ∈ {1, … ,𝑘},  with 𝑘 
being the total number of clusters. One popular way to 
model the joint distribution of 𝝀 = (𝜆ଵ, … , 𝜆௞)  is the 
CRP, which is an essential representation of the Dirichlet 
process and defines a series of conditional distributions 
as 

𝑃(𝜆௜ = 𝑐 ∣ 𝝀ି௜) ∝ ൞ 𝑛௜,௖𝛼∗ + 𝑖 − 1  existing cluster 𝛼∗𝛼∗ + 𝑖 − 1  new cluster 
(4) 

where 𝝀ି௜ = (𝜆ଵ, … , 𝜆௜ିଵ) and 𝑛௜,௖  is the number of 
elements in cluster 𝑐 , and 𝛼∗  is the concentration 
parameter of the underlying Dirichlet process. Equation 
(4) expresses the conditional probability of placing the 𝑖௧௛  unit in the 𝑐௧௛  cluster, given that the 𝑖 − 1  of the 
previous unit is clustered. (15,20) introduced the 
"geographically weighted Chinese Restaurant Process" 
(gwCRP) clustering method based on the weight 
functions of distances. So in equation (3), we have 𝑛௜,௖ =∑௝ୀଵ௜ିଵ  𝑤௜௝𝐼൫𝜆௝ = 𝑐൯,  where 𝑤௜௝  s are elements of the 
weight matrix 𝑊 . Spatial weights are accommodated 
using a Stochastic Neighborhood Conditional 
Autoregressive (SNCAR) model (25), extending the 
conventional Conditional Autoregressive (CAR) model 
(26) to account for areal data.  (27) defined a weight 
matrix based on graph distance. Assume that the whole 
area we are considering is a graph 𝐴 with a set of vertices 𝑉(𝐴) = {𝑣ଵ, … ,𝑣௡}  and a set of edges 𝐸(𝐴) ={𝑒ଵ, … , 𝑒௠}  then the matrix elements are 𝑤௜௝ = 1  if 𝑑௩೔௩ೕ ≤ 1, otherwise 𝑤௜௝ = exp ൬− ௗೡ೔ೡೕ௛ ൰ where 𝑑௩೔௩ೕ= ൜|𝑉(𝑒)|,  if 𝑒 is the shortest path connecting 𝑣௜ and 𝑣௝∞,  if 𝑣௜ and 𝑣௝ are not connected  

is the distance graph between 𝐴௜ and 𝐴௝ , and ℎ is the 
bandwidth (28). Moreover, |𝑉(𝑒)| is the cardinality of 
the 𝑉(𝑒)  set, where 𝑒  is the shortest path to the two 
vertices. It is evident that when ℎ = 0,  the suggested 
gwCRP technique is identical to the traditional CRP 
technique. In this particular situation, the CRP technique 
tends to cluster excessively. Another significant pattern 
is that as ℎ  rises, the estimated number of clusters 
decreases before rising again. Simultaneously, the Rand 
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index demonstrates an initial increase followed by a 
decrease as ℎ  becomes excessively large. This pattern 
emerges because, starting from ℎ = 0 , the gwCRP 
technique effectively begins to capture the inherent 
spatial relationships in the data. Nevertheless, as ℎ → ∞, 
the geographic weights 𝑤௜௝  for spatial-discontinuous 
areas decrease to zero. As a result, only neighboring areas 
are categorized within the identical cluster, bringing back 
the problem of excessive clustering. 

 
2. Bayesian Analysis 

Suppose for the CZIDW model for the set of 
parameters Θ = (𝜶,𝜸,𝝅, 𝑘),  we have separated the 
model parameters by to 𝑘 ≤ 𝑛. In that case, we expect 
that each member of the parameter space 𝜽 = (𝜃ଵ, … , 𝜃௡) 
where 𝜽(𝑠௜) = 𝜽ఒ೔ is equal to one of the k separate values 
of the separation set 𝜽ଵ∗ , … ,𝜽௄∗∗  If 𝐾∗ denotes the number 
of clusters excluding the 𝑖 -th observation 𝜽ଵ, … ,𝜽௜ିଵ . 
Thus, if 𝐺଴  is a continuous distribution Polya Urn 
scheme, the conditional distribution of 𝜃௜  given 𝜽ି௜ ={𝜃ଵ, … , 𝜃௜ିଵ,𝜃௜ାଵ, … ,𝜃௡} will be as follows: 𝑃൫𝜃௜ ∣ 𝜽(ି௜),𝛼∗,𝐺଴൯
∝ ⎩⎨
⎧ 1𝛼∗ + 𝑖 − 1∑௞∗ୀଵ௄∗  ∑௝ୀଵ௜ିଵ  𝑤௜௝∗ 𝐼൫𝜽൫𝑠௝൯ = 𝜽௞∗൯𝛿𝜽ೖ∗ ൫𝜽(𝑠௜)൯  existing cluster 𝛼∗𝐺଴൫𝜽(𝑠௜)൯𝛼∗ + 𝑖 − 1  new cluster. 

 
Where 𝛿(⋅) is the indicator function. Then by defining 
Prior hierarchically as follows: 𝑇 ∣ 𝑋,𝑍,𝑈 ∼ 𝑍𝐼𝐷𝑊൫𝑝ఒ೔(𝑍),𝑞ఒ೔(𝑋),𝛽൯,  𝑖 = 1, … ,𝑛,𝜶௛ ∼  N(𝟎,Σఈ),  𝛾௛ ∼  N൫𝟎,Σఊ൯,  ℎ = 1, … ,𝑘,𝐺଴(𝛼, 𝛾) ∝ 𝑃(𝛼)𝑃(𝛾) = 𝑀𝑉𝑁(0,Σ଴),𝜆௜ ∣ 𝝅, 𝑘 ∼ Multinomial(𝜋ଵ,⋯ ,𝜋௞),𝝅 ∼ gwCRP(𝛼∗,ℎ),  𝑘 ∼ 𝑃(⋅).

 

For data 𝐷 = (𝑌,𝑋,𝑍, 𝐽, 𝛿), with 𝐿(Θ ∣ 𝐷), our goal 
is to sample from the posterior distribution of the 
parameters 𝑘,𝝀 = (𝜆ଵ, … , 𝜆௡) ∈ {1, … ,𝑘},𝜶 =(𝜶ଵ, … ,𝜶௞),  and 𝛾 = (𝛾ଵ, … , 𝛾௞) . In nonparametric 
Bayesian models with the prior Dirichlet Processes (8), 
due to the unavailability of the analytical form for the 
posterior distribution of Θ,  we employ the Gibbs 
sampling (27) to repeatedly draw values for each 𝜃௜ from 
its conditional distribution given both the data and the 𝜃௝ 
for 𝑗 ≠ 𝑖 . Then, we combine this result with the 
likelihood and derive the full conditional distribution for 𝜃௜ for use in Gibbs sampling: 𝜃௜ ∣ 𝜃ି௜ ,𝑌 ∼ 𝑄ൣ∑௜ஷ௥ 𝐿(𝜃௜ ∣ 𝑛,𝑌,𝑋ଵ,𝑋ଶ)𝛿ఏೝ(𝜃௜)+ 𝛼∗൫∫ 𝐿(𝜃௜∣ 𝑛,𝑌,𝑋ଵ,𝑋ଶ)𝑑𝐺଴(𝜃)൯𝐻௜(𝜃௜)൧, 
Where Q is the normalizer constant, 𝐻௜(𝜃)  is the 
posterior distribution of 𝜃  obtained by combining 
information from the prior distribution 𝐺଴ and observed 
data 𝐷௜. 

3. Cluster Configurations 
Using Dahl's method introduced by (28) allows for 

obtaining posterior estimates of cluster memberships 𝜆ଵ, … , 𝜆௡  and other model parameters 𝛾  and 𝛼 . This 
method selects an "average" clustering using all posterior 
clusterings in the three below steps: 

Step 1. Define membership matrices 𝒜(௕) =൫𝒜(௕)(𝑖, 𝑗)൯௜,௝∈{ଵ,…,௡} = ቀ𝐼൫𝜆௜(௕) = 𝜆௝(௕)൯ቁ௡×௡,  where 𝑏 =1, … ,𝐵 is the index for the retained MCMC draws after 
burn-in, and 𝐼(⋅) is the indicator function. 

Step 2. Calculate the element-wise mean of the 
membership matrices over MCMC 
draws 𝒜 = ଵ஻ ∑௕ୀଵ஻  𝒜(௕). 

Step 3. Identify the most representative posterior 𝒜 
draw based on minimizing the element-wise Euclidean 
distance ∑௜ୀଵ௡  ∑௝ୀଵ௡  ൫𝒜(௕)(𝑖, 𝑗) −𝒜(𝑖, 𝑗)൯ଶ  among the 
retained 𝑏 = 1, … ,𝐵 posterior draws. 

The algorithm accuracy can be evaluated using the 
Rand index (29) for comparing cluster configurations 
obtained with different methods to the actual clusters. 
The Rand index computes a similarity measure between 
two clusterings by considering all sample pairs and 
counting pairs assigned in the same or different clusters 
in the predicted and true clusterings. This index allows us 
to measure the similarity between different clustering 
results, providing valuable insights into the match ability 
of these configurations. To measure the agreement 
between 𝝀(஼ಽೄ) and the true clustering configuration. The 
Rand index of two partitions, 𝒮ଵ = {𝑈ଵ, … ,𝑈௥} and 𝒮ଶ ={𝑉ଵ, … ,𝑉௦},  of a set of n objects 𝑆 = {𝑜ଵ, … , 𝑜௡},  is 
defined as 𝑅𝐼 = 𝑎 + 𝑏𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑎 + 𝑏(௡ଶ)  

where 𝑎 represents the number of pairs of objects in 
set 𝑆  that are in the same cluster in 𝒮ଵ  and the same 
cluster in 𝒮ଶ,𝑏 represents the number of pairs of objects 
in set 𝑆 that are in different clusters in 𝒮ଵ and different 
clusters in 𝒮ଶ, c represents the number of pairs of objects 
in set 𝑆 that are in the same cluster in 𝒮ଵ and different 
clusters in 𝒮ଶ  and 𝑑  represents the number of pairs of 
objects in set 𝑆 that are in different clusters in 𝒮ଵ and the 
same cluster in 𝒮ଶ. The Rand index varies from 0 to 1, 
where a higher value signifies more excellent agreement 
between the two partitions. When the partitions are in 
complete agreement, the Rand index equals 1. 

For model selection, the decaying effect parameter ℎ 
for geographical weights needs to be tuned, and we use 
the logarithm of the Pseudo-Marginal Likelihood (30) 
based on conditional predictive ordinate to select ℎ. The 
LPML is defined as LPML  ∑௜ୀଵே  log (CPO௜),  where CPO௜ is the 𝑖 − 𝑡ℎ𝑒 conditional predictive ordinate. The 
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Monte Carlo estimate of the CPO, within the Bayesian 
framework, can be obtained as CPOప෣ିଵ =ଵ஻ ∑௕ୀଵ஻   ଵ௙ቀ஽೔∣𝜽ഊ೔್ ቁ, where 𝐵  is the total number of Monte 

Carlo iterations, 𝜽ఒ೔௕  is the 𝑏 − 𝑡ℎ𝑒 posterior sample, and 𝑓(⋅) is the likelihood function defined in (3). An estimate 
of the LPML can subsequently be calculated as LPML෣ =∑௜ୀଵே  log ൫CPO෢ ௜൯ . A model with a more considerable 
LPML value is preferred. 

 
4. Simulation Study 

A simulation study compares the 𝐾-means and the 
CRP clustering methods with the proposed gwCRP 
clustering for zero-inflated discrete time-to-event data 
with spatially varying covariates. The study will examine 
two balanced and imbalanced scenarios for data 
geographical clustering patterns. Under the balanced 
scenario, each group contains an equal number of units. 
Under the imbalanced scenario, the group sizes differ, 
and we have three to four clusters over two scenarios. The 
number of sites is set to the number of provinces in Iran, 
i.e., 31. We then generated a sample of size 𝑛௜ = 5 for 
each province with center 𝑠௜ ,  so the total number of 
observations is 𝑛 = 155. We assumed 𝑋 is equivalent to 𝑍  and a similar set of covariates affect 𝑞  and 𝑝 
parameters. Then, we generated spatial covariates 𝑋ℓ(𝑠௜) 
from Normal distribution 𝑁(0,1) . The temporal 
component pdf for the ℓ௧௛, ℓ = 1, … ,𝑛௜  observation in 
province 𝑠௜ ,  follows the distribution 𝑇ℓ௜ ∣ 𝑋ℓ௜ ∼ZIDW(𝑝(𝑋ℓ௜),𝑞(𝑋ℓ௜),𝛽), with a fixed value of 𝛽 = 1. 2. 
So, two related responses were controlled under two 
generalized linear models, logit(𝑝) and log (−log (𝑞)). 
We set initial values for model coefficient parameter 𝛼real , (−2,0.5), (1.5,0.6), (2.1,−0.4), (1.1,0.3), and for 𝛾real , (0.95,1.1), (−0.4,0.6), (0.5,0.8), (1,1.5) 
corresponding to each of the 4 clusters, respectively. 
Then, to investigate the right censoring, we considered 
the quantile 93% of data as the censored point 𝐶௜ℓ and as 
a threshold to cut the simulated sample, such that all 
values 𝑦ℓ௜ ≥ 𝐶ℓ௜ were re-valued to be equal to 𝐶ℓ௜. Also, 
if 𝑇ℓ௜ is not greater than the generated censored time 𝐶௜ℓ, 
we set 𝛿ℓ௜ = 1, otherwise, it is considered zero. To add a 
zero-inflated feature for each response, first, a random 
vector from a uniform distribution 𝑈 = (𝑢ଵ, … ,𝑢௡) ∼𝑈(0,1) is generated if 𝑢ℓ௜ ≤ 𝑝ℓ௜, set 𝐽ℓ௜ = 0 and 𝑌ℓ௜ = 0 

otherwise, we considered 𝐽ℓ௜ = 1 and generated 𝑌ℓ௜ from 
DW distribution. We generated the outcome data under 
the following two generalized linear models logit(𝑝௜ℓ) = 𝛾଴ℓ(𝑠௜) + 𝛾ଵℓ𝑥ℓ,                       (5)  log(− log(𝑞௜ℓ)) = 𝛼଴ℓ(𝑠௜) + 𝛼ଵℓ(𝑠௜)𝑥ℓ      (6) 

We used Normal prior distributions 𝑁(0,𝜎ఈଶ)  for 
regression coefficients 𝛼଴  and 𝛼ଵ,  with precision 
parameters, 𝜎ఈି ଶ ∼ 𝑇(10ିହ, 10ିହ). Similarly, for 𝛾଴ and 𝛾ଵ , the Normal priors 𝑁൫0,𝜎ఊଶ൯,  are considered, 
respectively, with 𝜎ఊି ଶ ∼ 𝑇(10ିହ, 10ିହ) . To assess 
gwCRP's clustering performance across a range of ℎ 
values, we will evaluate it from 1 to 3 in a grid of 0.2. 
The optimal value of ℎ will be determined using LPML 
(Table 1). We fixed the concentration parameter 𝛼∗ = 1. 
We provide information on estimating the number of 
clusters and the compatibility of clustering 
configurations. The maximum distance in the spatial 
structure of the 31 regions is 10k. m,  so yielding an 
optimal bandwidth ൫ℎopt = 2.6൯  induces a weighting 
scheme that ensures relative weights are assigned 
appropriately. Each replicate involves running an 
MCMC chain of length 10,000 with a thin of one and 
burn-in of 2,000 samples.  

 

Results 
After meticulously examining the MCMC chain 

length, we run our proposed algorithm in 100 separate 
data replicates. A vital part of this process is obtaining 
100 RI values, which we then compare with the real 
values to validate our results. We calculated the mean in 
the 100 replicates and the posterior means of the 
parameters. Each replicate runs a total of MCMC 
iterations. We calculated the cover rate for each scenario, 
which equals the percentage of replicates in which our 
proposed algorithm accurately recovers the number of 
clusters. In our gwCRP model for scenario 2, we observe 
that the correct number of clusters is inferred in at least 
25 out of 100 instances. Specifically, for model 1 under 
scenario 2, the final estimate of the number of clusters 
consistently reaches five across 90 replicates. However, 
in scenario 1, 75 cases underestimate the number of 
clusters by 10. We also provide a detailed comparison of 
our method with the 𝐾 -means Algorithm. As the 𝐾 -
means algorithm cannot infer the number of clusters, 

 

Table 1. Comparison of LPML for different ℎ values in both scenarios 
 h-values 
Scenario 1 1.6 2 2.6 3 
Balanced -22402 -155942 -12658 -8360 -9653 
Imbalanced -20188 -21070 -13181 -5133 -6671 
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such values must be pre-specified. We supplied them 
with the number of clusters inferred by our method in 
each replicate, providing a comprehensive understanding 
of their differences. We also present the histogram of the 
final number of clusters inferred for each cluster scenario 
and data generation model combination in (Figure 1). 

As the Gibbs sampler does not directly yield the 
posterior distribution of 𝑘, we employed Dahl's method 
to estimate it. The RIs for each scenario and data 
generation model are reported in Table 2. We also 
thoroughly compared our method to the K means 
algorithm. As the 𝐾-means algorithm cannot infer the 
number of clusters, such values need to be pre-specified, 
and we supplied them with the number of clusters 
inferred by our method in each replicate. As the Gibbs 
sampler does not directly yield the posterior distribution 
of 𝑘, we employed Dahl's method to estimate it. Table 2 
demonstrates the significant improvement in 
computational efficiency offered by our proposed 
gwCRP model with vectorization for both scenarios. This 
enhancement, coupled with the model's highest RI, 
underscores its innovative approach and high accuracy in 
clustering. The 𝐾 -means model, while having an RI 
greater than 0.6, does not match the performance of our 
proposed model. Furthermore, using the optimal value of 

ℎ  determined by LPML has resulted in excellent 
clustering performance. In addition to assessing 
clustering performance, we also evaluate the estimation 
performance of covariate coefficients. 

Let 𝝀 = (𝜆ଵ, … , 𝜆௡)  be the actual clustering label 
vector, 𝜽௥(𝑠௜)  be the true parameter value of cluster 𝑗, 𝜅௥ = ∑௜ୀଵଷଵ  𝐼(𝜆௜ = 𝑟)  be the number of provinces in 
cluster 𝑟  (where 𝑟 = 1, … ,𝑘  and ∑௥ୀଵ௞  𝜅௥ = 𝑛). For the 
simulated dataset 𝑡, let 𝜽෡(௧)(𝑠௜) be the estimate of Dahl's 
method at location 𝑠௜. Then, the average of mean squared 
error (AMSE) is calculated as AMSE = 1𝑘෍  ௞

௥ୀଵ
1𝜅௥ ෍  ௜∣ఒ೔ୀ௥

1100෍ ଵ଴଴
௕ୀଵ ቀ𝜽෡(௕)(𝑠௜)− 𝜽௥(𝑠௜)ቁଶ 

Which calculates mean squared errors for each cluster 
first and then averages across clusters. Table 3 presents 
the AMSE results for parameter estimation of gwCRP 
using optimal values of ℎ  in two different scenarios. 
Table 3 presents the AMSE results for parameter 
estimation of gwCRP using optimal values of ℎ in two 
different scenarios. Generally, the 𝐾-mean method has a 
higher AMSE than other methods. Our research 
Identifies a pattern in clustering performance, showing 
that gwCRP exhibits a lower AMSE than traditional 

 
(Balanced Scenario)                                               (Imbalanced Scenario) 

Figure 1. Histogram of estimates of 𝑘 under h-optimal and box plot of Rand index under different ℎ and LPML selection. 

Table 2.  𝑅𝐼 indexes for different clustering methods (ℎ௢𝑝𝑡 = 2.6) 
Type CRP 𝑲-means gwCRP 
Balanced 0.8931 0.6865 0.9344 
Imbalanced 0.8122 0.7624 0.9581 
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CRP. This result indicates the importance of selecting the 
optimal ℎ based on LPML for accurate estimation. The 
AMSE fluctuates more in the balanced scenario than the 
imbalanced scenario;in this scenario, AMSE values are 
lower overall due to being mis-clustered.  

In conclusion, our simulation studies clearly show 
that the gwCRP models outperform the standard CRP 
models in terms of clustering accuracy and parameter 
estimation. Our proposed model selection criterion, the 
LPML, effectively identifies the optimal ℎ  value, 
yielding superior results for clustering and parameter 
estimation tasks. These conclusions should convince the 
audience of the strength of our research findings. 

The computational costs of our different clustering 
methods vary significantly. K-means has a time 
complexity of 37,200 units and is faster when the number 
of clusters is pre-defined, but it cannot automatically 
determine the optimal number of clusters. The Chinese 
Restaurant Process (CRP) has a more complex time 
complexity of around 24,025 units due to its iterative 
evaluation of potential cluster assignments, making it less 
efficient for larger datasets. In contrast, the proposed 
method, gwCRP, utilizes vectorization and optimized 
techniques, achieving a time complexity of 
approximately 930 units per iteration, leading to faster 
convergence. Additionally, the use of the LPML criterion 

helps identify the optimal value for parameter (h), further 
enhancing efficiency. In conclusion, while K-means is 
computationally efficient for fixed clusters but lacks 
flexibility, CRP is more adaptable but computationally 
intensive. The gwCRP method offers a balance of robust 
clustering performance and improved efficiency. 
Simulation studies confirm that gwCRP outperforms 
standard CRP in clustering accuracy and parameter 
estimation, with carefully designed parameters reflecting 
realistic scenarios in geographical data, highlighting the 
strengths of the proposed research. 

 
1. Analysis of Divorce Data 

Understanding the dissolution of marriages is crucial 
in addressing the social issue of divorce through Survival 
analysis. Recent studies show a worrying inflation of 
divorce in the first five years of marriage. To further 
investigate, we have partitioned the time axis into six 5-
year periods, [0,5), [5,10), … , [30,35) . The starting 
points of these intervals, namely 0,1, … ,6,  define the 
discrete survival times. Fifty couples who had 
experienced one or more marriages between 1989 and 
2019 were selected from each of Iran's 31 provinces. The 
final dataset comprised 1,550 couples, of which 874 had 
experienced divorce. Other couples who did not 
experience divorce by the end of 2019 were considered 

Table 3. Performance of parameter estimates under the two true cluster scenarios with AMSE (h = 2.6) 
 Balanced  Imbalanced 

Method 𝛼଴ 𝛼ଵ 𝛾଴ 𝛾ଵ   𝛼଴ 𝛼ଵ 𝛾଴ 𝛾ଵ 
gwCRP 0.0115 0.0266 0.0029 0.0350  0.0023 0.0023 0.0143 0.0009 
CRP 0.0268 0.0214 0.1059 0.0901  0.0137 0.0319 0.0269 0.0401 
K-mean 0.1810 0.0815 0.0297 0.3112  0.0997 0.1069 0.1018 0.1704 

 

 
Figure 2.  Histogram and Zero-inflated distributions of marriage duration among couples. 
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right-censored data. Approximately %36  of divorces 
occurred within the initial five years of marriage. 
Consequently, it is imperative to employ censored zero-
inflated discrete distributions to model the data. The 
dispersion index represents the ratio of the observed 
variance from the data to the observed mean. In this case, 
the dispersion index equals 1.69, indicating over-
dispersion in the data.  Three distributions, namely Zero-
Inflated Discrete Weibull (ZIDW), zero-inflated negative 
Binomial, and zero-inflated Poisson, have been fitted to 
the time data to reach the divorce event. Based on the 
observation in (Figure 2), it is evident that the ZIDW is 
better suited for these data than the other two 
distributions. 

Due to the multidimensional nature of the divorce 
issue and the existence of various economic, social, 
cultural, demographic, etc. factors influencing the risk of 
divorce during the marriage period and also the 
probability of divorce less than five years, the 
demographic information of people such as the age 
difference of spouses,  employment status are included in 
the CZIDW model as auxiliary variables according to 
(Table 4). In this study, we also examine the effect of 
spousal similarity. 

To fit the distribution 𝑇ℓ௜ ∣ 𝑋,𝑍(𝑠௜) ∼𝑍𝐼𝐷𝑊൫𝑝ℓ௜൫𝑋(𝑠௜)൯, 𝑞ℓ௜൫𝑋(𝑠௜)൯,𝛽൯ to the data, first, it is 
necessary to build the 5 × 𝑛  scenario matrix 𝑋 =(1,𝑋ଵ, … ,𝑋ସ),  including the covariates "Husband's 
employment status" 𝑋ଵ, "Similarity" 𝑋ଶ, "Age gap" 𝑋ଷ, 
and "Wife's Financial Autonomy" 𝑋ସ. Then we have: log (−log (𝑞௜ℓ) = 𝛼଴ℓ(𝑠௜) + ∑  ସ௠ୀଵ  𝛼௠ℓ(𝑠௜)𝑥௠ℓ(𝑠௜)    
(7) logit(𝑝௜ℓ) = 𝛾଴ℓ(𝑠௜) + ∑  ସ௠ୀଵ  𝛾௠ℓ(𝑠௜)𝑥௠ℓ(𝑠௜) .          
(8) 

We first fit the two-part ZIDW model for each area 
using the covariates selected. Before being visualized, 
the covariates are adjusted to have a mean of 0 and a 

standard deviation of 1. According to the geographical 
patterns specified in (Figure 2-5) for each of the four 
covariates in both models, the probability of divorce in 
less than five years (zeroing the marriage survival time) 
and the duration of cohabitation provided that the couple 
has lived together for at least five years (non-zero count 
values), emphasizes the necessity of using SVC model. 
Also, it is seen that some provinces have similar 
characteristics, not limited to only adjacent counties, 
indicating possibilities of globally discontiguous 
clusters. In more detail, (Figure 3) shows significant 
spatial variation in divorce rates across Iranian provinces, 
strongly influenced by the husband's employment status 
(temporary, permanent, or unemployed). This variation 
reflects substantial socioeconomic disparities, including 
unemployment rates, job security, access to social 
services, and cultural and religious factors. These factors 
affect the relationship between a husband's employment 
and divorce probability, leading to stronger associations 
in some provinces than others. This is demonstrated by 
the varying regression coefficients for the husband's 
employment status across the country, as mapped in 
(Figure 3) for both models (6 and 7). 

Additionally, according to spatial disparities shown 
in (Figure 4), the regression coefficient for both models 
in (7) and (8) for the wife's financial autonomy covariate 
in Iran is expected to vary spatially due to significant 
regional differences in socioeconomic development and 
cultural norms. More developed provinces with higher 
female education and employment may show weaker 
links between financial autonomy and divorce, while less 
developed, more conservative regions might exhibit 
stronger negative correlations, reflecting societal 
pressures and differing views on gender roles and 
responsibilities. 

Moreover,  As shown in (Figure 5) the impact of 
spousal similarity (education, socioeconomic status, 

Table 4. Demographic characteristics. 
Variable Group NumberPercent 

Husband's employment status 

Fixed 514 8.3 
Temporary 907 58.5 

Unemployed 129 33.2 

Wife's Financial Autonomy 
Independent 1128 72.8 
Dependent 422 27.2 

Age gap 
Less than fifteen years 1128 72.8 
More than fifteen years 422 27.2 

Similarity No 1283 82.8 
Yes 267 17.2 
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religious observance, ethnicity, and attitudes/personality) 
on time until the divorce event occurs in Iran varies 
significantly across provinces. For example, educational 
similarity is greater in provinces with higher literacy 
rates, while socioeconomic disparity's negative impact is 
stronger in provinces with high-income inequality. 
Similarly, religious similarity matters more in religiously 
conservative provinces, and ethnic similarity is more 
impactful in ethnically diverse regions.  

Finally, we visualize how the impact of age 
differences in couples varies significantly across 
provinces of Iran (Figure 6). Societies with traditional 

values or limited opportunities may show less adverse 
effects from larger age gaps than those with more liberal 
views or better opportunities.  

We run 10,000 MCMC iterations, dropping the first 
2000 as burn-in. We retained every fifth observation to 
reduce autocorrelation. We adopted a non-informative 
prior for the bandwidth and estimated the optimal 
bandwidth by the LPML method, choosing an optimal 
value of ℎ at 4.2. The maximum distance between any 
two points is 10. The result from Dahl's method for the 
gwCRP model suggests that all couples are to be 
classified into five groups. However, our proposed 

 
(a)                                                                      (b) 

Figure 3. The spatial varying covariate effects of Husband's employment on the two-part ZIDW model of provinces in Iran a:the 
probability of marriage survival becoming zero, b:the duration of time to divorce. 

 
(a)                                                                           (b) 

Figure 4. The spatial varying covariate effects of Wife's Financial Autonomy on the two-part ZIDW model of provinces in Iran 
a:the probability of marriage survival becoming zero, b:the duration of time to divorce. 
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gwCRP model, with its unique features, presents a 
different perspective. The sizes of the five groups in our 
model are7,9,4,6 and 5, respectively. The arrangement of 
these cluster assignments is based on Dahl's method, and 
the mode is depicted in (Figure 7), which illustrates their 
spatial distribution.  

From (Figure 7), our gwCRP approach effectively 
identifies spatially connected and disconnected clusters. 
Provinces in the "light green" cluster exhibit spatial 
contiguity, and provinces in the "dark green" cluster 
display spatial discontinuity. Several interesting 

observations can be made from (Figure 6 and Table 5): 
1. WestAzarbaijan, Kermanshah, Ilam, Khuzestan, 

Isfahan, Qom, Semnan, Khorasan North, Sistan, and 
Baluchestan all four covariates have moderate hazard 
effects compared with other counties. 

2. East Azarbaijan, Golestan, Bushehr, Hormozgan, 
Kohgiluyeh, Buyer Ahmad, Chahar Mahall, and 
Bakhtiari starkly contrast in risk effects. Husband's 
employment status demonstrates significantly higher risk 
effects than Wife's Financial Autonomy status. 

3. North Khorasan, Razavi Khorasan, Yazd, Gilan, 

 
(a)                                                                           (b) 

Figure 5. The spatial varying covariate effects of Similarity on the two-part ZIDW model of provinces in Iran a:the probability of 
marriage survival becoming zero, b:the duration of time to divorce. 

 
(a)                                                               (b) 

Figure 6. The spatial varying covariate effects of the Age gap on the two-part ZIDW model of provinces in Iran a:the probability 
of marriage survival becoming zero, b:the duration of time to divorce. 
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Ghazvin, Hamedan, and Lorestan are similar and have 
the highest risk effects in both model parts. 

4. Mazandaran, Tehran, Kerman, and Fars:The 
spouses' Age differences have a negative risk effect in the 
model of non-zero count values and a positive effect in 
the probability of survival time becoming zero. The 
husband's employment has the most impact compared to 
other provinces. 

5. Ardebil, Kordestan, Markazi, Alborz:The Wife's 
Financial Autonomy has the least hazard on the average 
duration of cohabitation, provided that the couple has 
lived together for at least 5 years. 

 Table 5 shows that the Bayes estimates of our spatial 
varying regression covariates coefficients through the 
gwCRP approach are quite different across different 
clusters.  αෝ, and γො   are respectively the estimated regression 
coefficients for the models (7) and (8) in each cluster. 
They represent the effect of predictor variables 
(Husband's employment status, Wife's Financial 
Autonomy, Age gap, Similarity) on the duration of 
cohabitation provided that the couple has lived together 
for at least five years, within each cluster. For example, 

in Cluster 1, the estimated coefficient for Husband's 
employment status is 0.135. This means, that within 
Cluster 1, a one-unit increase in this covariate is 
associated with a 0.135 unit increase in c-log-log(q) in 
(1), holding all other variables constant. The intercept 𝛼଴ෞ 
represents the value of c-log-log(q) when all predictor 
variables are zero within that cluster. Also, in this cluster, 
the coefficient  𝛾ොଵ  is 0.975 for the same covariate 
Husband's employment status in the logit model (8), 
suggesting a positive relationship between the Husband's 
employment status and the probability of divorce in less 
than five years represented by p. The effect is more 
substantial here than in the c-log-log model. 

Finally, to show that our proposed clustering method, 
gwCRP,  performs better than the two methods, 
traditional CRP and K-mean, in clustering regression 
coefficients in models 7 and 8 and determine which 
method yields estimation that best suits the data, the 
LPML values are calculated. As a more considerable 
LPML value indicates a better fit, we base our conclusion 
on the gwCRP results (Table 6). 

It can be seen in (Figure 8) that the traditional 𝐾-
mean method, high dimensional supervised 

 
Figure 7. Clustering by gwCRP for the mean of estimated coefficients of the model 

 
Table 5. Dahl's method estimates regression coefficients by gwCR 

Cluster 𝜶𝟎ෞ  𝜶𝟏ෞ  𝜶𝟐ෞ  𝜶𝟑ෞ  𝜶𝟒ෞ  𝜸ෝ𝟎 𝜸ෝ𝟏 𝜸ෝ𝟐 𝜸ෝ𝟑 𝜸ෝ𝟒 
1 0.216 0.135 0.535 1.419 1.063 1.052 0.975 0.988 0.999 1.1103 
2 2.492 0.364 0.785 1.668 1.110 0.965 0.981 0.065 1.000 0.3042 
3 0.304 0.066 0.428 1.056 1.066 1.013 0.936 0.072 0.152 0.2587 
4 1.975 -0.280 0.578 2.011 1.197 -0.259 0.753 -0.588, -1.633 1.089 
5 -0.801 0.135 0.047 -0.441 0.583 -0.417 1.539 2.444 -0.821 0.876 
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classification, and clustering, categorizes the provinces 
into 8 clusters, which leads to over-clustering. 

To determine the optimal number of clusters (k), the 
Elbow method is used in k-means clustering, an 
empirical approach. This method is based on examining 
a graph that shows the value of the Within-Cluster Sum 
of Squares (WCSS) in terms of the number of clusters. 
WCSS is the sum of the squares of the distances of each 
data point to the center of its corresponding cluster. In 
(Figure 9), the horizontal axis represents the number of 
clusters (k), and the vertical axis represents WCSS. In 
this graph, the value of WCSS usually decreases as k 
increases. This decrease is significantly rapid at first, but 
after reaching a certain point (number 8), this decrease 
loses its speed and the downward trend becomes slower. 
This point, which resembles an elbow, indicates the 
optimal number of clusters.  

Also, Comparing the clustering results using the 
traditional CRP method shown in (Figure 10) with the 
proposed method, we see that our proposed method 
successfully detects both spatially continuous clusters 
and discontinuous clusters simultaneously, however in 
the traditional CRP clustering method, neighboring 
provinces are more likely to be in the same cluster. 

 

Discussion 
In the present study, we propose an innovative 

Bayesian clustered coefficients regression model that 
employs a gwCRP to capture the spatial homogeneity of 
the regression coefficient proficiently. Our gwCRP 
models effectively address the intricate challenges 
associated with spatially varying coefficients in datasets 
characterized by right censoring and zero inflation. 
Through a combination of theoretical foundations and 
empirical evaluations, we provide compelling evidence 
that our methodologies yield precise parameter estimates 
within the ZIDW model while adeptly identifying the 
number of clusters and their configurations, even amidst 
varying proportions of zero counts. Furthermore, a 
comparative analysis with established clustering 
methodologies, such as K-means and traditional Chinese 
restaurant processes, illustrates that our approach 
achieves superior clustering concordance without 
additional tuning parameters, as indicated by higher Rand 
indexes, lower average mean squared error (AMSE), and 
improved log pseudo-marginal likelihood (LPML). 
Extensive simulation results are carried out using R 
version 4.3.3., to show that our proposed method has 
better clustering performance than the others.  No issues 
with likelihood calculation were encountered in the 
simulations or the application to Iranian divorce data, 
however, the existence of two indicator functions often 
leads to extremely small likelihood functions, 
complicating the modeling process and requiring careful 

Table 6. LPML values for different methods in modeling divorce data 
Method gwCRP CRP K-mean 
LPML -367700.24 -406588.20 -416597.30 

 

 
(a)                                                                           (b) 

Figure 8. Clustering by the k-mean with 8 clusters for the mean of a:�̂� and b:�̂� 
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consideration. While the discrete Weibull distribution 
proved beneficial for simulation data generation, using 
two-part regression models increased computational 
demands due to high-dimensional parameter spaces, 
resulting in extended convergence times. Furthermore, 
spatial heterogeneity and the inherent complexity of 
Bayesian hierarchical models contributed to substantial 
computational costs, particularly when analyzing the 
Iranian divorce dataset. Despite these computational 
challenges, our gwCRP model provides a robust and 
superior approach for analyzing spatially varying 
coefficients in complex datasets. 

There are several possible directions for further 

investigation. The current model needs to be adapted to 
handle other related data (e.g., number of events) and 
longitudinal data (repeated measurements over time). 
Additionally, in this paper, our posterior sampling is 
based on the Chinese restaurant process, allowing for the 
inference of the number of clusters based on the unique 
latent cluster labels. To enhance the model, we suggest 
using a Mixed Finite Mixture (MFM) prior, allowing for 
the joint estimation of both regression coefficients and 
the probabilities of zero inflation (23) along with their 
associated clustering information. Finally, research is 
needed to improve computational efficiency, particularly 
for handling high-dimensional and sparse datasets, which 

 
Figure 9.  a: Elbow curve to determine the number of optimal clusters (k = 8), b:visualize the clustering results in the 𝐾-mean 
method 

 
(a)                                                                           (b) 

 
Figure 10. Clustering by the CRP with 5 clusters for the mean of a:𝛼ො and b:𝛾ො 
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can be challenging to analyze. 
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Abstract 

Some social surveys address sensitive topics for which respondents do not report 
reliable responses. Randomized response techniques (RRTs) are employed to increase 
privacy levels and provide honest answers. However, estimates obtained from this 
method tend to exhibit increased variances. Repeating randomized responses for each 
individual increases the sample size, and the mean of observations for each individual 
reduces the variance of the parameter’s estimator, bringing them closer to reality. In this 
study, considering continuous additive repeated randomized responses (RRRs), we apply 
the averaged RR of each individual using the linear regression model for sensitive 
variable mean. Data on the income of family heads were collected from students, and 
each respondent was asked to randomize their responses five times. The maximum 
likelihood estimators of parameters are obtained by two methods. In the first method, the 
response variable is the first reported observation, and in the second method, we 
considered the averaged RR for each individual. The results emphasize that the estimators 
from the second method are closer to reality and have lower variance. 
 
Keywords: Randomized Response; Repeated Randomized Response; Linear Regression Model; 
Continuous Sensitive Variable; Repeated Individual Observations. 
 

Introduction 
In many social sampling surveys, some questions 

may be sensitive to respondents, leading to insecurity in 
providing honest answers. A sensitive variable has a high 
level of social privacy or pertains to individuals’ private 
lives. For example, research related to addiction, bribery, 
specific political views, socially undesirable behaviors, 
or income. The RR technique is a sampling process in 
which respondents are more willing and confident in 
providing honest answers to questions. 

As the pioneer paper, the RR technique for sensitive 
binary questions was introduced in 1965 (1). It included 
answering a sensitive question or its complement using a 
                                                        
* Corresponding Author: Tel: 06133369509; Email: zadkarami@yahoo.co.uk, zadkarami_m@scu.ac.ir 

Bernoulli trial (tossing a coin). Considering this trick, the 
sensitive answer remains hidden from the researcher, 
preserving the respondent’s privacy. Afterward, many 
methods were proposed to examine sensitive qualitative 
data, including the unrelated response method or Simon’s 
method  (2). Many authors extended this method (3-5). 
Another method is the forced response technique 
introduced in 1971 (6). An estimate of the sensitive 
proportion through the maximum likelihood method was 
obtained using the proposed RRR (7). The RRR 
technique increases privacy protection and provides a 
truthful answer by reporting different responses by an 
individual. The logistic regression parameters for RR 
data gathered using Warner’s method were estimated (8, 
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9). Subsequently, many researchers estimated the 
sensitive proportion and regression parameters using 
various RRTs for univariate or multivariate logistic 
regression models (10-16). The additive RR method was 
used when the sensitive attribute is a discrete quantitative 
variable, and the mean of the item-sum technique was 
estimated (17-18).  

For continuous sensitive variables, the mean estimate 
is obtained using the systematic random sampling design 
in the presence of a non-sensitive auxiliary variable (19). 
Additionally, methods for estimating the mean of 
sensitive variables in the presence of measurement error 
have been developed (20-21), and variance estimators for 
sensitive variables using RRT have also been proposed 
(22). Quantitative RRTs were investigated to enhance 
respondent trust (23- 24). The effect of the initial non-
response on the regression estimator in panel surveys was 
reduced using RRT (25). By assuming truthful responses 
about domain membership,  non-sensitive quantitative 
variables were estimated for specific sensitive domains 
(26). RRs can shorten the length of certain confidence 
intervals with a conditional coverage guarantee (27). 

Modeling for continuous RRs is a less explored topic. 
In many cases, the sensitive variable is continuous. For 
example, income, tax evasion, expenses for election 
campaigns, drug or alcohol consumption during a week, 
student grade point averages, and financial or ethical 
corruption. The unrelated question design was employed 
in 1971 (28) to estimate the mean of the quantitative 
sensitive variable. The sensitive response was added to a 
random number of the scramble variable (a variable with 
known-finite mean and variance) (29). The multiplicative 
method was introduced by multiplying the sensitive 
variable by the scramble variable (30). Additive and 
multiplicative approaches, the optional and mixture RR 
methods, increase reliability and reduce bias in the 
reported responses (31, 32). Regression-cum-ratio 
estimator estimates the sensitive variable mean (33).The 
authors apply several estimation methods. The regression 
parameters using forced RRT and the EM algorithm in a 
Poisson distribution were estimated (34). Multiplicative 
RR regression parameters were estimated using the least 
squares method (35). The regression coefficients were 
estimated using the maximum likelihood method for the 
multiplicative design when the scramble variable was 
distributed as uniform (36). Later, a multiplicative RR 
design was applied as the dependent variable, and the 
regression parameters were estimated using the least 
squares method (37). The regression parameters for the 
model introduced in (39) were estimated (38). The model 
parameters were estimated for a generalized linear mixed 
effects model employing the forced-response technique 
(40). There are some reasons for the limited research on 

modeling based on RRs, including the complexity of the 
model and the limited packages in commonly used 
software. Furthermore, changing the method of 
randomizing responses also affects the modeling, making 
it more complex (40). 

A privacy criterion was introduced (41). The larger 
this criterion, the more confidential the RRT becomes, 
and respondents  are expected to be more willing to 
participate in the study.  A measure for comparing 
quantitative RR methods based on the variance-to-
privacy was proposed (42). The smaller the value, the 
greater the privacy for the RRT. In this paper, we use this 
criterion to evaluate the privacy of quantitative RRTs.  

The main focus of this article is to study models for 
continuous RRRs. Using RRs gets the parameter 
estimators closer to reality and improves efficiency; 
however, it increases the variance of the estimators. We 
consider the RRR model for the mean individual 
observations, which can remedy the variance growth by 
increasing the number of responses for each respondent. 
It is worth mentioning that the scramble variable with a 
known mean should be chosen so that the true sensitive 
value cannot be discerned from the participant’s reported 
value. Otherwise, they may lack confidence in providing 
honest answers. 

We studied repeated additive RR responses from 512 
students in 2018. The information included the number 
of family members, education, occupation, age of the 
family head, and the monthly income in millions of the 
family head. The monthly income of the family head was 
added to an existing random number of the scramble 
variable, and the result was reported, and this process was 
repeated five times. Regression parameter estimators 
were obtained using the first response of each respondent 
and the average of each respondent’s responses, which 
was reported. 

 The remainder of the paper is structured as follows. 
In the second section, the parameters for the additive, 
multiplicative, mixture, and optional techniques are 
estimated when considering the normal sensitive and 
scramble variable(s). The third section explains the real 
data application. In the fourth section, simulations are 
performed to evaluate the parameter estimates. Their 
privacy is compared using thecriteria above. The 
discussion is in the last section. 

 
1. Randomized Response Techniques (RRTs) 

Let Y~Nሺμ,σଶሻ , and S~Nሺμୱ,σୱଶሻ  denote the 
sensitive variable and the scramble variable (μୱ and σୱଶ 
known), respectively. We consider two cases. In the first 
case, to reduce response bias and enhance privacy, each 
respondent should add their response with a random 
value of the scramble variable, report only the result, and 
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then repeat the procedure m  times. Let RR variable 
denote byZ, then for individual i, the j-th RR is given by: z୧୨ = y୧ + s୧୨       i = 1, . . , n ,   j = 1, … , m, 

where y୧ and s୧୨ denote the true value of the sensitive 
variable and a random value of the scramble variable for 
the i-th individual in j-th repeat of RR. If T denotes the 
predictor variable for the sensitive variable, the unbiased 
prediction for i-th individual in j-th RR is as follows: t୧୨ = z୧୨ − μୱ,         i = 1, . . , n ,    j = 1, … , m.   

Then, the estimation of the sensitive variable mean 
and its variance are calculated as follows: μො୲ = zത − μୱ,          Vሺμොሻ = σଶ +  σୱଶn  

In the second case, considering the average of m RRs 
for each individual as observation, the predictor for i-th 
individual is t ̅ ୧ = zത୧ − μୱ, i = 1, . . , n , where Tഥ~N(μ,σଶ + ஢౩మ୫), and μො = zധ − μୱ , V(μො) = (஢మ୬ + ஢౩మ୬୫).   

The matrix form of the model for the sensitive 
variable y is as follows: y = Xβ + ε                                                                   (1) 

where X denotes the matrix of explanatory variables. 
Suppose the error term ε has zero mean and varianceν =σகଶI , where I  denote the identity matrix. Since its true 
value is not observable, the RR variable is used. 
Therefore, the model that uses the averaged RRs is as 
follows: zത = g(Xβ) + ξ                                                          (2) g(Xβ) = Xβ + μୱ , ξ = ε + δୱ , 

  
where δୱ = ( s̅ − μୱ)~N(0, τ)  is the error of 

selecting the scramble value, and τ = ஢౩మ୫ I  is the 
covariance matrix of the vector s̅ . Assuming 
independence of S  and Y , ξ  is distributed as N(0,ψ) 
where ψ = Σ + τ. 

The model parameters are estimated using the 
maximum likelihood method. The log-likelihood 
function is given by l୞(β,σகଶ) = −n2 log(2π)− 12 ln|ψ|−12 (zത − Xβ − μୱ)ᇱψିଵ(zത− Xβ − μୱ), 

and the maximum likelihood estimators (MLEs) of 
the unknown parameters are  β෠ = (XᇱX)ିଵXᇱ(zത − μୱ), σෝଶ = 1n ൫zത − Xβ෠ − μୱ൯ᇱ൫zത − Xβ෠ − μୱ൯ − σୱଶ mൗ . 

The distribution of the regression coefficient 
estimators is as follows: β෠~Nቆβ,ቆσଶ + σୗଶmቇ (XᇱX)ିଵቇ. 

Then, the use of RRTs can increase the variance of 
parameter estimates. 

 
1.1. Additive-Scrambled RR Technique 

Suppose respondents report RR variable Z = aY + bS 
instead of the sensitive value Y where a and b are known 
constant values, and S denotes a random value from the 
independent scramble variable S~N(μୗ,σୗଶ) . Then, Z~N(aμ + bμୗ, aଶσଶ + bଶσୗଶ) and, the j-th reported RR 
variable of individual i is z୧୨ = ay୧ + bs୧୨ ,    i = 1, … , n ,j = 1, … , m.  

The predictor variable based on one observation, T, is 
given by T = ୟଢ଼ାୠୗିୠஜ౏ୟ = ୞ ିୠஜ౏ୟ ~N(μ, (aଶσଶ + bଶσୗଶ)/aଶ), and the unbiased predictor of Y  using m repetitions 
is Tഥ = ୞ഥ ିୠஜ౏ୟ ~N(μ,σଶ + ୠమ୫ୟమ σୗଶ)).  

The log-likelihood function for the predictor variable 
is given by l(μ,σଶ)= − 1

2൞nln2π + nln ൬σଶ + bଶmaଶ σୗଶ൰ + 1൬σଶ + bଶmaଶ σୗଶ൰ (Tഥ − μ)ᇱ(Tഥ − μ)ൢ. 
The MLEs of the model parameters are    μො = t ̿  and  σෝଶ = (୘ഥିஜෝ)ᇲ(୘ഥିஜෝ)୬ − ୠమୟమ σୗଶ  and, the variance of the 

estimator of  μො is  V(μො) = V൫t̿൯ = ୚(୞ഥ)୬ୟమ =  ஢మ୬ + ୠమ஢౏మ୬୫ୟమ. 
Let the model error for the sensitive variable 

distribute as ε~N(0,σଶI). Due to the lack of the latent 
variable, its predictor variable, t,̅ is used. The model is 
given by t ̅ = Xβ + ε∗,                                                                         (3) 

in which ε∗~N(0,σக∗ଶ I) , where σக∗ଶ = (aଶ σଶ +ୠమ஢౏మ୫ )/aଶ. 
The log-likelihood function for the RR model is 

l(β,σଶ) = −1/2൞nln2π + nlnቆ σଶ + bଶmaଶ σୗଶቇ
+ 1൬ σଶ + bଶmaଶ σୗଶ൰ (Tഥ − Xβ)ᇱ(Tഥ − Xβ)ൢ. 

The MLEs of the proposed model parameters are as 
follows:  β෠ = (XᇱX)ିଵXᇱTഥ , and σෝଶ = ଵ୬ ൫Tഥ − Xβ෠൯ᇱ൫Tഥ − Xβ෠൯ −ୠమ஢౏మ୫ୟమ . 

The distribution of the regression coefficients 
estimators is given by: 𝛽መ~𝑁ቆ𝛽,ቆ𝜎ଶ + 𝑏ଶ𝜎ௌଶ𝑚𝑎ଶ ቇ (𝑋ᇱ𝑋)ିଵቇ. 
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1.2. Additive-Scrambled-Scrambled Technique 
Suppose the respondents multiply their sensitive 

answer by a known constant value 𝑎 , and randomly 
selecte two independent values, 𝑆ଵ and  𝑆ଶ,from known 
scramble variables 𝑁൫𝜇ௌభ ,𝜎ௌభଶ ൯  and 𝑁൫𝜇ௌమ ,𝜎ௌమଶ ൯, 
respectively and it is reported the RR variable 𝑍 = 𝑎𝑌 +𝑏𝑆ଵ + 𝑐𝑆ଶ to the researcher for two known constants b 
and c . Then, the reported variable Z  is distributed as 𝑍~𝑁(𝑎𝜇 + 𝑏𝜇ௌభ + 𝑐𝜇ௌమ ,𝑎ଶ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ ). The j-
th reported value of Z for individual i is: 𝑧௜௝ = 𝑎𝑦௜ + 𝑏𝑠ଵ௜௝ + 𝑐𝑠ଶ௜௝ ,          𝑖 = 1, … ,𝑛,𝑗 = 1, … ,𝑚. 

The unbiased predictor variable for a single RR, T, is 
as follows: 𝑇 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎= 𝑍 − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎 ~𝑁ቆ𝜇,𝜎ଶ+ 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑎ଶ ቇ, 

where the averaged RR for each individual is: 𝑇ത = �̅�  − 𝑏𝜇ௌభ − 𝑐𝜇ௌమ𝑎 ~𝑁ቆ𝜇,𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ. 
The log-likelihood function is given by 

𝑙(𝜇,𝜎ଶ) = −12⎩⎪⎨
⎪⎧𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛 ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ

+ 1ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ (𝑇ത − 𝜇)ᇱ(𝑇ത
− 𝜇)⎭⎪⎬

⎪⎫, 
The MLE’s of parameters are given by �̂� = 𝑡̿, and 𝜎ොଶ = ( ത்ିఓෝ)ᇲ( ത்ିఓෝ)௡ − ௕మఙೄభమ ା௖మఙೄమమ௠௔మ  where, The variance of �̂� 

is  𝑉(�̂�) = 𝑉൫𝑡̿൯ = ௏(௓ത)௡௔మ = ఙమ௡ + ௕మఙೄభమ ା௖మఙೄమమ௡௠௔మ . 
Consider the sensitive variable, which is defined 

using equation (1). Consequently, the variance of the 

model error is 𝜎ఌ∗ଶ = 𝜎ଶ + ௕మఙೄభమ ା௖మఙೄమమ௠௔మ  for the predictor 
variable in equation (3), where 𝜀∗~𝑁(0,𝜎ఌ∗ଶ 𝐼).  

The log-likelihood function for estimated MLE’s of 
model parameters is as follows: 

𝑙(𝛽,𝜎ଶ) = −1/2⎩⎪⎨
⎪⎧𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛 ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ
+ 1ቆ𝜎ଶ + 𝑏ଶ𝜎ௌభଶ + 𝑐ଶ𝜎ௌమଶ𝑚𝑎ଶ ቇ (𝑇ത
− 𝑋𝛽)ᇱ𝐼(𝑇ത − 𝑋𝛽)⎭⎪⎬

⎪⎫, 
Then, the parameters MLE’s are  𝛽መ = (𝑋ᇱ𝑋)ିଵ𝑋ᇱ𝑇ത 

and 𝜎ොଶ = ଵ௡ ൫𝑇ത − 𝑋𝛽መ൯ᇱ൫𝑇ത − 𝑋𝛽መ൯ − ௕మఙೄభమ ା௖మఙೄమమ௠௔మ . 
The distribution of the regression coefficients 

estimators is 𝛽መ~𝑁 ൬𝛽, ൬𝜎ଶ + ௕మఙೄభమ ା௖మఙೄమమ௠௔మ ൰ (𝑋ᇱ𝑋)ିଵ൰. 
 

1.3. Optional RR Technique 
In the additive-optional RRT, respondents either 

report the sensitive value or add it with a random value 
of the scramble variable. Let 𝑌~𝑁(𝜇,𝜎ଶ), and G be the 
sensitive variable and a Bernoulli random variable with 
probability p, respectively, then the reported variable is 𝑍 = 𝑌𝐺 + (𝑌 + 𝑆)(1 − 𝐺). It shows that the sensitivity 
level of the variable Y  is  (1 −  p) . The j -th reported 
value of Z  for individual  i  is as follows: 𝑧௜௝ = ൜𝑦௜ ,                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑦௜ + 𝑠௜௝ ,     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1− 𝑝 ,                𝑖= 1, … ,𝑛, 𝑗 = 1, … ,𝑚 

Then, the additive-optional RR variable has the 
following mixture density function 𝑓௓(𝑍)= 𝑝𝜑 ቀ𝑦 − 𝜇𝜎 ቁ+ (1 − 𝑝)𝜑 ቆ𝑦 + 𝑠 − (𝜇 + 𝜇௦)ඥ𝜎ଶ + 𝜎௦ଶ ቇ .                       (4) 

 
From density (4), we have the following equation:  𝐸௣(𝐸ோ൫(𝑍|𝐺)൯)) = 𝐸௣(𝑝𝑌 + (1 − 𝑝)(𝑌 + 𝑆)). 
The mean and variance of Z are 𝜇௭ = 𝜇 + (1 − 𝑝)𝜇ௌ 

and, 𝜎௭ଶ = (𝑝 − 𝑝ଶ)𝜇௦ଶ + (1 − 𝑝)𝜎௦ଶ + 𝜎ଶ  respectively 
and, the MLE’s of the parameters are �̂� = 𝑧̅ − (1 − 𝑝)𝜇ௌ 
and 𝜎ොଶ = ቀ(௓ିఓෝ೥)ᇲ(௓ିఓෝ೥)௡ − (1 − 𝑝)𝜎௦ଶ − (𝑝 − 𝑝ଶ)𝜇௦ଶቁ 
where, the variance of �̂� is:  𝑉(�̂�) = (𝑝 − 𝑝ଶ)𝜇ௌଶ + (1 − 𝑝)𝜎ௌଶ + 𝜎ොଶ𝑛 .𝑉(�̂�). 

The unbiased predictor variable, T, and the averaged 
RR, 𝑇ത, have variances  𝜎௧ଶ = 𝜎ଶ + (1 − 𝑝)𝜎௦ଶ and 𝜎௭̅ଶ =𝜎௧̅ଶ = 𝜎ଶ + (1 − 𝑝)𝜎௦ଶ 𝑚⁄ + (𝑝 − 𝑝ଶ)𝜇ௌଶ/𝑚 , 
respectively where, 𝑇 = 𝑍 − (1 − 𝐺)𝜇ௌ and,     𝑇ത = �̅� −
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(1 − 𝑝)𝜇ௌ. Based on 𝑇ത , the log-likelihood function for 
the predictor variable is: 
  𝑙(𝜇,𝜎ଶ) ∝෍𝑙𝑛 ቆ 1𝜎௭̅ 𝑒𝑥𝑝 ቊ−12 ൬𝑧௜̅ − 𝜇௭𝜎௭̅ ൰ଶቋቇ

= ෍𝑙𝑛൭ 1𝜎௧̅ 𝑒𝑥𝑝 ൝−12ቆ𝑡௜̅ − 𝜇𝜎௧̅ ቇଶൡ൱. 
Furthermore, the MLE’s of the parameters are: �̂� = 𝑧̿ − (1 − 𝑝)𝜇ௌ , 𝜎ොଶ = ቆ(𝑡̅ − �̂�)ᇱ(𝑡̅ − �̂�)𝑛 − (1 − 𝑝)𝜎௦ଶ 𝑚⁄− (𝑝 − 𝑝ଶ)𝜇ௌଶ/𝑚ቇ                          (5) 

Consider regression equation (1) for the sensitive 
variable, the log-likelihood function is rewritten as 𝑙(𝜇,𝜎ଶ) = −1/2 ቊ𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛(𝜎௭̅ଶ)+ 1𝜎௭̅ଶ (�̅� − (𝑋𝛽 + (1 − 𝑝)𝜇ௌ))ᇱ(�̅�− (𝑋𝛽 + (1 − 𝑝)𝜇ௌ))ቋ   = −1/2 ቊ𝑛𝑙𝑛2𝜋 + 𝑛𝑙𝑛൫𝜎௧̅ଶ൯ + 1𝜎௧̅ଶ (𝑡̅ − 𝑋𝛽)ᇱ(𝑡̅ − 𝑋𝛽)ቋ 

Then, the MLE’s of parameters are as follows:  𝛽መ = (𝑋ᇱ𝑋)ିଵ𝑋ᇱ(�̅� − (1 − 𝑝)𝜇ௌ ), 𝜎ොଶ = 1𝑛 ൫�̅� − 𝑋𝛽መ − (1 − 𝑝)𝜇ௌ൯ᇱ൫�̅� − 𝑋𝛽መ − (1 − 𝑝)𝜇ௌ൯− (1 − 𝑝)𝜎௦ଶ 𝑚⁄ − (𝑝 − 𝑝ଶ)𝜇௦ଶ𝑚 . 
Therefore, the distribution of the regression 

coefficients estimators is given by: 𝛽መ~𝑁൫𝛽, ൫(1 − 𝑝)𝜎௦ଶ 𝑚⁄ + (𝑝 − 𝑝ଶ)𝜇௦ଶ/𝑚+ 𝜎ଶ൯(𝑋ᇱ𝑋)ିଵ൯. 
 

1.4. Productive RR Technique 
Assume that respondents multiply their sensitive 

value 𝑌 by a known value from the scramble variable 𝑆. 
Then, the RR variable is 𝑍 = 𝑌𝑆, and the j-th answer for 
individual i is given by: 𝑧௜௝ = 𝑦௜𝑠௜௝  ,          𝑖 = 1, … ,𝑛 , 𝑗 = 1, … ,𝑚. 

Then, the unbiased predictor variable 𝑇 = ௓ఓೞ  is 
defined for a single RR. The mean and variance 
estimators of the sensitive variable are  �̂� = 𝑡̅ and 𝜎ොଶ =൬(೟షഋෝ)ᇲ(೟షഋෝ)೙ ିഋమ഑ೞమഋೞమ ൰൬ଵା ഑ೞమഋೞమ൰  respectively when, the variance of �̂� is (�̂�) = 𝜎ଶ + (ఓమାఙమ௡ ) ఙೞమఓೞమ . 

The averaged RR for each individual is 𝑇ത = ௓തఓೞ which 
is an unbiased predictor variable with the mean and 
variance 𝜇 and, 𝜎ଶ + (ఓమାఙమ௠ ) ఙೞమఓೞమ, respectively. Then, the 
estimators of the mean and variance are �̂� = 𝑡̿, and 𝜎ොଶ =൬(೟షഋෝ)ᇲ(೟షഋෝ)೙ ିഋమ഑ೞమ೘ഋೞమ൰൬ଵା ഑ೞమ೘ഋೞమ൰ , respectively where, the variance of �̂� is 𝑉(�̂�) = ఙమ௡ + (ఓమାఙమ௠௡ ) ఙೞమఓೞమ  and the privacy level is 

calculated as 𝑃௅ = (𝜇ଶ + 𝜎ଶ) ቀఙೞమ௠ + (𝜇௦ − 1)ଶቁ. 
The log-likelihood equation using the predictor 

variable 𝑇ത is given by  

𝑙(𝜇,𝜎ଶ) = 𝑙𝑜𝑔⎝⎛න 12𝜋|�̅�|ට𝜎ଶ𝜎௦ଶ𝑚 𝑒𝑥𝑝ቆ−𝑚2 ൬�̅� − 𝜇௦𝜎௦ ൰ଶஶ
ିஶ
− 12𝜎ଶ ൬ 𝑧̅𝜇௦ − 𝜇൰ଶቇ𝑑𝑠⎠⎞. 

 
Numerical methods estimate these parameters since 

the likelihood equation does not lead to a closed-form 
solution 

Considering the regression equation (1) for sensitive 
variable, the log-likelihood function using equation (3), 
is as follows: 

𝑙(𝛽,𝜎ଶ) = 𝑙𝑜𝑔⎝⎛න 12𝜋|�̅�|ට𝜎ଶ𝜎௦ଶ𝑚 𝑒𝑥𝑝 ቆ−𝑚2 ൬�̅� − 𝜇௦𝜎௦ ൰ଶஶ
ିஶ
− 12𝜎ଶ (𝑇ത − 𝑋𝛽)ଶቇ𝑑𝑠⎠⎞. 

where = 𝜎ఌ∗ଶ + (ఓమାఙమ௠ ) ఙೞమఓೞమ . The likelihood equations 
do not have closed-form solutions, so numerical methods 
are used. 

 
2. Application 

In this section, the real data is applied to investigate 
the proposed RR method. In the data collection, fifty 
random values from the normal scramble variable 𝑆~𝑁(3.6, 0.5ଶ) are selected and recorded in fifty cards. 
The income of the family head is one of the sensitive 
questions in social sciences studies. In a questionnaire, 
512 bachelor’s students at Shahid Chamran University 
were asked to report the number of family members, 
education level, occupation, and age of the head of the 
family. they also summed up the monthly income (of 
millions) of the family head with one of the given random 
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scramble values and repeated this process five times. The 
students randomly selected one card from the deck of 50 
cards and without anyone noticing, added the income of 
their family head to the number on the card and returned 
the card to the deck. The cards were then shuffled to 
maintain privacy, and only the sum of two values was 
reported. We repeated the process five times and reported 
the results for each repetition. The 𝑗-th RR for an 𝑖-th 
individual was as follows: 𝑍௜௝ = 𝑌௜ + 𝑆௜௝       𝑖 = 1, … , 512, 𝑗 = 1, … ,5. 

Considering the RR Model (case one), the MLEs of 
the mean and variance of the family head income were 
obtained as �̂�௒ = 3.50662 and 𝜎ොଶ = 1.97, respectively. 
The explanatory variables include the number of family 
members, the age of the family head, the level of 
education (coded as a binary variable: 1 for university 
attendance and 0 for non-attendance), and the occupation 
of the family head. Occupation is treated as a nominal 
variable with five categories: "others" (used as the 
reference level), "self-employed," "doctor," "engineer," 
and "retired or deceased". 

The results summarized in Table 1 indicate that the 
number of family members and the age of the family head 
were not statistically significant. Considering “others” as 
the reference level for the occupation, levels of “doctor” 
and “engineer” had a significant impact on income 
compared to employees. The results also showed that 

having university attendance compared to non-
attendance led to a significant increase in income.  

Table 1 also shows that the family head jobs “doctor” 
and “engineer” had a significantly increasing effect on 
family head income compared to “others”. However, 
“self-employed” and “retired” did not significantly affect 
family head income compared with “others”. Our 
findings indicated that the variance of the sensitive 
variable was estimated at 1.83. 

For RR model 1 (case two), the estimated mean and 
variance of the family head income were              �̂�௒ =3.579  and, 𝜎ොଶ = 1.932,  respectively. The estimated 
parameters and their significant levels are presented in 
Table 2 where the estimated variance of the sensitive 
variable is 2.09.  

The results of Tables 1 and 2, are consistent with 
previous ones; however, the standard error of estimates 
decreased (Table 2). 

 
3. Simulation Study  

For the models presented in Section 2, simulation and 
comparison were conducted using privacy criteria. Let 𝛽଴ = 5 and 𝛽ଵ = 2, and the covariate 𝑋 and model error 𝜀  were generated from normal 𝑁(1,4)  and 𝑁(0,1) , 
respectively. Therefore, the sensitive variable had a 
normal distribution of 𝑁(5 + 2𝑥, 1). On the other hand, 
the distribution of the scramble variables must be such 
that their mean falls within the parameter space of the 

 
Table 1. Estimated Parameters of the RR model (case one) 

p-value SE Coefficient 
 

Parameter 
< .001 0.65 2.46 

 
Intercept 

0.414 0.01 0.0091 
 

Age 
- - - non-attendance Education 

< .001 0.2 1.13 university attendance 
0.447 0.06 -0.04 

 
Family number 

-- -- -- others Occupation of 
the family head 0.449 0.21 -0.16 self-employed 

< .001 0.48 2.6 Doctor 
< .001 0.37 2.37 Engineer 
0.765 0.35 0.1 Retired 

 
Table 2. Estimated Parameters for averaged RR (case two). 

p-value t -value 95% CI SE Coefficient 
 

Parameter 
< .000 3.51 [ 1.18, 3.75] 0.62 2.16 

 
Intercept 

0.11 1.6 [-0.01, 0.03] 0.01 0.017 
 

Age 
- - - - - Non-attendance Education 

< .001 5.96 [ 0.73, 1.53] 0.19 1.146 University attendance 
0.45 -0.76 [-0.16, 0.07] 0.055 -0.042 

 
Family number 

-- -- -- -- -- Others Occupation of the 
family head 0.317 -1 [-0.57, 0.25] 0.2 -0.2 self-employed 

< .001 6.08 [ 1.65, 3.55] 0.46 2.77 Doctor 
< .001 6.45 [ 1.64, 3.11 0.35 2.28 Engineer 
0.815 0.23 [-0.57, 0.78] 0.33 0.076 Retired 
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sensitive variable. The parameters were estimated using 
the maximum likelihood method. The simulation was 
repeated 𝐾  times, and the results included the average 
parameter estimatesand the bias and mean squared error 
(MSE) of these estimates. 

The simulations are as follows: 
3.1 We considered the additive model with one 

scramble variable. This variable was sampled from 
normal 𝑁(6,4) . We consider 𝑎 = 3  and 𝑏 = 2 , so the 
RR variable has a normal distribution of 𝑍~𝑁(27 +6𝑥, 25).  For 𝑚 = 5  times repeat of RR for each 
individual, the averaged RR variable has a normal 
distribution of �̅�~𝑁(27 + 6𝑥, 12.2). 

Tables 3 and 4 present the simulation results for 𝑘 =2000 repetitions for both RR and averaged RR models, 
respectively.  

3.2. We considered the additive-scrambled-
scrambled RR model with two scramble variables. The 
scramble data were generated from a normal distribution 
of  𝑆ଵ~𝑁(6,4) and𝑆ଶ~𝑁(8,16). Setting       𝑎 =  3, 𝑏 = 2 and, 𝑐 =  2, the RR variable 𝑍 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ had 
a normal distribution of 𝑁(43 + 6𝑥, 89). The mean of m 
= 5 times the repeat of RR for each individual had a 
normal distribution of �̅�~𝑁(27 + 6𝑥, 25).  Simulation 
results for both cases are provided in Tables 5 and 6, 
respectively. 

 
3.3. Given a normal distribution 𝑁(6,4) , and a 

sensitivity level of 0.6, we used an optional RRT model. 
So, the probability of answering the sensitive variable 
was 𝑝 = 0.4. The regression model is as follows: 𝑦௜ = 5 + 2𝑥௜ + 𝜀௜ , 𝑖 = 1, … ,𝑛 , 𝜀~𝑁(0,1). 

Table 3. MSE and bias of parameter Estimations for additive-scrambled RR.  
n 𝛔𝐘 𝛃𝟏 𝛃𝟎 

Est. 100 0.944 2 4.995 
Bias -0.056 0? -0.005 
MSE 0.046 0.019 0.104 
Est. 50  0.893 1.993 5.021 
Bias -0.107 -0.007 0.021 
MSE 0.11 0.04 0.219 
Est. 20 0.817 1.993 5.005 
Bias -0.183 -0.007 0.005 
MSE 0.177 0.07 0.378 

 
Table 4. MSE and bias of parameter Estimations for averaged-additive-scrambled RR.  

n 𝛔𝐘 𝛃𝟏 𝛃𝟎 
Est. 100 0.984 2.001 5 
Bias -0.016 0.0006 0.0004 
MSE 0.0094 0.0095 0.049 
Est. 50 0.96 2.001 4.998 
Bias -0.04 0.0008 -0.002 
MSE 0.019 0.019 0.105 
Est. 20 0.9 2.006 4.98 
Bias -0.101 0.006 -0.021 
MSE 0.052 0.054 0.279 

 
 

 
Table 5. MSE and bias of parameter Estimations for additive-scrambled-scrambled RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.793 1.997 5.012 
Bias -0.207 -0.003 0.012 
MSE 0.398 0.0675 0.364 
Est. 50 0.731 2.003 4.986 
Bias -0.27 0.003 -0.014 
MSE 0.55 0.138 0.752 
Est. 20 0.707 2.016 4.938 
Bias -0.293 0.016 -0.061 
MSE 0.662 0.254 1.32 
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The optional RR variable had a mean of 8.6 + 2𝑋 and 
variance of 12.04. The mean of RRs for 𝑚 = 5 
observations per individual had the same mean and a 
variance of 10.12. Parameter estimatesand their MSE and 
biases are provided for k =2000 repetitions in Tables 7 
and 8. 

3.4. Finaly, simulation results were provided for the 
multiplicative RR. The scramble variable data were 
sampled from 𝑁(6,4), so the mean and variance of the 
multiplicative RR variable were  𝜇௭ = 30 + 12𝑥 
and𝜎௭ଶ = 16(5 + 2𝑥)ଶ + 52, respectively. 

The mean of the multiplicative RRs for 𝑚 = 5 
observations per individual had the same mean and 
variance 𝜎௭̅ଶ = 3.2(5 + 2𝑥)ଶ + 39.2 . The simulation 
results are provided for k=2000 repetitions in Tables 9 
and 10. 

According to the simulation results, the maximum 
likelihood estimates were very close to the true values 
with high accuracy. Moreover, as the number of 

simulated data, n, increases, the accuracy of estimates 
improves, whereas the variance and bias of the estimates 
decrease. 

3.5 Privacy criteria 
The privacy criterion, 𝑃௅, (the privacy level), is the 

mean squared difference between the RR, Z, and the true 
response Y or 𝑃௅ = 𝐸(𝑍 − 𝑌)ଶ . The measure  𝛿 = ௏(ఓෝ)௉ಽ  
was proposed for comparing quantitative RR methods 
(42). The privacy evaluation criteria for single and 
repeated observations of techniques are presented in 
Table 11. For each n, the techniques in terms of the 𝑃௅ 
criterion are sorted as follows: 

The technique with two scramble variables is the best, 
and after that, the techniques are sorted as follows: The 
technique with one scramble variable, the multiplicative 
technique, and the optional technique. However, 
considering the 𝛿 criterion, the multiplicative technique 
came first, followed by the techniques with one and two 

Table 6. MSE and bias of parameter Estimations for averaged-additive-scrambled-scrambled RR.  
n 𝝈𝒀 𝜷𝟏 𝜷𝟎 

Est. 100 0.953 2 5.001 
Bias -0.047 0? 0.001 
MSE 0.043 0.019 0.103 
Est. 50 0.893 2.008 4.975 
Bias -0.106 0.0078 -0.025 
MSE 0.102 0.04 0.211 
Est. 20 0.743 1.991 5.037 
Bias -0.257 -0.009 -0.037 
MSE 0.243 0.114 0.607 

 

 
Table 7. MSE and bias of parameter Estimates for optional RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.791 2.005 5 
Bias -0.209 0.005 -0.001 
MSE 0.318 0.079 0.444 
Est. 50 0.686 2.001 5.006 
Bias -0.314 0.001 0.006 
MSE 0.422 0.17 0.911 
Est. 20 0.615 1.984 5.029 
Bias -0.385 -0.016 0.029 
MSE 0.521 0.301 1.61 

 
Table 8. MSE and bias of parameter Estimates for averaged-optional RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 0.924 2.001 4.998 
Bias -0.076 0.001 -0.002 
MSE 0.066 0.022 0.116 
Est. 50 0.849 2.005 4.991 
Bias -0.15 0.005 -0.008 
MSE 0.138 0.048 0.246 
Est. 20 0.717 2.007 4.985 
Bias -0.283 0.007 -0.015 
MSE 0.276 0.129 0.69 
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scramble variables, and the optional technique was the 
last one. 

For techniques with averaged RRs, the best-
performing technique in terms of the 𝑃௅ criterion was the 

multiplicative technique.The technique with two 
scramble variables was the second one, followed by the 
technique with a single scramble variable.The last was 
the optional technique. The behavior of the 𝛿 criterion 

Table 9. MSE and bias of parameter Estimates for multiplicative RR.  
n 𝝈𝒀 𝜷𝟏 𝜷𝟎 

Est. 100 3.246 2.002 4.998 
Bias 2.246 0.002 -0.002 
MSE 0.078 0.084 0.27 
Est. 50 3.18 2.003 4.988 
Bias 2.18 0.003 -0.012 
MSE 0.145 0.166 0.57 
Est. 20 3.039 1.993 4.983 
Bias 2.038 -0.007 -0.017 
MSE 0.352 0.5 1.73 

 
Table 10. MSE and bias of parameter Estimates for averaged-multiplicative RR.  

n 𝝈𝒀 𝜷𝟏 𝜷𝟎 
Est. 100 1.61 1.999 5.008 
Bias 0.613 -0.001 0.008 
MSE 0.017 0.02 0.08 
Est. 50 1.695 1.992 5.014 
Bias 0.695 -0.008 0.014 
MSE 0.034 0.048 0.18 
Est. 20 1.67 1.997 5.01 
Bias 0.67 -0.003 0.01 
MSE 0.088 0.124 0.511 

 
Table 11. Privacy criteria of the RR techniques. 

Results for the mean of 𝒎 = 𝟓 observations 
Results from one 

observation 
Privacy 

evaluation 
criteria 

n 
 

 
Var. Mean Var. Mean 

 

5719.02 928 5209.87 943.1 𝑃௅ 20  𝑍 = 𝑎𝑌 + 𝑏𝑆, 
  

 𝟓𝟓 × 𝟏𝟎ି𝟕 -0.0011 3 × 10ି଼ 0.0016 𝛿 
  

2280.68 932.19 3193.87 944.36 𝑃௅ 50 
 𝟏𝟖 × 𝟏𝟎ି𝟗 -0.00045 54 × 10ିଽ 0.00098 𝛿 

  

1155.3 930.127 1597.88 943.58 𝑃௅ 100 
 𝟐 × 𝟏𝟎ି𝟗 -0.00012 69 × 10ିଵ଴ 0.00049 𝛿 

  

17363.07 2165.62 31578.69 2214.71 𝑃௅ 20 𝑍 = 𝑎𝑌 + 𝑏𝑆ଵ + 𝑐𝑆ଶ,  𝟏𝟓 × 𝟏𝟎ି𝟖 0.0011 14 × 10ି଼ 0.0018 𝛿 
  

7626.24 2159.43 17797.91 2219.29 𝑃௅ 50 
 𝟏𝟏 × 𝟏𝟎ି𝟗 0.00045 29 × 10ିଽ 0.0011 𝛿 

  

3702.596 2158.821 9425.88 2225.44 𝑃௅ 100 
 𝟏𝟑 × 𝟏𝟎ି𝟏𝟎 0.00023 42 × 10ିଽ 0.00054 𝛿 

  

6.13 15.17 24.81 23.93 𝑃௅ 20  
 
 𝑍 = 𝑌𝐺 + (𝑌 + 𝑆)(1 − 𝐺), 
 
  

 

0.0001 0.04 0.00016 0.111 𝛿 
  

2.5 15.14 14.77 24.05 𝑃௅ 50 
 𝟏𝟎 × 𝟏𝟎ି𝟔 0.017 37 × 10ି଺ 0.066 𝛿 

  

1.21 15.16 7.61 24.1 𝑃௅ 100 
 𝟏𝟒 × 𝟏𝟎ି𝟕 0.009 64 × 10ି଺ 0.033 𝛿 

  

126752 2280.34 122.42 88.32 𝑃௅ 20  𝑍 = 𝑌𝑆 
 
  

 𝟒𝟔 × 𝟏𝟎ି𝟏𝟏 0.0001 39 × 10ିଵ଴ 0.0004 𝛿 
  

47221.5 2266.81 47.41 87.75 𝑃௅ 50 
 𝟐𝟗 × 𝟏𝟎ି𝟏𝟐 0.00004 29 × 10ିଵଵ 0.00015 𝛿 

  

22501.78 2271.15 23.23 87.88 𝑃௅ 100 
 𝟑𝟖 × 𝟏𝟎ି𝟏𝟑 0.00002 37 × 10ିଵଶ 0.00008 𝛿 
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for this case is consistent with the single-observation 
case. 

When comparing privacy criteria between single-
observation models and models with averaged RRs, the 𝑃௅ criterion significantly increased for the multiplicative 
model with averaged observations. Models with one and 
two scramble variables showed a slight reduction in 𝑃௅, 
while the optional model had nearly a halving of 𝑃௅. The 𝛿 criterion favors single-observation responses across all 
techniques, emphasizing the preference for models with 
averaged RRs. 

 

Results and Discussion 
In social surveys, when studying a sensitive variable, 

respondents may refuse to answer questions or provide 
socially desirable responses. The RR techniques help 
mitigate this issue. The RRR technique is one approach 
that increases privacy levels while moderating the 
increase in estimates variance. When studying 
continuous RR data, collecting multiple observations 
from each increases the sample size and improves 
parameter estimates. Averaging the observations for each 
respondent helps achieve more precise estimations. 
Linear models are applied for the mean of observations. 
The findings of this study demonstrate that the averaged 
RRs for each individual in various RR techniques yield 
more accurate estimations and reduce their variance. 

 In the study of the family head income, modeling the 
RR techniques are evaluated with demographic variables, 
including the number of family members and age, 
education level, and occupation of the family head. The 
results of the averaged RR model indicate that the 
number of family members and the age of the family head 
are not statistically significant. Levels of “doctor” and 
“engineer” of occupation variable, have a significant 
impact on income compared to the reference category, 
“others”. The results also show that having a university 
education may lead to a significant increase in income. 
This finding provides a valuable avenue for further 
investigations in this field. 
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Abstract 
Given the importance of varentropy in information theory, and since a closed form 

cannot be derived for some discrete distributions, we aim to establish bounds for the 
varentropy of these distributions and introduce the past varentropy for discrete random 
variables. In this article, we first acquired lower and upper bounds for the varentropy of 
the Poisson, binomial, negative binomial, and hypergeometric distributions. Since the 
resulting upper bounds are expressed as squared logarithmic expectations, we provide an 
equivalent formulation using squared logarithmic difference coefficients. Similarly, we 
present lower bounds in terms of logarithmic difference coefficients. Furthermore, an 
upper bound is derived for the variance of a function of discrete reversed residual lifetime 
function. We also investigate inequalities involving moments of selected functions via 
the reversed hazard rate and characterize certain discrete distributions by the Cauchy-
Schwarz inequality. 
 
Keywords: Varentropy; Reversed hazard rate; Binomial transform; Cauchy-Schwarz inequality. 
 

Introduction 
If X is absolutely continuous with probability density 

function 𝑓(𝑥), then the entropy of X is given by 
  𝐻(𝑋) = ାஶିஶ׬− 𝑓(𝑥)log𝑓(𝑥)𝑑𝑥,                   (1) 
 
where −log 𝑓(𝑋)   is the information content of X. 

Notably, the existence of 𝐻(𝑋)  is not guaranteed. When 
it exists, its values range belongs to [−∞,∞], while the 
entropy of discrete random variables (RVs) does not take 
negative values. 

It is noteworthy that the variance entropy (for short 
varentropy) of a RV X is given by 𝑉(𝑋) = ାஶିஶ׬ 𝑓(𝑥)[log𝑓(𝑥)]ଶ𝑑𝑥 − [𝐻(𝑋)]ଶ.          (2) 

 

                                                        
* Corresponding Author: Tel: 03145249136; Email: f-goodarzi@kashanu.ac.ir 

The importance of this measure in the fields of 
mathematics and physics has been emphasized in various 
studies, such as those by (1), (2), and (3). 

As an application of varentropy, we consider a system 
with complex network. A complex network, in reality, 
contains a large amount of information necessary to 
describe the system’s behaviors. (1) stated that 
varentropy is utilized as a general measure of 
probabilistic uncertainty for a complex network in terms 
of the laws of thermodynamics. Next, we will mention 
the application of variance of entropy in computer 
science. One of the most significant threats internet users 
and cloud computing services face is denial-of-service 
(DDoS) attacks. The nonlinear time series model is 
employed to predict future network traffic states by (4) 
and used to predict the future values of entropy variance. 
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Also, they determined prediction errors by comparing the 
actual variance of entropy and the predicted variance of 
entropy. (5) have derived an explicit formula of the 
varentropy measure for the invariant density of one-
dimensional ergodic diffusion processes. 

Furthermore, (3) found an optimal varentropy bound 
applicable to log-concave distributions. (2) obtained a 
sharp varentropy bound on Euclidean spaces for convex 
probability measures. Another method to compute a 
bound for varentropy is given in (6) and (7) via reliability 
theory.  (8) proposed the concept of varentropy for 
doubly truncated RVs and extensively analyzed its 
theoretical properties. A method for computing 
varentropy measure for the order statistics is introduced 
by (9). (10) introduced the variance residual entropy 
measure. (11) and (12) obtained bounds for past 
varentropy for continuous RV. Also, (13) obtained a 
bound for residual varentropy of discrete RV. Moreover, 
(14) recently offered a few estimators for varentropy for 
a continuous RV. The lossless source coding research 
(15) stated that the source dispersion equals its 
varentropy for Markov sources. 

Suppose X is a discrete RV supporting 𝑆 ={0,1, … , 𝑏}, where 𝑏 is an integer and 0 < 𝑏 ≤ ∞. If we 
express the probability mass function (PMF) and 
distribution function of 𝑋  by 𝑝(𝑥)  and 𝐹(𝑥) , 
respectively, then, in comparison with (1) and (2), the 
entropy and varentropy of a nonnegative discrete RV X 
are given as follows. 𝐻(𝑋) = −∑ஶ௫ୀ଴ 𝑝(𝑥)log𝑝(𝑥), (3) 𝑉(𝑋) = ∑ஶ௫ୀ଴ 𝑝(𝑥)[log𝑝(𝑥)]ଶ − [𝐻(𝑋)]ଶ. (4) 

 
The entropy of a discrete RV is the average amount 

of information, measured in bits, gained from observing 
a single symbol. 

Characterizations of distributions are essential to 
many researchers in applied fields. In particular, in 
reliability theory, given an RV that often denotes a unit’s 
lifetime, aging functions are assigned to it and 
characterize this variable. Among the most used are 
reversed failure rate and reversed mean residual life. 

One can define the reversed hazard rate of X as 𝜑(𝑥) = 𝑃(𝑋 = 𝑥|𝑋 ≤ 𝑥) = 𝑝(𝑥)𝐹(𝑥), 
hence, 𝐹(𝑥) is specified as follows 𝐹(𝑥) = ∏௕௧ୀ௫ାଵ (1 − 𝜑(𝑡)),    𝑥 = 0, … , 𝑏 − 1. (5) 
 
Also, the reversed mean residual lifetime is given by 𝑟(𝑥) = 𝐸(𝑥 − 𝑋|𝑋 < 𝑥) = ଵி(௫ିଵ)∑௫௧ୀଵ 𝐹(𝑡 − 1), (6) 
  
with defining 𝑟(0) = 0. See (16) for more details. 
Definition 1. (a) F is said to be decreasing reversed 

hazard rate (DRHR) if 𝜑(𝑥) is decreasing in x. 
(b) F is said to  increase expected inactivity time 

(IEIT) if 𝑟(𝑥) increases in x. 
To derive variance bounds for functions of RVs, we 

employ Chernoff’s inequality. For a discrete RV 𝑋 with 
PMF 𝑝(𝑥), 𝑥 = 0,1,2, …, bounds for 𝑉𝑎𝑟[𝑔(𝑋)]  can be 
obtained using the forward difference of 𝑔(𝑋). Notably, 
these bounds were derived utilizing the Cauchy-Schwarz 
(C-S) inequality. We utilize the following lemma to 
derive these bounds, as presented in  (17). 

Lemma 2. Let X be a nonnegative and integer-valued 
RV with probability function 𝑝(𝑥)  with support {0,1,2, … }  and let its mean be 𝜇. Additionally, let 𝑔(𝑋) 
be a real-valued function with 𝑉𝑎𝑟[𝑔(𝑋)] < ∞. Then 𝜎ଶ𝐸ଶ[𝑤(𝑋)Δ𝑔(𝑋)] ≤ 𝑉𝑎𝑟[𝑔(𝑋)]≤ 𝜎ଶ𝐸[𝑤(𝑋)(Δ𝑔(𝑋))ଶ],                              (7) 
where Δ𝑔(𝑥) = 𝑔(𝑥 + 1) − 𝑔(𝑥) and 𝑤(𝑥) satisfies  

 𝜎ଶ𝑝(𝑥)𝑤(𝑥) = ∑௫௞ୀ଴ (𝜇 − 𝑘)𝑝(𝑘).             (8) 
The equality satisfies iff 𝑔 is linear. 
 
The layout of the article is as follows. In Section 1, 

we compare two sequences by the coefficient of variation 
for coding a discrete source of information with three 
symbols and also define past varentropy for discrete RVs 
and obtain it by past entropy of order 𝜁 for the discrete 
case. In Section 2, we get an upper and lower bound for 
the varentropy of the binomial, Poisson, negative 
binomial, and hypergeometric distribution. An upper 
bound for the variance of a function of the discrete 
reversed residual life RV is obtained in Section 3. 
Furthermore, we characterize some distributions through 
functions that ensure reliability for discrete RVs. 
 
Coefficient of Variation and Past Varentropy 

The significance of entropy is widely recognized in 
information theory and various other fields. However, 
varentropy has received comparatively less attention. 
Notably, the discrete entropy (3) quantifies the average 
number of symbols needed to code an event generated by 
an information source governed by the PMF of X. 
Varentropy, on the other hand, quantifies the variability 
associated with this coding. If the entropy of two sources 
of information is identical, then, during coding, the 
number of digits needed for the codeword of a symbol is 
closer to the expected value for the source with the lower 
varentropy. 

Example 1.1. Suppose that X has the PMF 𝑝(0) = ଵଶ 
and 𝑝(1) = 𝑝(2) = ଵସ .  Also, let Y have Poisson 
distribution with parameter λ; then, it is easily calculated 
that 𝜆 ≈ 0.620675,  we have 𝐻(𝑌) ≈ 1.039721  and 𝑉(𝑌) = 0.515302 . Moreover, 𝐻(𝑋) ≈ 1.039721  and 
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𝑉(𝑋) = 0.120112; hence, the coding process is better 
suited for sequences produced by X. 

In the process of coding a discrete source of 
information with three symbols with probabilities p, q, 
and 1 − p − q, the quantifiers entropy and varentropy, 
respectively, are stated as: 𝐻(𝑝, 𝑞) = 𝐻(𝑋) = −𝑝 log 𝑝 − 𝑞 log 𝑞 − (1 − 𝑝 −𝑞)log(1− 𝑝 − 𝑞),                                                         (9) 𝑉(𝑝, 𝑞) = 𝑉(𝑋) = (𝑝 − 𝑝ଶ)(log𝑝)ଶ + (𝑞 −𝑞ଶ)(log𝑞)ଶ + (1 − 𝑝 − 𝑞 − (1 − 𝑝 − 𝑞)ଶ)(log(1− 𝑝 −𝑞))ଶ − 2𝑝𝑞log𝑝log𝑞 − 2𝑝(1 − 𝑝 − 𝑞)log𝑝log(1 − 𝑝 −𝑞) − 2𝑞(1 − 𝑝 − 𝑞)log𝑞log(1 − 𝑝 − 𝑞).                 (10)        

 
We sketch 𝐻(𝑋) and 𝑆𝐷(𝑋) = ඥ𝑉(𝑋) defined over 𝑝 and 𝑞 in Figure 1.  Regarding p and q, seven limit cases 

have no varentropy. These points are (0,0) , (0,0.5) , (1/3,1/3), (0.5,0), (0.5,0.5), (0,1), and (1,0). Notice 
that varentropy would be zero in case (1/3,1/3), with 
equiprobable sequences and maximum entropy. 

Now, we want to check the maximum variability in 
the information content. For this purpose,  we are looking 
into the behavior of ௗௌ஽(௣,௤)ௗ௣  and ௗௌ஽(௣,௤)ௗ௤ . By setting these 
terms equal to zero, we have (log𝑝)ଶ + 2log 𝑝 − (log(1 − 𝑝 − 𝑞))ଶ − 2log(1 − 𝑝− 𝑞) +(2(𝑝 log 𝑝 + 𝑞 log 𝑞 + (1 − 𝑝 − 𝑞)log(1− 𝑝 −𝑞)))(log(1 − 𝑝 − 𝑞) − log 𝑝) = 0, (11) 

and 
 (log𝑞)ଶ + 2log𝑞 − (log(1 − 𝑝 − 𝑞))ଶ − 2 log(1 −𝑝 − 𝑞)) +(2(𝑝log𝑝 + 𝑞 log 𝑞 + (1 − 𝑝 − 𝑞)log(1 − 𝑝 −𝑞)))(log(1 − 𝑝 − 𝑞) − log 𝑞) = 0. (12) 
 
Note that the seven points mentioned earlier have 

infinite derivative values (singular points). Thus, we  
apply the Newton-Raphson algorithm to obtain 

approximate roots of derivatives given in (11) and (12)  
(see (18)). The values 𝑝 = 0.0616518191 and 𝑞 =0.0616518191 were obtained with an initial  
value (0.06,0.06) to start the algorithm. It is clear 

that the points (0.0616518191,0.8766963618) and  (0.8766963618,0.0616518191)  also maximize 𝑆𝐷(𝑝, 𝑞) and their values is 0.8728128309.  
Additionally, we consider the intersection curves of 

the two surfaces of Figure 1, where 𝐻(𝑝, 𝑞) = 𝑆𝐷(𝑝, 𝑞). 
The intersection areas can be shown in Figure 2 using the 
implicit plot function in Maple. For example, if 𝑝 = 0.2, 
then entropy and the standard deviation of the entropy are 
equal for values of 𝑞  equal to 0.06929839562  and 0.7307016044. The range between the curves in Figure 
2, 𝑆𝐷(𝑝, 𝑞)  is less than 𝐻(𝑝, 𝑞), whereas, in the points 
outside of this region, for example, (𝑝, 𝑞) = (0.1,0.1), 

the entropy smaller than the standard deviation of the 
information content of RV. Now, considering the 
coefficient of variation of −log𝑝(𝑋), such that described 
as 𝐶𝑉(𝑋) = ௌ஽(௑)ு(௑) , if two sequences of symbols are 
generated by X and Y , a sequence with less coefficient 
of variation is more suitable for coding. 

R �́� nyi entropy of order ζ for a discrete RV is 
expressed as 𝐻఍(𝑥) = ଵଵି఍ log∑௫ 𝑝఍(𝑥) for 𝜁 ≠ 1. 𝐻఍(𝑋) is additionally named the spectrum of R�́�nyi 
information. R�́�nyi information and the loglikelihood are 
related via the gradient, 𝐻ሶ఍(𝑋), of the spectrum at 𝜁 = 1. 
A straightforward computation demonstrates, assuming 
that the differentiation operations are legitimate, that 

 𝐻ሶଵ(𝑋) =

 
Figure 1. Plots of H(X) and SD(X) on p and q. 

 

 
 

Figure 2. The curve of intersection of the two surfaces. 
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lim఍→ଵ (ଵି఍)(∑ೣ௣അ(௫))షభ ∑ೣ (௣അ(௫)୪୭୥௣(௫))ା୪୭୥∑௣അ(௫)(ଵି఍)మ  

 = −ଵଶ lim఍→ଵ ൜∑ೣ௣അ(௫)୪୭୥మ௣(௫)∑ೣ௣അ(௫) −ቀ∑ೣ௣അ(௫)୪୭୥௣(௫)∑ೣ௣അ(௫) ቁଶൠ = −ଵଶ𝑉(𝑋).                                        (13) 

 
Therefore, the varentropy is obtained as 𝑉(𝑋) =−2𝐻ሶଵ(𝑋). In addition, the discrete past entropy is defined 

as 𝐻(𝑋; 𝑗) = −∑௝௫ୀ଴ ௣(௫)ி(௝) log ቀ௣(௫)ி(௝)ቁ .                           (14) 
 
The past entropy of order 𝜁  for a discrete case is 

expressed by 𝐻఍(𝑋; 𝑗) = ଵଵି఍ log ൤∑௝௫ୀ଴ ቀ௣(௫)ி(௝)ቁ఍൨,       (15) 

 
for 𝜁 ≠ 1 and 𝜁 > 0. It is well known that when 𝜁 

tends to 1, 𝐻఍(𝑋; 𝑗) tends to 𝐻(𝑋; 𝑗). Similarly, also, we  
 
can show that 𝑉(𝑋; 𝑗) = −2𝐻ሶଵ(𝑋; 𝑗) , in which we 

call 𝑉(𝑋; 𝑗),  𝑉(𝑋; 𝑗) = ∑௝௫ୀ଴ ௣(௫)ி(௝) ቀlog ௣(௫)ி(௝)ቁଶ − (𝐻(𝑋; 𝑗))ଶ,      (16) 
 as the past varentropy.  
 
Example 1.2. If X is distributed geometrically with 

parameter p, then 𝐻఍(𝑋; 𝑗) = ଵଵି఍ log ቂ∑௝௫ୀ଴ ௣അ௤ೣഅ(ଵି௤ೕశభ)അቃ =ଵଵି఍ ቄlog ௣അଵି௤അ + 𝑙og ଵି௤(ೕశభ)അ(ଵି௤ೕశభ)അቅ, (17) 
 
where q = 1 − p and therefore, 𝑉(𝑋; 𝑗) = −2lim఍→ଵ𝐻ሶ఍(𝑋; 𝑗) = ௤(୪୬௤)మ(ଵି௤)మ − ((௝ାଵ)୪୬௤)మ௤ೕశభ(ଵି௤ೕశభ)మ .         (18) 
 
It is observed that, for 𝑗 = 0, the past varentropy is 

zero and increases for 𝑗, as shown in Figure 3. 
To estimate 𝑉(𝑋; 𝑗), we generate a sample of size 𝑛 = 100  from a geometric distribution with 1000 

replicates. For this sample, we set 𝑝଴ = 0.6. Then, the 
Maximum Likelihood Estimator (MLE) for �̂�  is 
calculated to be 0.5978. For example by plugging �̂� into 
(18) for j=1, the MLE of 𝑉(𝑋; 𝑗) is 0.1697. 

Like the discrete case, (19) has previously obtained a 
relationship between varentropy and Rényi information 
for continuous RV. He expressed that varentropy can 
identify a distribution’s shape, while the kurtosis measure 
is not applicable. 

 
Bounds for Varentropy 

Obtaining expressions for the entropy and varentropy 
of well-known distributions is significant in information 

and communication theory, physics, probability and 
statistics, and economics. An exact expression and closed 
form for the varentropy were obtained for most 
distributions. Among these distributions, we can mention 
the uniform, Bernoulli, geometric, exponential, Beta, 
Cauchy, Cramér, F, gamma, Gumbel, Laplace, Lévy, 
logistic, log-logistic, lognormal, normal, parabolic, 
Pareto, power exponential, t-distribution, triangular, von 
Mises and Weibull distribution. However, for many 
distributions, there is no closed form and an explicit 
expression for the varentropy using elementary functions. 
In such cases, we can obtain an upper and lower bound 
for varentropy via the expectation of a function of a 
logarithmic function. 

In this section, we find bounds for the varentropy of 
some nonnegative RVs. If X follows a discrete 
nonnegative RV, with variance σ2, then by utilizing 
Lemma 2, we have 𝜎ଶ𝐸ଶ[𝑤(𝑋)Δlog𝑝(𝑋)] ≤ 𝑉𝑎𝑟[−log𝑝(𝑋)] ≤𝜎ଶ𝐸[𝑤(𝑋)(Δlog𝑝(𝑋))ଶ]. (19) 

 
Example 2.1. Suppose X has a binomial distribution 

distribution 𝐵𝑖𝑛(𝑛,𝑝) then, since 𝑤(𝑥) = ௡ି௫௡(ଵି௣), hence 𝑉(𝑋) ≤ 𝑛𝑝(1 −𝑝)∑௡௫ୀ଴ ௡ି௫௡(ଵି௣) ቀ−log (௡ି௫)௣(௫ାଵ)(ଵି௣)ቁଶ ൫௡௫൯𝑝௫(1− 𝑝)௡ି௫ =𝑛𝑝(1 − 𝑝)𝐸௡ିଵ ቂ(log (௡ି௑)௣(௑ାଵ)(ଵି௣))ଶቃ, (20) 
 
where 𝐸௡ିଵ  denotes expected value under the 

binomial distribution 𝐵𝑖𝑛(𝑛 − 1,𝑝). 
  
Likewise, we can derive a lower bound for 

 
 

Figure 3. The curve of intersection of the two surfaces. 
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𝑉𝑎𝑟[−log𝑝(𝑋)] as follows  𝑉(𝑋) ≥ 𝑛𝑝(1 − 𝑝)𝐸௡ିଵଶ ቂlog (௡ି௑)௣(௑ାଵ)(ଵି௣)ቃ. (21) 
 
 If 𝑛 = 1, then, since −log 𝑝(𝑥) has a linear relation 

with 𝑥, hence the upper and lower bounds are equal to 
varentropy 𝑝(1 − 𝑝)(−log( ௣ଵି௣))ଶ  in the Bernoulli 
distribution. 

Example 2.2. Assume X is distributed according to a 
Poisson distribution with parameter 𝜆 = 1 , then since 𝑤(𝑥) = 1, the upper bound for varentropy is given as 𝑉(𝑋) ≤ 𝜆𝐸 ቂlog ௑ାଵఒ ቃଶ. (22) 

 When 𝑛 → ∞ and 𝑝 → 0 so that 𝑛𝑝 = 𝜆, the upper 
bound (21) and (22) are approximately equal. Also,  

since log𝑥 ≤ 𝑥 − 1, we can obtain the upper bound 1 + ଵఒ for varentropy of Poisson distribution 
Conversely, the lower bound for V (X) is computed as 

follows 
 𝑉(𝑋) ≥ 𝜆𝐸ଶ ቂlog ௑ାଵఒ ቃ. (23) 
 
In this section, we compute the equivalent 

expressions for the upper and lower bounds of varentropy 
according to series and integral expressions. To achieve 
a general expression for expectation of squared 
logarithmic function, that is, expressions like 𝐸[logଶ(𝑋 + 𝜔)], we recall the 𝑖𝑡ℎ forward difference of 
a function 𝑔(𝜔) is defined as  Δ௜[𝑔](𝜔): = ∑௜௞ୀ଴ ൫௜௞൯(−1)௜ି௞𝑔(𝑘 + 𝜔), (24) 

 
 where Δ଴[𝑔](𝜔) = 𝑔(𝜔). Moreover, Newton series 

expansion of a function 𝑔 around point 𝜔 is  
 𝑔(𝑘 + 𝜔) = ∑ஶ௜ୀ଴ ൫௫௜൯Δ௜[𝑔](𝜔). (25) 
 
 By considering 𝑔(𝑥) = (log 𝑥)ଶ in equation (24), as 

(20) stated for log 𝑥, we have   
 Δ௜[log]ଶ(𝜔) = ∑௜௞ୀ଴ ൫௜௞൯(−1)௜ି௞logଶ(𝑘 + 𝜔) =(−1)௜ାଵ𝑑ఠ(𝑖 + 1),      (26) 
where 𝑑ఠ(𝑖) = −෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ logଶ(𝑘 + 𝜔), 
so that, by using (26), we can obtain (log(𝑥 + 𝜔))ଶ = ෍ஶ௜ୀ଴ ቀ𝑥𝑖 ቁ (−1)௜ାଵ𝑑ఠ(𝑖 + 1). 
Now, to find the generating function for the 

coefficient dω, we use of Lerch transcendent such that it 
was recalled by (20), as follows: 

Φ(𝑧, 𝑠,𝜔): = ∑ஶ௞ୀ଴ ௭ೖ(௞ାఠ)ೞ = ଵ୻(௦)׬ାஶ଴ ௧ೞషభ௘షഘ೟ଵି௭௘ష೟ 𝑑𝑡.     (27)           
 
By evaluating the second derivative of (27) for s, we 

have ௗమௗ௦మ Φ(𝑧, 𝑠,𝜔) = ∑ஶ௞ୀ଴ 𝑧௞(𝑘 + 𝜔)ି௦(log(𝑘 + 𝜔))ଶ (28) 
and thus Φఠᇱᇱ(𝑧): = ௗమௗ௦మ Φ(𝑧, 𝑠,𝜔)|௦ୀ଴ = ∑ஶ௞ୀ଴ logଶ(𝑘 + 𝜔)𝑧௞. (29) 
 
Next, putting 𝜔 = 1  and using polylogarithm 

function 𝐿𝑖௦(𝑧): = ∑ஶ௞ୀଵ 𝑧௞𝑘ି௦, (29) can be written as Φᇱᇱ(𝑧): = Φଵᇱᇱ(𝑧) = 𝑑ଶ𝑑𝑠ଶ 𝐿𝑖௦(𝑧)/𝑧|௦ୀ଴. 
 In fact, we have  ௗమௗ௦మ 𝐿𝑖௦(𝑧)/𝑧 = ∑ஶ௞ୀଵ 𝑧௞ିଵ(−log𝑘)ଶ𝑘ି௦.               (30) 
 At the same,  Φᇱᇱ(𝑧): = Φଵᇱᇱ(𝑧) = ෍ஶ௞ୀ଴ 𝑧௞(log(𝑘 + 1))ଶ

= ෍ஶ௞ୀଵ 𝑧௞ିଵ(log(𝑘))ଶ, 
which is the equation of (30) for s = 0. 
Using (27) and generating the function of the 

binomial transform, we get 
 𝐷ఠ(𝑧) =−∑ஶ௜ୀଵ 𝑧௜ ∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯logଶ(𝑘 + 𝜔) 
 =∑ஶ௞ୀ଴ ∑ஶ௜ୀ௞ାଵ (−1)௞ାଵ𝑧௜൫௜ିଵ௞ ൯logଶ(𝑘 + 𝜔) 
 = ∑ஶ௞ୀ଴ logଶ(𝑘 +𝜔)(−1)௞ାଵ ௭ೖశభ(ଵି௭)ೖశభ 
                              = ି௭ଵି௭Φఠᇱᇱ( ି௭ଵି௭).                             
Consider now the coefficient sequence (−𝑑ఠ(𝑖 +1))௜ୀ଴ஶ , that is, the binomial transform of the sequence (logଶ(𝑘 + 𝛼))௞ୀ଴ஶ . Let 𝐷ఠ(𝑧): = ∑ஶ௜ୀ଴ 𝑑ఠ(𝑖)𝑧௜,   
be the generating function for   (𝑑ఠ(𝑗))௝ୀ଴ஶ , where 𝑑ఠ(0) is defined as 0. 𝐸logଶ(𝑋 + 𝜔) = ෍ஶ௜ୀ଴ 𝐸[(𝑋)௜𝑖! ](−1)௜ାଵ𝑑ఠ(𝑖 + 1) = ∑ஶ௜ୀଵ (−1)௜𝑞(𝑖 − 1)𝑑ఠ(𝑖).   
The moment generating function 𝑀(𝑡) of the Poisson 

distribution is exp(𝜆(𝑒௧ − 1)), so as given in Theorem 1 
in (20), we have 𝑄(𝑧) = 𝑀(log(𝑧 + 1)) = 𝑒ఒ௭ = ෍ஶ௜ୀ଴ 𝜆௜𝑖! 𝑧௜ , 

and hence  𝑞(𝑖) = ఒ೔௜! . Furthermore, by using the 
equation 
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𝐸𝑙𝑜𝑔(𝑋 + 𝜔) = ∑ஶ௜ୀଵ (−1)௜𝑞(𝑖 − 1)𝑐ఠ(𝑖) ାஶ଴׬= ௘ష೟ି௘షഘ೟ெ(ି௧)௧ 𝑑𝑡,   
 
in (20), where  𝑐ఠ(𝑖) = −∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯log(𝑘 +𝜔), the lower bound  
of varentropy of Poisson distribution is given as 

follows 𝜆𝐸ଶ ൤log𝑋 + 1𝜆 ൨
= 𝜆 ൝෍ஶ௜ୀଵ (−𝜆)௜ିଵ(𝑖 − 1)! ൥෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ log ൬𝑘 + 1𝜆 ൰൩ൡଶ = 𝜆 ቄ׬ஶ଴ ௘ష೟௧ (1 − 𝑒ఒ(௘ష೟ିଵ))𝑑𝑡 − log𝜆ቅ.   

Moreover, the upper bound for the varentropy of 
Poisson distribution is 𝜆𝐸 ൤log𝑋 + 1𝜆 ൨ଶ = 𝜆 ൝෍ஶ௜ୀଶ (−𝜆)௜ିଵ(𝑖 − 1)! ൥෍௜ିଵ௞ୀ଴ (logଶ(𝑘 + 1)

− 2log𝜆log(𝑘 + 1))൩ + logଶ(𝜆)ൡ = 𝜆 ቄ∑ஶ௜ୀଵ (ିఒ)೔షభ(௜ିଵ)! ቂ∑௜ିଵ௞ୀ଴ (−1)௞൫௜ିଵ௞ ൯(log(௞ାଵఒ ))ଶቃቅ.                                                                  
Example 2.3. Let X follow a negative binomial 

distribution with a PMF 𝑝(𝑥) = ൫௫ା௥ିଵ௥ିଵ ൯𝑝௥𝑞௫ି௥ for x = 
0, 1, ... . Then, since 𝑤(𝑥) = 𝑝(1 + ௫௥), the upper bound 
for varentropy is computed by 𝑉(𝑋)≤ 𝑟(1 − 𝑝)𝑝ଶ ෍ஶ௫ୀ଴ 𝑝(1

+ 𝑥𝑟)(log (𝑟 + 𝑥)(1 − 𝑝)𝑥 + 1 )ଶ ൬𝑥 + 𝑟 − 1𝑟 − 1 ൰ 𝑝௥(1 − 𝑝)௫ = ௥(ଵି௣)௣మ 𝐸௥ାଵ ቂlog (ଵି௣)(௥ା௑)௑ାଵ ቃଶ,  (31) 
where 𝐸௥ାଵ is the expected value of negative binomial 

distribution with parameters parameters 𝑟 + 1 and 𝑝.  
The lower bound for the distribution is determined as 
  𝑉(𝑋) ≥௥(ଵି௣)௣మ ቀ𝐸௥ାଵ ቂlog (ଵି௣)(௥ା௑)௑ାଵ ቃቁଶ. (32) 
 
It is trivial that if 𝑋 has a geometric distribution with 

parameter 𝑝, then varentropy is equal to the upper and 
lower bounds given in (31) and (32) for r = 1 and hence 
Var[−logp(X)] =ଵି௣௣మ (log(1− 𝑝))ଶ. 

 Now, by using equation (44) in (20), we can obtain 
an equivalent expression for the lower bound (32). We 
first have 

𝐸௥ାଵ ൤log (1 − 𝑝)(𝑟 + 𝑋)𝑋 + 1 ൨
= ෍ஶ௜ୀଵ (− 1 − 𝑝𝑝 )௝ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ቎෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ൜log(𝑘
+ 𝑟) + log ൬𝑘 + 11 − 𝑝൰ൠ቏, 

and therefore 𝑉𝑎𝑟[−log𝑝(𝑋)]≥ 𝑟(1 − 𝑝)𝑝ଶ ቌ෍ஶ௜ୀଵ (−1 − 𝑝𝑝 )௜ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ቎෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ቊlog (1− 𝑝)(𝑘 + 𝑟)𝑘 + 1 ቋ቏ቍଶ. 
Also 𝑉𝑎𝑟[−log𝑝(𝑋)]≤ 𝑟(1 − 𝑝)𝑝ଶ ቌ෍ஶ௜ୀଵ (−1 − 𝑝𝑝 )௜ିଵ ቌ𝑖 + 𝑟 − 1𝑖 − 1 ቍ ൥෍௜ିଵ௞ୀ଴ (−1)௞ ൬𝑖 − 1𝑘 ൰ ቊlog (1 − 𝑝)(𝑘 + 𝑟)𝑘 + 1 ቋଶ൩
 
Example 2.4. Let 𝑋  have a hypergeometric 

distribution with PMF 𝑝(𝑥) = ൫೘ೣ൯൫೙ష೘ೝషೣ ൯൫೙ೝ൯ ,    𝑚𝑎𝑥(0, 𝑟 −𝑛 + 𝑚) ≤ 𝑥 ≤ 𝑚𝑖𝑛(𝑟,𝑚) . Then, since 𝑤(𝑥) =௡(௡ିଵ)(௠ି௫)(௥ି௫)(௡ି௠)(௡ି௥)௠௥ , the upper bound for varentropy is 
computed by  

 𝑉𝑎𝑟[−log𝑝(𝑋)] ≤𝜎ଶ ∑௥௫ୀ଴ ௡(௡ିଵ)(௠ି௫)(௥ି௫)(௡ି௠)(௡ି௥)௠௥ log( (௠ି௫)(௥ି௫)(௫ାଵ)(௡ି௠ି௥ା௫ାଵ)) ൫೘ೣ൯൫೙ష೘ೝషೣ ൯൫೙ೝ൯  

 =𝜎ଶ𝐸௠ିଵ,௡ିଶ;௥ିଵ ቂlog( (௠ି௑)(௥ି௑)(௑ାଵ)(௡ି௠ି௥ା௑ାଵ))ቃଶ,  
 where 𝐸௠ିଵ,௡ିଶ;௥ିଵ  denotes expected value under 

the hypergeometric distribution with parameters 𝑚− 1, 𝑛 − 2, and 𝜎ଶ = ௥௠௡ (1 − ௠௡) ௡ି௠௡ିଵ .  
 

Characterization by Cauchy-Schwarz Inequality 
(13) attained an upper bound for the variance of a 

function of the residual lifetime RV and characterized the 
type III and type I discrete Weibull distributions and the 
geometric distribution with the help of C-S inequality. 
Here, we derive a bound for the variance of a function of 
RV 𝑋௫ = (𝑥 − 𝑋|𝑋 < 𝑥)  and characterize some 
distributions using inequalities involving the expectation 
of functions of reversed hazard rate. 

The subsequent theorem gives an upper bound for 𝑉𝑎𝑟[𝑔(𝑋௫)]  and characterizes the right-truncated 
geometric distribution. 

Theorem 3.1. Let 𝑋 be a discrete and nonnegative 
RV with PMF 𝑝(𝑥)  and distribution function 𝐹(𝑥) . 
Suppose 𝑔 is a function such that its forward difference 
is 𝛥𝑔(𝑥) then  𝑉𝑎𝑟[𝑔(𝑋௫)] ≤ 𝐸 ൤(Δ𝑔(𝑋(௫)))ଶ( ଵఝ(௫ି௑(ೣ)))൫𝑟(𝑥 −
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𝑋(௫) + 1) − 𝑟(𝑥) + 𝑋(௫) − 1൯൨. (33) 

 
 Proof. We know 𝑃(𝑋(௫) = 𝑡) = 𝑃(𝑋 = 𝑥 − 𝑡)𝑃(𝑋 < 𝑥) , 𝑡 = 1, … , 𝑥. 
By applying Lemma 2 and noting that 𝐸[𝑋(௫)] =𝑟(𝑥), it follows that ෍௫௞ୀ௧ (𝑘 − 𝑟(𝑥))𝑃(𝑋 = 𝑥 − 𝑘)𝑃(𝑋 < 𝑥) = 1𝑃(𝑋 < 𝑥) [෍௫௞ୀ௧ 𝑘𝑃(𝑋

= 𝑥 − 𝑘) − 𝑟(𝑥)෍௫௞ୀ௧ 𝑃{𝑋 = 𝑥 − 𝑘}]
= 𝑃{𝑋 < 𝑥 − 𝑡 + 1}𝑃{𝑋 < 𝑥} [𝑟(𝑥 − 𝑡 + 1)+ 𝑡 − 1 − 𝑟(𝑥)] 

                          = ଵఝ(௫ି௧) [𝑟(𝑥 − 𝑡 + 1) + 𝑡 − 1 −𝑟(𝑥)] ௉{௑ୀ௫ି௧}௉{௑ழ௫} ,                                    (34) 
and again using Lemma 2 and replacing the right-

hand side of (34) in inequality (7), we obtain 𝑉𝑎𝑟[𝑔(𝑋௫)] ≤෍௫௧ୀଵ [Δ𝑔(𝑡)]ଶ 1𝜑(𝑥 − 𝑡) [𝑟(𝑥 − 𝑡 + 1)+ 𝑡 − 1 − 𝑟(𝑥)]𝑃{𝑋(௫) = 𝑡} 

 = 𝐸 ൜[Δ𝑔(𝑋(௫))]ଶ ଵఝ(௫ି௑(ೣ)) [𝑟(𝑥 −𝑋(௫) + 1) + 𝑋(௫) − 1 − 𝑟(𝑥)]ൠ, 
 
Let 𝑔(𝑡) = −log ௣(௫ି௧)ி(௫ିଵ) , then Δ𝑔(𝑡) =−log ௣(௫ି௧ିଵ)௣(௫ି௧) = log(1 − 𝜂௫ି௧ିଵ), hence  
 𝑉𝑎𝑟[−log𝑝(𝑋(௫))] ≤ 𝐸 ൜[log(1 −𝜂௫ି௑(ೣ)ିଵ)]ଶ ଵఝ(௫ି௑(ೣ)) [𝑟(𝑥 − 𝑋(௫) + 1) + 𝑋(௫) − 1 −𝑟(𝑥)]ൠ.                                                     (35) 

 
Under Lemma 2, the above equality holds iff 𝑔(𝑡) =−log𝑝(𝑥 − 𝑡) + log𝐹(𝑥 − 1)  is linear in 𝑡 , which is 

equivalent to log𝑝(𝑥 − 𝑡)  being linear in 𝑡 . 
Consequently, log𝑝(𝑥 − 𝑡) = 𝑎ଵ𝑡 + 𝑏ଵ  for some 
constants 𝑎ଵ  and 𝑏ଵ , and therefore 𝑝(𝑦) =𝑒ି௔భ௬𝑒௔భ௫ା௕భ = 𝑑𝑒ି௔భ௬ for 𝑦 = 0, … , 𝑥 − 1, where 𝑑 =𝑒௔భ௫ା௕భ is a constant. 

We thus conclude that the equality holds in (35), iff  𝑝(𝑥) = ௖ିଵ௖೤ିଵ 𝑐௫, 𝑥 = 0, … ,𝑦 − 1, 𝑐 > 0  ,  which is the 
right truncated geometric distribution.  

Remark 3.2. In Theorem 3.1, if X is a nonnegative 
RV and F is DRHR, then since the DRHR property 
implies the IEIT property (21), then 

𝑉𝑎𝑟[𝑔(𝑋(௫))] ≤ 𝐸 ቂ(Δ𝑔(𝑋))ଶ( ଵఝ(௑) − 1)(𝑋 − 1)ቃ.   (36) 
 Next, we aim to characterize certain distributions. 

Throughout the theorems presented below, we assume 
that Z is a discrete RV with a finite support S = {0,1,...,b}. 

Given that  𝐸( ଵఝ(௓)) = 𝑏 + 1 − 𝐸(𝑍), we can derive a 
useful lower bound for E[φ(Z)], as presented in the next 
theorem. 

Theorem 3.3. For any nonnegative discrete RV Z, 𝐸[ ଵఝ(௓)] ≥ ଵா(ఝ(௓)). (37) 
 The equality satisfies iff for constant 𝜃  
 𝐹(𝑧) =൜(1 − 𝜃)௕ି௭ , 𝑧 = 0,1, … , 𝑏,    0 < 𝜃 < 1,    𝑏 < ∞,1, 𝑥 ≥ 𝑏.  (38) 

  
Proof. To achieve (37), we make use of C-S 

inequality. The equality in (37) satisfies iff there’s a 
positive constant A so that, for all z ∈ {0,1,...,b}, ඥ௉(௓ୀ௭)ඥఝ(௭) = 𝐴ඥ𝜑(𝑧)𝑃(𝑍 = 𝑧),  

which is equivalent to 𝜑(𝑧) = 𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Now, using (5), we have a
(38).                                                                                                                    

Theorem 3.4. Let Z be a nonnegative discrete RV. Then 
 𝐸[ఝ(௓)௓ ] ≥ ଶ௕(௕ାଵ)ିா(௓(௓ିଵ)),  
 
 with equality iff 𝑍 distributed as,  𝐹(𝑧) = ቊ∏௕௧ୀ௭ାଵ (1 − 𝜃𝑡), 𝑧 = 0,1, … , 𝑏 − 1,    0 < 𝜃 < ଵ௕ ,1, 𝑧 ≥ 𝑏.

 (39) 
 where 𝜃 is a constant.  
  
Proof. By the C-S inequality, we have  1 = (∑௕௭ୀ଴ 𝑃{𝑍 = 𝑧}ට௭ி(௭)௭ி(௭))ଶ ≤∑௕௭ୀ଴ ௉మ{௓ୀ௭}௭ி(௭) ∑௕௭ୀ଴ 𝑧𝐹(𝑧)  = ∑௕௭ୀ଴ ఝ(௭)௭ 𝑃{𝑍 =𝑧}(∑௕௭ୀ଴ 𝑧 − ∑௕௭ୀ଴ 𝑧𝑃{𝑍 > 𝑧}). (40) 
 Now, since  ෍௕௭ୀ଴ 𝑧𝑃{𝑍 > 𝑧} = 𝐸 ൬𝑍(𝑍 − 1)2 ൰, 
 
 (40) reduces to 1 ≤ 𝐸(𝜑(𝑍)𝑍 )[𝑏(𝑏 + 1)2 − 𝐸 ൬𝑍(𝑍 − 1)2 ൰], 
and the desired result is obtained. The equality is 

gotten iff there’s some positive constant 𝜃 so that  
 𝑃(𝑍 = 𝑧)ඥ𝑧𝐹(𝑧) = 𝜃ඥ𝑧𝐹(𝑧). 
It follows that 𝜑(𝑧) = 𝜃𝑧, which, using equation (5),  
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again satisfies iff 𝑍  has distribution given in equation 
(39).  

  
The following two theorems derive lower bounds for 𝐸(𝑍𝜑(𝑍)). 
Theorem 3.5.   Let 𝑍  be a discrete RV with 𝐸(𝑍𝜑(𝑍)) < ∞ and 𝐸( ଵ௓ఝ(௓)) < ∞. Then  𝐸[ ଵ௓ఝ(௓)] ≥ ଵா(௓ఝ(௓)), (41) 
 and equality holds iff 𝑍 is distributed as  𝐹(𝑧) =ቊ(௕ିఏ)!௭!௕!(௭ିఏ)! , 𝑧 = 𝜃, … , 𝑏 − 1,    𝜃 = 1,2, … ,𝑏 − 11, 𝑧 ≥ 𝑏.   

Proof. As in the proof of Theorem 3.4, the result is stablished. 
Theorem 3.6. For any nonnegative discrete RV Z, 

 

𝐸(𝑍𝜑(𝑍)) ≥ ଶாమ(௓)௕(௕ାଵ)ିா(௓(௓ିଵ)). (42) 
 The equality satisfies iff 𝑍  has the distribution 

function (38). 
  
Proof. By the C-S inequality, we find that   (𝐸(𝑍))ଶ ≤ 𝐸( 𝑍𝜑(𝑍))𝐸(𝑍𝜑(𝑍))

= [෍௕௭ୀ଴ 𝑧𝐹(𝑧)]𝐸(𝑍𝜑(𝑍)) = [௕(௕ାଵ)ିா(௓(௓ିଵ))ଶ ]𝐸[𝑍𝜑(𝑍)],  
and thus (42) is obtained. 
The equality satisfies iff there exists some 

nonnegative constant 𝐴 so that, for all 𝑧 ∈ {0, … , 𝑏},  ඨ 𝑧𝜑(𝑧) = 𝐴ඥ𝑧𝜑(𝑧). 
This implies that φ(z) = θ = constant, and therefore the 

result is obtained.  
Now, we proceed to compare the bounds utilized for 𝐸(𝑍𝜑(𝑍)) in inequalities (41) and (42). 
Assume 𝑍  follows a discrete uniform distribution 

with support on {1, … , 𝑏} . In this case, 𝜑(𝑧) = ଵ௭ ,and 
consequently, the lower bound in (41) becomes 1𝐸( 1𝑍𝜑(𝑍)) = 1. 

Besides that, the lower bound (42) is 2(𝐸(𝑍))ଶ𝑏(𝑏 + 1) − 𝐸(𝑍(𝑍 − 1)) = 3(𝑏 + 1)2(2𝑏 + 1). 
 
Accordingly, for the distribution, we deduce that the 

bound (41) is superior to the bound (42) for 𝑏 > 1. 
 

Theorem 3.7. Let 𝑍 be a nonnegative discrete RV. 
Then 𝐸[𝑐ି௓𝜑(𝑍)] ≥ (𝐸[𝑐ି௓])ଶ(𝑐 − 1)𝑐𝐸(𝑐ି௓) − 𝑐ି௕ , 

for constant 𝑐 ≠ 1, where equality satisfies iff 𝑍 has 
the distribution function given in equation (38). 

 Proof. By utilizing the C-S inequality, we have  (𝐸[𝑐ି௓])ଶ ≤ 𝐸[𝑐ି௓𝜑(𝑍)]𝐸[ 𝑐ି௓𝜑(𝑍)]. 
 Besides that, since  𝐸 ቈ 𝑐ି௓𝜑(𝑍)቉ = ෍௕௭ୀ଴ 𝑐ି௭𝐹(𝑧) = ෍௕௬ୀ଴ ෍௕௭ୀ௬ 𝑐ି௭𝑃{𝑍 = 𝑦} 

= ෍௕௬ୀ଴ 𝑐ି௬ − 𝑐ି௕ିଵ1 − 𝑐ିଵ 𝑃{𝑍 = 𝑦} 

= 𝑐𝐸[𝑐ି௓] − 𝑐ି௕𝑐 − 1 . 
 Thus, the result is obtained. The equality holds iff 

there exists some nonnegative constant 𝐴 so that, for all 𝑧 ∈ {0, … , 𝑏},  ඨ 𝑐ି௭𝜑(𝑧) = 𝐴ඥ𝑐ି௭𝜑(𝑧). 
 This concludes that 𝜑(𝑧) is a constant, and the result 

is obtained. 
 

Results 
In this work, we first introduced the past varentropy 

for discrete RVs. Then, we obtained bounds for the 
varentropy of some discrete distributions. In the 
following, by considering the resulting upper 

bounds, the squared logarithmic expectation, we 
obtained an expression for the bounds in terms of the 
squared logarithmic difference coefficients 𝑑ఠ(𝑗) . In 
future work, we propose obtaining similar results for 
continuous distributions using logarithmic and log-
gamma expectations. Moreover, we evaluated an upper 
bound for 𝑉𝑎𝑟[𝑔(𝑋௫)]  and derived bounds for the 
expected values of specific functions in reliability theory.  
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Abstract 
This research examines different feature selection methods to enhance the predictive 

accuracy of macroeconomic forecasting models, focusing on Iran’s economic indicators 
derived from World Bank data. Fourteen feature selection techniques were thoroughly 
compared, classified into Filter, Wrapper, Embedded, and Similarity-based categories. 
The evaluation utilized Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE) metrics under a 10-fold cross-validation scheme. The findings highlight that 
Stepwise Selection, Tree-based approaches, and Similarity-based methods, especially 
those employing Hausdorff and Euclidean distances, consistently outperformed others 
with average MAE values of 32.03 for Stepwise Selection and 62.69 for Hausdorff 
Distance. Conversely, Recursive Feature Elimination and Variance Thresholding 
exhibited weaker results, yielding significantly higher average MAE scores. Similarity-
based approaches achieved an average rank of 9.125 across datasets, demonstrating their 
robustness in managing high-dimensional macroeconomic data. These outcomes 
underscore the value of integrating similarity measures with traditional feature selection 
techniques to improve the efficiency and reliability of predictive models, offering 
meaningful insights for researchers and policymakers in economic forecasting. 
 
Keywords: Feature Selection; Predictive Accuracy; World Bank Indicators; Macroeconomic Analysis; 
Similarity Methods. 
 

Introduction 
The primary challenge of working with high-

dimensional data lies in the exponential growth in 
complexity and sparsity that such data introduces. 
Additionally, the costs associated with storage and 
transmission increase, visualization becomes more 
challenging, and redundant or irrelevant features often 
complicate analysis (1). To address these challenges, 
dimensionality reduction techniques, feature selection, 
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regularization methods, and meticulous data 
preprocessing are essential. These approaches help to 
extract valuable insights while mitigating the negative 
impacts of high dimensionality on data analysis and 
machine learning tasks.  Feature selection is a key 
technique in dimensionality reduction, focusing on 
carefully identifying a relevant subset of features 
(variables or predictors) for model development. It plays 
a critical role in the data preprocessing workflow. Among 
various dimensionality reduction strategies, feature 
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selection stands out as a significant approach that retains 
only relevant features and eliminates redundant or 
irrelevant ones (2).  Feature selection is vital in machine 
learning and data analysis, particularly when handling 
high-dimensional datasets. Identifying and selecting the 
most important features enhances model performance by 
improving predictive accuracy, reducing overfitting, and 
lowering computational costs. In the context of target 
variables, the feature selection process significantly 
contributes to achieving more accurate predictions. 

Through systematically identifying and preserving 
relevant features while removing irrelevant or redundant 
ones, feature selection boosts a model's ability to capture 
underlying patterns and relationships within the data. 
This results in improved predictive accuracy, typically 
reflected in lower RMSE and MAE values. For instance, 
accurately forecasting GDP growth or inflation rates 
requires isolating key economic indicators such as broad 
money supply, government expenditure, and foreign 
direct investment. Similarly, understanding the drivers of 
unemployment or manufacturing growth necessitates 
focusing on the most impactful predictors.  Effective 
feature selection not only enhances accuracy but also 
improves model interpretability and computational 
efficiency, aiding in better economic analysis and 
policymaking. Reducing model complexity also helps 
prevent overfitting, ensuring forecasts remain robust and 
reliable when applied to new data. 

Feature selection (FS) is the process of identifying the 
most relevant and effective subsets of features to enhance 
the robustness of predictive models. This step is 
performed during the preprocessing phase of machine 
learning workflows. Before any training or testing,  
choosingthe most pertinent features based on the target 
variable is essential. While many FS techniques have 
been proposed in the literature, some methods, such as 
time series similarity methods, can also identify the most 
relevant features. A review of existing literature reveals 
that no studies have yet applied time series similarity 

methods specifically for feature selection. However, 
there are similarities between these two approaches that 
make time series similarity a promising alternative. Time 
series similarity measures the distance between two time 
series, which forms the foundation for clustering and 
classification tasks. A smaller distance between a feature 
and the target variable indicates that the feature is more 
relevant and should be included in the model. Thus, the 
goal of this research is to explore whether time series 
similarity methods can be as effective as traditional 
feature selection methods for identifying relevant feature 
subsets. The significance of this inquiry lies in the 
simplicity of the preprocessing step is just as important 
as the effectiveness of the methods employed, potentially 
saving both time and resources. 

The overarching goal of this study is to evaluate the 
effectiveness of similarity-based methods as feature 
selection tools for high-dimensional macroeconomic 
forecasting. Table 1 summarizes the specific objectives 
of the research: 

By addressing these objectives, the study contributes 
to  advancing feature selection methodologies and 
provides practical recommendations for integrating 
similarity-based approaches in macroeconomic 
forecasting and other domains. 

In the following sections, the methodology for 
integrating time series similarity measures into the 
feature selection framework is discussed (Section 2), the 
empirical results of the study are presented (Section 3), 
and the implications of the findings are analyzed in the 
discussion and conclusion (Section 4). 
 
Literature review 

Feature selection is essential for improving machine 
learning models accuracy, interpretability, and 
computational performance. By isolating the most 
significant features and eliminating those that are 
redundant or irrelevant, it addresses many of the 
challenges associated with high-dimensional datasets. 

Table 1. Summary of the specific objectives of the research 
Objective Details 

Exploring Similarity-Based Feature 
Selection 

Investigate using distance measures (e.g., Hausdorff, Euclidean, Dynamic 
Time Warping) as feature selection tools. 

Benchmarking Against Conventional 
Methods 

Compare similarity-based methods with Filter, Wrapper, and Embedded 
approaches using RMSE and MAE. 

Assessing Practical Implications Evaluate computational simplicity, robustness, and real-world applicability 
in economic forecasting. 

Demonstrating Relevance with Case Studies Use Iran’s macroeconomic indicators (1990–2022) to validate findings and 
provide actionable insights. 
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While feature selection has been extensively studied, the 
direct use of similarity measures as an independent 
method has not received much attention. Nevertheless, 
various studies have leveraged similarity measures 
indirectly to enhance feature selection techniques, as 
outlined below. 

Similarity-based methods have shown potential, 
particularly in unsupervised feature selection. For 
example, Zhu et al. (3) proposed the Feature Selection-
based Feature Clustering (FSFC) algorithm, which 
employs clustering driven by similarity measures to 
group and select features effectively. Similarly, Mitra (4) 
introduced an algorithm for unsupervised feature 
selection in large, high-dimensional datasets. This 
method evaluates features redundancy using similarity 
metrics, achieving greater efficiency and scalability. 

Building on these ideas, Shi et al. (5) developed the 
Adaptive-Similarity-based Multi-modality Feature 
Selection (ASMFS) approach. This technique constructs 
a similarity matrix to capture inherent relationships 
across different modalities in high-dimensional data. The 
method demonstrated superior performance in tasks such 
as Alzheimer’s disease classification, showcasing the 
value of similarity-based strategies in feature selection. 

Recent research has refined similarity-based 
approaches to make them more robust and adaptable. 
Mehri et al. (6) employed similarity measures to identify 
and eliminate redundant features by examining their 
resemblance to others. Shen, Chen, and Garibaldi (7) 
proposed a meta-learning framework that integrates 
fuzzy similarity measures for recommending optimal 
feature selection techniques tailored to diverse datasets. 
Their approach automates feature selection, enhancing 
adaptability across dataset characteristics. 

Goldani and Asadi (8) explored the application of 
similarity measures in financial forecasting, utilizing 
methods such as Haus Dorff distance and variance 
thresholds. These measures effectively selected 
predictive features, particularly in scenarios involving 
fluctuating data volumes. Similarly, Mathisen et al. (9) 
enhanced automated similarity measures for clustering, 
case-based reasoning, and one-shot learning, 
demonstrating their adaptability and utility in diverse 
applications. 

Matrix factorization techniques have also leveraged 
similarity measures for feature selection. QI et al. (10) 
introduced the Regularized Matrix Factorization Feature 
Selection (RMFFS) method, which employs matrix 
factorization to capture feature correlations and applies a 
combination of l1 and l2 norms to ensure sparsity in the 
feature weight matrix. Du et al. (11) proposed the Robust 
Unsupervised Feature Selection via Matrix Factorization 
(RUFSM) method, which decomposes the data matrix 

into latent cluster centers and sparse representations. This 
approach achieves high-accuracy feature selection by 
identifying orthogonal cluster centers. 

Hu et al. (12) extended this line of research with the 
Graph Self-Representation Sparse Feature Selection 
(GSR-SFS) method. Integrating a subspace-learning 
model into a sparse feature-level self-representation 
approach, improves both the interpretability and stability 
of the selected features. 

Feature selection methods have found significant 
applications in medical and dynamic datasets. Remeseiro 
and Bolon-Canedo (2) reviewed feature selection 
techniques in medical imaging, biomedical signal 
processing, and DNA microarray data, highlighting their 
utility in solving domain-specific challenges. Venkatesh 
and Anuradha (13) addressed the limitations of 
traditional feature selection methods for dynamic, noisy 
datasets generated in IoT and web-based applications. 
Their work emphasized the need for scalable and robust 
methods to handle the evolving nature of such data. 

The consensus among researchers, as highlighted by 
Guyon and Elisseeff (14), is that feature selection is 
crucial for improving the performance and 
interpretability of machine learning models. The choice 
of the feature selection method should be tailored to the 
specific problem and dataset, as there is no universal 
solution. Proper evaluation and validation are necessary 
to ensure the effectiveness of any feature selection 
technique. Jović et al. (15) investigated the calculation 
methods of standard filter, wrapper, and embedded 
methods. The result revealed that filters based on 
information theory and wrappers based on greedy 
stepwise approaches offer the best results. 

The existing body of work highlights the potential of 
similarity-based methods to address challenges such as 
feature redundancy and relevance in high-dimensional 
data. While traditional feature selection methods such as 
Filter, Wrapper, and Embedded approaches have  
succeeded, integrating similarity measures directly into 
feature selection frameworks offers a promising 
alternative. However, their application remains 
underexplored in macroeconomic forecasting, which has 
motivated the current study to evaluate their feasibility 
and effectiveness in this context. This study bridges this 
gap by investigating the feasibility and effectiveness of 
using time series similarity methods as feature selection 
techniques. By systematically comparing these methods 
with established feature selection techniques, the 
research aims to evaluate their performance in 
identifying relevant subsets of features while ensuring 
computational simplicity and robustness. The findings 
have implications not only for improving the 
preprocessing of high-dimensional datasets but also for 
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advancing methodologies in domains such as economic 
forecasting, healthcare, and beyond. 

 

Materials and Methods 
This section outlines the methodology employed in 

this research, consisting of four key steps as depicted in 
Figure 1. 
 
Dataset 

This paper aims to compare the predictive 
performance of datasets selected using feature selection 
techniques and time series similarity methods. The data 
set employed for this purpose is derived from the World 
Bank Development Indicators. To validate and assess the 
effectiveness of the dataset chosen through these 
methods, various target variables were selected, as 
summarized in the Table 2. These variables represent 

"Macroeconomic Indicators" for Iran, with data sourced 
from the World Bank website for 1990–2022. 

 
Preprocessing data  

As an initial step in the data preprocessing process, 
variables with a high proportion of missing data—
specifically, those with more than 80% of their values 
absent—are systematically removed from the dataset to 
ensure the reliability and integrity of subsequent 
analyses. This step helps eliminate variables that 
otherwise provide insufficient information for 
meaningful insights. For the remaining variables, which 
have a missing data rate of less than 80%, the gaps in the 
dataset are addressed through the application of the K-
Nearest Neighbors (KNN) imputation method. This 
technique leverages the patterns and relationships 
between existing data points to estimate and fill in 

 
 

Figure 1. The complete methodology 
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missing values, thereby preserving the completeness of 
the dataset while maintaining its statistical validity (16). 
This approach ensures that the data set is robust and 
suitable for further analysis. 
 
Conventional feature selection methods 

Feature selection (FS) techniques are employed to 
determine and preserve the most significant and 
insightful features of the data, ensuring the construction 
of precise predictive models. The dataset includes many 
features, leading to the presence of noise, irrelevant 
details, and redundant information. Hence, this increases 
the computational time and error rate of the learning 
algorithm (17). Three main categories of feature selection 
methods exist: filter, wrapper, and embedded. A brief 
description of each selection method is given in Table 3. 

They become particularly valuable in complex 
scenarios where neither filter, wrapper, nor can 
embedded methods alone achieve the desired outcomes. 
 
The proposed approach 

The proposed method falls under Filter techniques, 
which evaluate feature importance based on their 
correlation with the target variable. Figure 2 illustrates 
the framework of the suggested methodology, 
emphasizing its four main stages. 

At the heart of this approach lies the application of 
similarity measures. This study examines feature 

selection (FS) by utilizing various distance metrics, 
including Euclidean Distance, Dynamic Time Warping 
(DTW), Edit Distance on Real Sequences (EDR), 
Longest Common Subsequence (LCSS), and Edit 
Distance with Real Penalty (ERP). These metrics are 
crucial for assessing the similarity between time series, a 
fundamental task in the clustering and classifying of 
temporal data. The primary goal is to determine the 
distance between two time series, which is vital for 
analyzing temporal patterns and trends. 

In earlier applications, time series similarity was a 
direct statistical inference tool to uncover relationships 
between time series originating from different datasets 
(19). However, with the exponential growth of data 
collection in recent years, time series data has become 
increasingly prevalent, leading to a surge in analytical 
tasks such as regression, classification, clustering, and 
segmentation. These tasks often hinge on selecting a 
suitable distance metric to effectively quantify the degree 
of similarity between time series. 

Given the importance of similarity measures, this 
study explores various methods to determine the distance 
between time series. These methods are broadly 
classified into three main categories: stepwise measures, 

Table 2. The list of target variables 
Variable Description 
Adjusted Savings: Consumption of Fixed Capital Annual adjusted savings considering fixed capital 

usage. 
Broad Money Total money supply in the economy. 
Food Production Index (2014–2016 = 100) Measure of food production, base year 2014–2016. 
Foreign Direct Investment (Net Inflows as % of GDP) Net inflows of FDI as a percentage of GDP. 
GDP Growth Annual growth rate of GDP. 
General Government Final Consumption Expenditure (% of 
GDP) 

Government consumption as a percentage of GDP. 

GNI Gross National Income. 
Gross Domestic Income Total income generated domestically. 
Gross Domestic Saving National saving as a percentage of GDP. 
Gross National Expenditure (% of GDP) Total expenditure as a percentage of GDP. 
Gross Value Added at Basic Prices Value addition by all sectors at basic prices. 
Households and NPISHs Final Consumption Expenditure Per 
Capita (Constant 2015 US$) 

Per capita household expenditure in constant dollars. 

Imports of Goods and Services (Constant 2015 US$) Value of imports adjusted to constant 2015 US$. 
Manufacturing Value Added (Annual % Growth) Annual growth in manufacturing output. 
Official Exchange Rate (LCU per US$, Period Average) Average local currency exchange rate per US dollar. 
Stocks Traded (Total Value as % of GDP) Value of traded stocks as a percentage of GDP. 
Total Debt Service (% of Exports of Goods, Services, and 
Primary Income) 

Debt repayment as a percentage of exports. 

Unemployment (Total % of the Labor Force, Modeled ILO 
Estimate) 

Total unemployment rate as estimated by ILO. 

Wholesale Price Index (2010 = 100) Index measuring wholesale price levels (base 2010). 
Consumer Price Inflation Annual inflation based on consumer prices. 
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which align time series elements sequentially; 
distribution-based measures, which focus on statistical 
properties; and geometric methods, which emphasize 
spatial relationships and patterns. Understanding and 
leveraging these approaches is essential for advancing 
time series analysis and enhancing its applications across 
diverse fields. 
 
Stepwise Metrics 

 These metrics compare time-series samples one by 
one based on their time indices (20). A significant 

limitation of these methods is the requirement for 
identical sample sizes in the time series. The most notable 
stepwise metrics are Euclidean Distance and Correlation 
Coefficient, which are detailed below. 

o The Euclidean Distance is the simplest measure 
for comparing time series. It calculates the shortest 
distance between two points in Euclidean space using the 
Pythagorean theorem. The Euclidean Distance between 
two time series x and y of length n is defined as: 

   𝐷𝑒𝑢𝑐 ൌ ሺ∑ ሺ𝑥௜ − 𝑦௜ሻ௡௜ୀଵ ଵ ଶൗ                                       (1)  

Table 3. Conventional feature selection methods 

 

Filter 

 

Univariate 
  

- Fast - Ignores feature dependencies χ² (Chi-square test) 
- Scalable - Ignores interaction with the 

classifier 
Euclidean distance 

- Independent of the 
classifier 

 
i-test 

  
Information gain   

Gain ratio 
Multivariate 

  

- Models feature 
dependencies 

- Slower than univariate 
techniques 

Correlation-based 
feature selection 

(CFS) 
- Independent of the 

classifier 
- Less scalable than univariate 

techniques 
Markov blanket filter 

(MBF) 
- Better computational 

complexity than wrapper 
methods 

- Ignores interaction with the 
classifier 

Fast correlation-based 
feature selection 

(FCBF) 

 
Wrapper 

 

Deterministic 
  

- Simple - Risk of overfitting Sequential forward 
selection (SFS) 

- Interacts with the 
classifier 

- More prone than randomized 
algorithms to 

Sequential backward 
elimination (SBE) 

- Models feature 
dependencies 

getting stuck in a local optimum 
(greedy search) 

Recursive Feature 
Elimination 

- Less computationally 
intensive than randomized 

methods 

- Classifier dependent selection 
 

Randomized 
  

- Less prone to local optima - Computationally intensive Simulated annealing 
- Interacts with the 

classifier 
- Classifier dependent selection Randomized hill 

climbing 
- Models feature 

dependencies 
- Higher risk of overfitting than 

deterministic methods 
Genetic algorithms 

  
Estimation of 
distribution 
algorithms 

 
Embedded 

 

- Interacts with the 
classifier 

- Classifier dependent selection Decision trees 

- Better computational 
complexity than wrapper 

methods 

 
LASSO 

- Models feature 
dependencies 

 
Feature selection 
using the weight 
vector of SVM 
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This distance is widely used due to its simplicity and 
ease of understanding. However, a key limitation of 
Euclidean Distance is its sensitivity to time-axis 
transformations, such as scaling and shifting (21). 
Moreover, it cannot compare time series with different 
sample sizes. As it relies on point-to-point mapping, it is 
highly sensitive to noise and temporal misalignments, 
thus making it unsuitable for handling local shifts in time. 

A straightforward extension of Euclidean Distance is 
to calculate the similarity using extracted features rather 
than raw time-series data.  

o Pearson Correlation Coefficient is a widely used 
metric for assessing the linear relationship between two 
time series. It is defined as: 𝑐𝑜𝑟𝑟ሺ𝑥,𝑦ሻ = ாሺ௑௒ሻିாሺ௑ሻா(௒)௦௧ௗ(௑)௦௧ௗ(௒)                                          (2) 

The Pearson Correlation Coefficient ranges between 
-1 and 1, where 1 indicates a perfect positive correlation, 
and -1 reveals a perfect negative correlation. However, it 
cannot distinguish between dependent and independent 
variables or capture non-linear relationships. 
 
Elastic metrics 

 These metrics adjust the time axis by stretching or 
compressing it to minimize the effect of local variations. 
These methods are particularly effective for handling 
non-linear distortions on time. The most notable elastic 
methods include Dynamic Time Warping (DTW), 
Longest Common Subsequence (LCSS), and others. 

o Dynamic Time Warping (DTW) is an algorithm 
for measuring similarity between time series that may 
vary in speed or timing. Unlike Euclidean Distance, 
DTW aligns sequences non-linearly by stretching or 
compressing the time axis to find the optimal alignment. 
The cumulative distance is calculated as: 𝐷𝐼𝑆𝑇𝑀𝐴𝑇𝑅𝐼𝑋 =
൦𝑑(𝑥ଵ,𝑦ଵ) 𝑑൫𝑥ଵ,𝑦ଶ൯         … 𝑑൫𝑥ଵ,𝑦௠൯𝑑൫𝑥ଶ,𝑦ଵ൯ 𝑑൫𝑥ଶ,𝑦ଶ൯         … 𝑑൫𝑥ଶ,𝑦௠൯𝑑൫𝑥௡,𝑦ଵ൯ 𝑑൫𝑥௡,𝑦ଶ൯         … 𝑑൫𝑥௡,𝑦௠൯൪                             (3) 

 ൜𝑟(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + min {𝑟(𝑖 − 1, 𝑗), 𝑟(𝑖, 𝑗 − 1), 𝑟(𝑖 − 1, 𝑗 − 1)}𝐷𝑇𝑊(𝑥, 𝑦) = min{𝑟(𝑛,𝑚)}      

                                                                                    (4) 
DTW allows comparisons between time series of 

different lengths and identifies similar shapes, even if 
they are out of phase. However, it is computationally 
intensive, making it less practical for large datasets. 

o Longest Common Subsequence (LCSS) focuses 
on the longest matching subsequences between two time 
series while ignoring noise and distortions. For two 
sequences 𝑆௫ and 𝑆௬ of lengths n and m, the similarity is 
defined as: 𝑀(𝑖, 𝑗) =
⎩⎨
⎧ 0      ;   𝑖 = 0 𝑜𝑟 𝑗 = 01 + 𝑀(𝑖 − 1, 𝑗 − 1)  ;   𝑥௜ = 𝑦௝  , 𝑖 ≥ 1 𝑜𝑟 𝑗 ≥ 1𝑀𝑎𝑥 ൜𝑀(𝑖 − 1, 𝑗)𝑀(𝑖, 𝑗 − 1)    ; 𝑥௜ ≠ 𝑦௝  , 𝑖 ≥ 1 𝑜𝑟 𝑗 ≥ 1               (5) 

Where M (n,m) is calculated recursively: 𝑀(𝑖, 𝑗) =
⎩⎨
⎧ 0      ;   𝑖 = 0 𝑜𝑟 𝑗 = 01 + 𝑀(𝑖 − 1, 𝑗 − 1)  ;   (𝑥௜ − 𝑦௝) ≤ 𝜀 , 𝑖 ≥ 1 𝑜𝑟 𝑗 ≥ 1𝑀𝑎𝑥 ൜𝑀(𝑖 − 1, 𝑗)𝑀(𝑖, 𝑗 − 1)    ;  ൫𝑥௜ − 𝑦௝൯ > 𝜀 , 𝑖 ≥ 1 𝑜𝑟 𝑗 ≥ 1    (6) 

                          
LCSS is robust to noise and suitable for comparing 

time series with different lengths. However, it heavily 
depends on the similarity threshold, which impacts its 
accuracy. 

o The edit distance algorithm  counts the number of 
insertion, deletion, and substitution operations required 
to transform one string into another. It can be applied to 
time series, where points X and Y match if their absolute 
distance is less than ε (22). Given two sequences Y, and 
X, of lengths n and mmm, respectively, the Edit Distance 
on Real sequence (EDR) between X and Y refers to the 
number of insertions, deletions, or substitutions required 
to transform X into Y. It is defined as follows: 𝐸𝐷𝑅(𝑋 ,𝑌) =
 ⎩⎪⎨
⎪⎧ 𝑛          𝑖𝑓  𝑚 = 0𝑚          𝑖𝑓    𝑛 = 0𝑚𝑖𝑛 ቊ 𝐸𝐷𝑅൫𝑅𝑒𝑠𝑡(𝑋),𝑅𝑒𝑠𝑡(𝑌)൯ + 𝑠𝑢𝑏𝑐𝑜𝑠𝑡, 𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑋),𝑌) + 1 ,𝐸𝐷𝑅(𝑋,𝑅𝑒𝑠𝑡(𝑦)) + 1 ቋ (7)   

  

 
 

Figure 2. The framework of the proposed feature selection 
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o ERP, as with the EDR method, is based on Edit 
Distance (ED) for measuring the similarity of time-series 
data (23). ERP, accompanied by the L1-norm and Edit 
Distance, supports local time shifts and is a metric, 
meaning it satisfies the triangular inequality. Non-metric 
distance functions complicate problems as violating the 
triangular inequality renders most indexing structures 
infeasible. The primary reason why EDR does not satisfy 
the triangular inequality is that when a gap needs to be 
added, it repeats the previous element. In contrast, ERP 
does not face this issue since it uses the L1-norm between 
two non-gap elements and is designed in such a way that 
it applies an actual penalty between two non-gap 
elements. However, it employs a fixed value for 
calculating the distance for gaps (23). When calculating 
ERP for two time series 𝑆௫  and 𝑆௬  with lengths n and 
mmm, they are aligned to the same length by adding 
certain symbols (referred to as gaps). Then, each element 
in one time series is matched with a gap or an element in 
another. Finally, the ERP distance between the two-time 
series 𝑆௫  and 𝑆௬ is defined recursively. 𝑑௘௥௣ =

⎩⎪⎨
⎪⎧ ∑ |𝑥௜ − 𝑔|            𝑖𝑓 𝑛 = 0௠௜ୀଵ∑ ห𝑦௝ − 𝑔ห            𝑖𝑓 𝑚 = 0௡௝ୀଵ𝑚𝑖𝑛 ቐ𝑑௘௥௣(𝑅𝑒𝑠𝑡(𝑥),𝑅𝑒𝑠𝑡(𝑦) + |𝑥ଵ − 𝑦ଵ|),𝑑௘௥௣(𝑅𝑒𝑠𝑡(𝑥), 𝑦 + |𝑥ଵ − 𝑔|)𝑑௘௥௣(𝑥,𝑅𝑒𝑠𝑡(𝑦) + |𝑦ଵ − 𝑔|) ቑ          (8) 

 
 
o Time Warped Edit Distance (TWED) combines 

the strengths of DTW and edit distance algorithms by 
allowing elastic matching with additional constraints. 
The similarity is measured as the minimum sequence of 
edit operations required to align two time series. 

Geometric distances  
Geometric distances focus on the spatial 

characteristics of trajectories, particularly their shapes. 
Examples include Hausdorff Distance, Discrete Frechet 
Distance, and SSPD (Symmetric Segment Path 
Distance). 

o The Hausdorff Distance measures the maximum 
mismatch between two trajectories, defined as: 
 𝐻𝑎𝑢𝑠(𝑋,𝑌) = 𝑀𝑎𝑥{sup inf‖𝑥𝑦‖ଶ, sup inf‖𝑥𝑦‖ଶ}     (9)  𝑥 ∈ 𝑋 𝑦 ∈ 𝑌     𝑥 ∈ 𝑋 𝑦 ∈ 𝑌  

o Frechet Distance measures the similarity between 
curves by calculating the minimal "leash length" required 
to connect a dog and its owner walking along two 
separate paths. It is mathematically defined as: 

 𝐷ி௥௘௖௛௘௧(𝑇ଵ,𝑇ଶ) = min{max‖𝑤௞‖ଶ}                                    𝑤 𝑘 ∈ (0 … |𝑤|)                  (10) 

o SSPD shape-based distances such as Hausdorff 
and Frechet can align with corresponding paths but  can 
not be compared as a unified entity. SSPD is a shape-
based distance metric that does not consider the time 
index of the path. This metric calculates the point-to-
segment distance for all samples of the reference path and 
all segments of the other path then report the average of 
the obtained distances for the path sample as the SSPD 
distance (24). 

SSPD is defined as follows: 
 

  

𝐷ௌ௉஽(𝑇ଵ,𝑇ଶ) = ଵ௡భ ∑ 𝐷௣௧(𝑝௜ଵ,𝑇ଶ)௡భ௜భୀଵ(𝑝௜ଵ,𝑇ଶ) = 𝑚𝑖𝑛௜మ∈(଴….௡మିଵ)𝐷௣௦(𝑝௜భଵ , 𝑠௜మଶ )𝐷௉்(𝑃ଵଶ,𝑇ଵ) = min𝐷௉ௌ(𝑃ଵଶ, 𝑆௜భଵ )𝑖ଵ ∈ (0 … .𝑛ଵ − 1)               (11) 

 
This distance is not symmetric. By considering the 

average of these distances, SSPD is defined as follows: 
  𝐷ௌௌ௉஽(𝑇ଵ,𝑇ଶ) = ஽ೄುವ൫்భ,்మ൯ା஽ೄುವ൫்మ,்భ൯ଶ            (12)   

Validation methods 
Stationarity is a key principle in time series analysis, 

defined as the condition where the statistical attributes of 
a time series, such as its mean, variance, and 
autocorrelation, remain unchanged over time (25). A 
stationary time series is essential for reliable analysis and 
modeling. In the subsequent phase of our methodology, 
statistical tests were conducted to evaluate significant 
variations among the reduced datasets. 

To perform predictive analysis, a Linear Regression 
model was selected due to its straightforward nature and 
ease of interpretation. Nevertheless, alternative 
regression models may be applied based on the specific 
requirements of the study. To enhance the reliability of 
the model evaluation and mitigate the risk of overfitting, 
a 10-fold cross-validation technique was employed. This 
method involves splitting the dataset into ten roughly 
equal parts, with each subset alternately used for training 
and testing during the evaluation. 

Model performance was measured using two key 
metrics: Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). RMSE captures the deviation 
between predicted and observed values, whereas MAE 
quantifies the average error magnitude in predictions. 
The evaluation was carried out across 10 iterations, 
generating unique RMSE and MAE scores for each run. 
This iterative approach ensured the robustness and 



Evaluating Feature Selection Methods for Macro-Economic Forecasting, Applied for … 

251 

consistency of the results, providing a comprehensive 
validation of the methodology. 

 

Results and Discussion 
In this study, we present the results of predicting 

performance across 14 datasets, each selected using a 
different feature selection (FS) technique. These 
techniques include seven filter methods, five wrapper 
methods, three embedded methods, and four similarity-

based methods. The similarity methods as FS techniques 
are also evaluated within this framework. The chosen 
methods were selected for their widespread recognition 
in literature, allowing for a clear comparison. To assess 
predictive accuracy, we use two evaluation metrics: Root 
Mean Square Error (RMSE) and Mean Absolute Error 
(MAE), applied to the performance of a Linear 
Regression model. To evaluate the efficiency of each 
dataset selected by the FS methods, we implemented the 
techniques on the World Bank dataset, which includes 

 

 
Figure 3. The top four feature selection models based on 14 datasets chosen by Feature selection techniques 
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various target variables. In total, 20 different datasets 
were used, and FS methods were employed to identify 
the best feature subsets from each. 

Figure 3 illustrates the results of a 10-fold cross-
validation evaluation for each FS method. The datasets 
selected by these four methods consistently exhibited the 
lowest RMSE and MAE, indicating superior predictive 
accuracy. 

Table 4 presents the average MAE values for datasets 
processed using various feature selection (FS) methods. 
The Mean Absolute Error (MAE) averaged across 20 
datasets for each target variable.Those derived using the 
stepwise feature selection approach demonstrated 
superior predictive accuracy among the subsets 
generated. These subsets consistently exhibited the 
smallest MAE values compared to others. Following 
closely were the subsets identified through similarity-
based techniques, which also achieved notably low 
average MAE scores, underscoring their effectiveness in 
prediction tasks. 

Figure 4 indicates the average ranking of MAE 
selected based on FS methods. The ranking of each 
feature selection (FS) method was determined based on 
its ability to select the best subset of datasets with the 
lowest Mean Absolute Error (MAE). To provide a 
comprehensive analysis, the rank of each of the 20 
datasets across all FS methods was averaged. According 
to the results, the best predictive accuracy methods were 
Stepwise Selection, Tree-based methods, Hausdorff, 

Euclidean (Euc), and MI_Score. In contrast, Recursive 
Feature Elimination with Cross-Validation (RFECV) and 
Variance Thresholding exhibited the poorest 
performance. 

The average ranking across the feature selection 
categories (Figure 5) indicates that, on average, 
similarity-based methods outperformed the other 
approaches. Specifically, similarity methods achieved an 
average rank of 9.125, highlighting their superior 
performance in selecting the most relevant feature 
subsets compared to other methods. 

The results underscore the potential of similarity-
based methods as viable alternatives to traditional feature 
selection techniques, with implications for a wide range 
of applications, particularly macroeconomic forecasting. 
 
Effectiveness of Similarity-Based Approaches 

The strong performance of similarity-based methods, 
particularly Frechet and Hausdorff distances, 
demonstrates their ability to identify features that exhibit 
high relevance to target variables. These methods 
leverage the inherent structure of time series data, 
effectively capturing relationships that might be 
overlooked by traditional approaches. For instance, the 
Frechet Distance, which accounts for the shape and 
continuity of data trajectories, excels in handling time 
series with local distortions, while the Hausdorff 
Distance, which measures the greatest distance between 
points of two datasets, is robust against outliers and 

Table 4. Average Mean Absolute Error (MAE) of datasets  
Category Methods Average 
Wrappers stepwise 32/0299 
similarity frechet 51/6163 
similarity hausdorff 62/68829 
similarity sspd 91/70364 
similarity epr 91/88632 
similarity dtw 91/93176 
similarity euc 95/02939 
Embedded Tree-based 106/3909 
Wrappers recursive 270/5572 
similarity lcsso 292/8808 
similarity edr 298/4402 
Filters MI_Score 963/5397 
Filters inf 1683/06 
similarity Sparse 3/98E+08 
Wrappers forward 6/4E+08 
Wrappers simulated_annealing 8/13E+08 
Filters fisher 1/83E+09 
Embedded lasso 3/06E+12 
Filters chi 4/83E+13 
Filters corrolation 4/83E+13 
Filters data_dispersion 8/16E+13 
Filters var 6/41E+14 
Wrappers backward 6/47E+14 
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noise. 
This capability aligns with clustering and 

classification literature findings, where similarity 
measures are frequently employed to quantify 
relationships between data points. By applying these 
measures to feature selection, this study extends their 
utility into a new domain, validating their effectiveness 
in identifying subsets of features that enhance model 
performance. Further, their simplicity and computational 

efficiency make similarity-based methods suitable for 
real-world scenarios where quick and accurate analysis is 
critical. 
 
Comparison with Traditional Methods 

Traditional feature selection methods, such as 
Stepwise Selection and Tree-based approaches, remain 
benchmarks in the field due to their consistent 
performance and well-established methodologies. 

 
 

Figure 4. The average ranking of MAE selected based on FS methods 
 

 
 

Figure 5. The ranking of the category of feature selection methods 
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Stepwise Selection, in particular, excels in identifying 
key features through iterative inclusion or exclusion, 
making it a preferred choice for many predictive 
modeling tasks. Similarly, Tree-based methods, such as 
Random Forests, offer an embedded mechanism for 
ranking features by their importance, balancing accuracy 
and interpretability. 

However, similarity-based methods emerge as strong 
contenders, offering a computationally efficient 
alternative especially advantageous in high-dimensional 
scenarios. Unlike traditional methods that often rely on 
iterative testing or classifier-specific criteria, similarity-
based approaches operate independently of classifiers, 
enabling faster preprocessing and reducing the risk of 
overfitting. This makes them particularly appealing for 
datasets with numerous variables, where computational 
resources and time constraints are significant 
considerations. 
 
Implications for Macroeconomic Forecasting  

Macroeconomic forecasting heavily relies on 
accurate predictions of key indicators, such as GDP 
growth, inflation rates, and unemployment levels. The 
use of similarity-based methods in this context provides 
several advantages: 
 Simplification of Preprocessing: By directly 

measuring the relationship between features and target 
variables, similarity-based methods eliminate redundant 
preprocessing steps. This simplifies the pipeline and 
lowers the risk of introducing errors during data 
preparation. 
 Enhanced Interpretability: The straightforward 

nature of similarity measures, such as distances or 
correlations, allows for easier interpretation of results. 
Policymakers and economists can gain clearer insights 
into which features drive predictions, thus facilitating 
more informed decision-making. 
 Robust Forecasting Tools: By focusing on the 

most relevant features and minimizing noise, these 
methods contribute to developing robust and reliable 
forecasting models. This is particularly critical for 
policymaking, where accurate predictions can guide 
interventions and resource allocation. 

 
Conclusion 

In this study, we investigated which feature selection 
(FS) and similarity methods most effectively enhance the 
predictive performance of models for various 
macroeconomic variables. The analyzed indicators 
included a diverse range of metrics, such as adjusted 
savings (consumption of fixed capital), broad money, the 
food production index, imports of goods and services 
(constant 2015 US$), manufacturing value-added 

(annual % growth), official exchange rate (LCU per 
US$), stocks traded (total value as a % of GDP), total 
debt service (% of exports), unemployment (% of the 
total labor force, ILO estimate), the wholesale price index 
(2010 = 100), and consumer price inflation. To achieve 
this, we evaluated 23 different FS and similarity methods 
to identify the most effective techniques for selecting 
features that provide accurate predictions of these 
macroeconomic indicators. 

Time series similarity algorithms, though rarely 
utilized as standalone feature selection methods, were a 
key focus of this research. By comparing these 
algorithms against traditional FS approaches, we aimed 
to assess their potential in identifying relevant features. 
Each FS and similarity method was applied to the 
datasets, and their performance was evaluated using both 
MAE and RMSE metrics. The current findings are hence 
in agreement with the studies of Zhu et al. and Mitra, who 
applied the methods of similarity measures for feature 
grouping and selection to increase clustering 
performance. Additionally, robustness from similarity 
metrics obtained herein further supports conclusions 
from Mehri et al. and Goldani and Asadi, demonstrating 
their viability in high-dimensional and financial 
forecasting setups. This work extends these approaches 
toward macroeconomic forecasting, hence addressing an 
important lacuna in the related literature. Besides, the 
traditional feature selection methods, such as stepwise 
selection and tree-based methods, were confirmed to be 
reliable benchmarks, which agrees with the results 
obtained by Jović et al. However, the similarity-based 
methods were their strong competitors, providing equal 
or higher predictive accuracy with computational 
simplicity. Unlike other methods, such as Recursive 
Feature Elimination and Variance Thresholding, which 
did not perform well in our analysis, results consistent 
with the critiques of Guyon similarity-based approaches 
provided a more robust alternative for high-dimensional 
datasets. Findings revealed that methods such as 
Stepwise Selection paired with Tree-based techniques, 
Hausdorff distance, Euclidean distance, and Mutual 
Information Score consistently outperformed other 
approaches, demonstrating higher predictive accuracy. 
Conversely, methods like Recursive Feature Elimination 
with Cross-Validation and Variance Thresholding 
showed comparatively weaker results, suggesting limited 
utility in this context. These results highlight the potential 
of similarity-based algorithms as effective tools for 
feature selection in macroeconomic forecasting. 

By systematically comparing these methods with 
established feature selection techniques across 20 
datasets of macroeconomic indicators, the key findings 
were obtained as follows: 
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Performance of Similarity-Based Methods: 
• Similarity-based methods, particularly Frechet 

and Hausdorff distances, demonstrated strong 
performance in identifying relevant features, with 
competitive Mean Absolute Error (MAE) values 
compared to traditional techniques. 

• The computational efficiency and robustness of 
similarity-based methods make them suitable for high-
dimensional datasets, offering an alternative to Filter, 
Wrapper, and Embedded methods. 

Advancing Feature Selection: 
• Traditional approaches such as Stepwise 

Selection and Tree-based methods remain benchmarks 
thanks to their high accuracy and established 
methodologies. However, similarity-based methods 
provide a complementary approach, particularly in 
applications requiring computational simplicity and 
adaptability. 

Macroeconomic Implications: 
• The adoption of similarity-based feature selection 

can improve forecasting accuracy for critical economic 
indicators such as GDP growth, inflation, and 
unemployment. These tools enhance interpretability and 
simplify preprocessing, making them valuable for 
policymakers and economic analysts. 

Studies could explore hybrid models that integrate 
similarity-based techniques with traditional feature 
selection frameworks to leverage the strengths of both 
approaches. For example, combining similarity measures 
with Wrapper methods could further boost accuracy 
while maintaining computational efficiency. Since the 
performance of similarity-based methods depends on the 
choice of distance metrics, research should focus on 
developing adaptive or data-driven methods for selecting 
optimal metrics based on dataset characteristics. 

Adopting similarity-based feature selection methods 
significantly advances macroeconomic forecasting and 
policy analysis. These methods would improve the 
accuracy and efficiency of models while maintaining 
transparency and interpretability. By prioritizing 
adopting and developing these techniques, policymakers 
can make more informed decisions, better allocate 
resources, and enhance their ability to respond to 
economic challenges. Future efforts should focus on 
refining these methods, scaling their use across various 
domains, and integrating them into comprehensive, real-
time forecasting systems to support dynamic and 
effective policymaking. 

 
 

References 
1. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, 

et al. Feature selection: A data perspective. ACM Comput 
Surv. 2017; 50(6):1–45. 

2. Remeseiro B, Bolon-Canedo V. A review of feature 
selection methods in medical applications. Comput Biol 
Med. 2019; 112:103375. 

3. Zhu Z, Ong YS, Dash M. Wrapper-filter feature selection 
algorithm using a memetic framework. IEEE Trans Syst 
Man Cybern. 2007; 37(1):70–6. 

4. Mitra P, Murthy CA, Pal SK. Unsupervised feature 
selection using feature similarity. IEEE Trans Pattern Anal 
Mach Intell. 2002; 24(3):301–12. doi:10.1109/34.990133 

5. Shi J, Wang B, Shi Q, et al. Adaptive-similarity-based 
multi-modality feature selection for multimodal 
classification in Alzheimer's disease. Med Image Anal. 
2020; 60:101618. 

6. Mehri M, Chaieb R, Kalti K, Héroux P, Mullot R, Essoukri 
Ben Amara N. A comparative study of two state-of-the-art 
feature selection algorithms for texture-based pixel-
labeling task of ancient documents. J Imaging. 2018; 
4(8):97. 

7. Shen Z, Chen X, Garibaldi JM. A novel meta-learning 
framework for feature selection using data synthesis and 
fuzzy similarity. In: 2020 IEEE Int Conf Fuzzy Syst 
(FUZZ-IEEE). 2020. p. 1–8. 

8. Goldani M, Tirvan SA. Sensitivity assessing to data volume 
for forecasting: introducing similarity methods as a suitable 
one in feature selection methods. arXiv preprint 
arXiv:2406.04390. 2024. 

9. Mathisen BM, Aamodt A, Bach K, Langseth H. Learning 
similarity measures from data. Prog Artif Intell. 2020; 
9(2):129–43. 

10. Qi M, Wang T, Liu F, Zhang B, Wang J, Yi Y. 
Unsupervised feature selection by regularized matrix 
factorization. Neurocomputing. 2017; 273:593–610. 

11. Du S, Ma Y, Li S, Ma Y. Robust unsupervised feature 
selection via matrix factorization. Neurocomputing. 2017; 
241:115–27. 

12. Hu R, et al. Graph self-representation method for 
unsupervised feature selection. Neurocomputing. 2015; 
220:130–7. 

13. Venkatesh B, Anuradha J. A review of feature selection and 
its methods. Cybern Inf Technol. 2019; 19(1):3–26. 

14. Guyon I, Elisseeff A. An introduction to variable and 
feature selection. J Mach Learn Res. 2003; 3:1157–82. 

15. Jović A, Brkić K, Bogunović N. A review of feature 
selection methods with applications. In: 38th International 
Convention on Information and Communication 
Technology, Electronics and Microelectronics (MIPRO). 
2015. p. 1200–5. 

16. Goldani M. Comparative analysis of missing values 
imputation methods: a case study in financial series 
(S&P500 and Bitcoin value data sets). Iran J Finance. 2024; 
8(1):47–70. 

17. Ali M, Mazhar T, Shahzad T, Ghadi YY, Mohsin SM, 
Akber SMA, et al. Analysis of feature selection methods in 
software defect prediction models. IEEE Access. 2023. 

18. Saeys Y, Inza I, Larranaga P. A review of feature selection 
techniques in bioinformatics. Bioinformatics. 2007; 
23(19):2507–17. 

19. Chen H, GAO X. A new time series similarity measurement 
method based on fluctuation features. Tehnički Vjesnik. 



Vol. 35  No. 3  Summer 2024 M. Goldani. J. Sci. I. R. Iran 

256 

2020; 27:1134–41. 
20. Salarpour A, Khatunloo H. A segmental distance-based 

similarity criterion using time deviation. J Electr Eng Univ 
Tabriz. 2019; (2):645–56. 

21. Keogh E, Pazzani M. Derivative dynamic time warping. In: 
Proceedings of the 2001 SIAM International Conference on 
Data Mining. 2001. p. 1–11. 
doi:10.1137/1.9781611972719.1 

22. Besse PC, Guillouet B, Loubes JM, Royer F. Review and 
perspective for distance-based clustering of vehicle 
trajectories. IEEE Trans Intell Transp Syst. 2016; 
17(11):3306–17. 

23. Chen L, Ng RT. On the marriage of Lp-norms and edit 
distance. In: Proceedings of the Thirtieth International 
Conference on Very Large Data Bases (VLDB). 2004. p. 
792–803. 

24. Besse PC, Guillouet B, Loubes JM, Royer F. Review and 
perspective for distance-based clustering of vehicle 
trajectories. IEEE Trans Intell Transp Syst. 2016; 
17(11):3306–17. 

25. Bergmeir C, Benítez JM. On the use of cross-validation for 
time series predictor evaluation. Inf Sci. 2012; 191:192–
213. 

 



Journal of Sciences, Islamic Republic of Iran 35(3): 257 - 265 (2024) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 
 

257 

Comparison of Adaptive Neural-Based Fuzzy Inference 
System and Support Vector Machine Methods for the 

Jakarta Composite Index Forecasting  
 

Ayu Mutmainnah*, Sri Astuti Thamrin, Georgina Maria Tinungki  
 

Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, 
Makassar, 90245 Indonesia Makassar, Indonesia  

 
Received: 2 September 2024 / Revised: 30 November 2024 / Accepted: 2 February 2025   

 
Abstract 

The Jakarta Composite Index (JCI) is a pivotal benchmark for evaluating the 
performance of all stocks listed on the Indonesia Stock Exchange (IDX). Given the 
inherent complexity, nonlinearity, and non-stationarity of stock market data, selecting 
robust forecasting methods is essential. This study compares the performance of the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) 
in forecasting JCI movements. The researcher assessed prediction accuracy using Root 
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The training 
phase revealed that the optimal ANFIS model employed the generalized bell membership 
function, outperforming trapezoidal and Gaussian alternatives. Concurrently, the best 
SVM configuration utilized a linear kernel (cost = 10), demonstrating superior 
performance compared to radial basis function (RBF) and sigmoid kernels. In the testing 
phase, ANFIS achieved an RMSE of 39.894 and MAPE of 0.4647, while SVM recorded 
an RMSE of 38.728 and MAPE of 0.4516. These results underscore the superior 
predictive capabilities of SVM, positioning it as a reliable tool for stock market 
forecasting. The study’s findings provide valuable insights for investors and 
policymakers in navigating market uncertainties and optimizing investment strategies. 
 
Keywords: Forecasting; Support Vector Machine; Jakarta Composite Index; Adaptive Neural-based Fuzzy 
Inference System. 
 

Introduction 
The Jakarta Composite Index (JCI) serves as a crucial 

benchmark, reflecting the overall performance of all 
stocks listed on the Main Board and Development Board 
of the Indonesia Stock Exchange (IDX) (1). Stock price 
movements within the JCI exhibit diverse patterns 
throughout the trading day, with some stocks 
experiencing gains, others losses, and a subset remaining 
                                                        
* Corresponding Author: Tel: +62 821 3766 4330; Email: amutmainnah8@gmail.com 

unchanged (2). Figure 1 illustrates the general structure 
of a fuzzy inference system, while Figure 3 depicts the 
specific ANFIS architecture used in this study. A rising 
JCI trend signals an overall increase in stock prices, 
whereas a declining trend indicates a general downturn. 
For participants in the capital market, are closely 
monitoring stock price movements is essential to inform 
strategic investment decisions. However, forecasting 
stock market behavior poses significant challenges due to 
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its inherently complex, nonlinear, and non-stationary 
nature. 

In addressing these complexities, there have been 
various advanced forecasting approaches leveraging 
artificial intelligence developed, including the Adaptive 
Neuro-Fuzzy Inference System (ANFIS), Support Vector 
Machine (SVM), Genetic Programming (GP), and 
Artificial Neural Networks (ANN). In a study by When-
Chuan Wang (3), the forecasting performance of these 
methods was compared to daily river flow data. The 
results demonstrated that ANFIS and SVM surpassed 
traditional statistical approaches such as ARMA, as well 
as other AI-based methods like GP and ANN, in terms of 
Coefficient of Determination (R²), Mean Absolute 
Percentage Error (MAPE), and Root Mean Square Error 
(RMSE). Notably, the predicted values of ANFIS and 
SVM closely aligned with observed data trends, 
highlighting their efficacy in handling nonlinear datasets. 

The ANFIS model excels at identifying intricate 
nonlinear patterns in data, combining the strengths of 
fuzzy inference systems and neural network 
architectures. While fuzzy inference systems can 
translate expert knowledge into rule-based models, 
determining optimal membership functions can be 
computationally intensive. ANFIS addresses this 
limitation by integrating neural network learning 
mechanisms, automating the search for optimal 
membership functions, and thus expediting the modeling 
process. This dual capability makes ANFIS a versatile 
tool for applications across various domains. For 
example, ANFIS has been successfully utilized to 
forecast and analyze air quality in Wuhan City, 
particularly in studying the effects of COVID-19 on 
environmental parameters (4). 

Similarly, the Support Vector Machine (SVM) 
method offers a robust alternative for time series 
forecasting, including stock price prediction. SVM is 
particularly well-suited for complex, nonlinear datasets 
and has demonstrated high predictive accuracy when its 
hyperparameters are optimally tuned. A comparative 
study of SVM and Backpropagation-based ANN for 
forecasting foreign tourist arrivals in Bali Province 
revealed that SVM, using a radial basis function kernel, 
outperformed ANN by achieving the lowest forecasting 
errors (5). 

The high potential returns offered by the Indonesian 
stock market have attracted significant interest from 
domestic and international investors, particularly in 
comparison to other regional markets. The potential 
underscores the importance of accurate stock price 
forecasting to maximize investment returns. Previous 
studies have consistently shown that ANFIS and SVM 
outperform other forecasting methods in terms of 

predictive accuracy. Therefore, this study seeks to apply 
ANFIS and SVM methodologies to forecast the Jakarta 
Composite Index (JCI) to contribute to more informed 
investment strategies. 

 

Materials and Methods 
Forecasting 

Forecasting involves estimating future values based 
on historical data, typically employing statistical and 
computational methods. It is an essential tool in decision-
making processes, allowing for predicting future trends 
using past observations. Time series analysis is widely 
used among the various approaches, relying on historical 
values and error patterns to predict future outcomes over 
time (6). 
 
Adaptive Neural-Based Fuzzy Inference System 
(ANFIS) 

ANFIS integrates fuzzy inference systems with 
neural network architecture, leveraging the strengths of 
both approaches. While fuzzy inference systems excel in 
translating expert knowledge into rule-based models, 
they often require significant effort to determine optimal 
membership functions. Neural networks streamline this 
process by automating the search for membership 
functions, enhancing the applicability of ANFIS across 
diverse fields (7). Assuming a Fuzzy inference system 
with two inputs, 𝑥ଵ , 𝑥ଶ, and single output 𝑌., the first-
order Sugeno fuzzy model can be represented as follows: if 𝑥ଵ = 𝐴ଵ and 𝑥ଶ = 𝐵ଵ, than 𝑓ଵ = 𝑝ଵ௫ + 𝑞ଵ௬ + 𝑟ଵ if 𝑥ଵ = 𝐴ଶ and 𝑥ଶ = 𝐵ଶ, than 𝑓ଵ = 𝑝ଶ௫ + 𝑞ଶ௬ + 𝑟ଶ 

Here 𝑨𝒊  and 𝑩𝒊  are linguistic labels (e.g., low, 
medium, high) represented by membership functions, 
and pi, qi, and ri are consequent parameters. 

 
Member Functions of ANFIS 
Fuzzy set theory extends classical set theory by 

allowing degrees of membership for elements. The 
degree of membership, denoted by μA(x), quantifies how 
much an element x belongs to a fuzzy set A (8). 
Membership values are defined using functions such as: 

1. Trapezoidal Membership Function: 

𝑓ሺ𝑥,𝑎, 𝑏, 𝑐,𝑑ሻ =
⎩⎪⎪⎨
⎪⎪⎧ 0; 𝑥 < 𝑎𝑥 − 𝑎𝑏 − 𝑎 ; 𝑎 ≤ 𝑥 ≤ 𝑏1; 𝑏 ≤ 𝑥 ≤ 𝑐𝑑 − 𝑥𝑑 − 𝑐 ; 𝑐 ≤ 𝑥 ≤ 𝑑0; 𝑥 > 𝑑

 

2. Generalized Bell Membership Function: 
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𝐵ሺ𝑥, 𝑎, 𝑏, 𝑐,𝑑ሻ = 11 + ൤ቀ𝑥 − 𝑐𝑎 ቁଶ൨௕ 

3. Gaussian Membership Function: 𝐺ሺ𝑥, 𝜇,𝜎ሻ = 𝑒𝑥𝑝 ቆ−ሺ𝑥 − 𝜇ሻଶ2𝜎ଶ ቇ 

A Fuzzy Inference System (FIS) is a computational 
framework grounded in Fuzzy set theory, utilizing Fuzzy 
rules (in the form of IF-THEN statements) and Fuzzy 
reasoning. The system receives a crisp input, which is 
then processed by a knowledge base containing Fuzzy 
rules in the IF-THEN format. The system evaluates the 
"fire strength" for each rule. When multiple rules are 
present, the system aggregates the outcomes of all the 
rules. Finally, the aggregated results are defuzzified to 
produce a crisp output value (9). 
 
Architecture of ANFIS 

The network architecture of the ANFIS method 
consists of five layers, as illustrated in Figure 2 (10). The 
ANFIS network comprises five layers, each with distinct 
roles: 

1. Fuzzification Layer: Calculates the degree of 
membership for each input using membership functions. 
The premise parameters are adapted in this layer. 
Suppose 𝑥ଵ = 𝑋ଵ  and 𝑥ଶ = 𝑋ଶ , the node function is 
described by the following equation: 𝑂ଵ,ଵ = 𝜇஺భሺ𝑋ଵሻ 

𝑂ଵ,ଶ = 𝜇஺మሺ𝑋ଵሻ 𝑂ଵ,ଷ = 𝜇஻భሺ𝑋ଶሻ 𝑂ଵ,ସ = 𝜇஻మሺ𝑋ଶሻ 
2. Fuzzy Logic Operation Layer: Computes the 

firing strength of rules using the product of input 
memberships. The node function for this layer can be 
described by the following equation: 𝑂ଶ,ଵ = 𝑤௜ = 𝜇஺೔ሺ𝑋ଵሻ𝜇஻೔ሺ𝑋ଶሻ 

3. Normalization Layer: Normalizes the firing 
strengths to ensure proportionality. 𝑂ଷ,௜ = 𝑤ഥ௜ = 𝑤௜∑ 𝑤௜௜  

4. Defuzzification Layer: Calculates the weighted 
output of each rule using consequent parameters. 𝑂ସ,௜ = 𝑤ഥ௜𝑓௜ = 𝑤ഥ௜ሺ𝑐௜ଵ𝑥ଵ + 𝑐௜ଶ𝑥ଶ + 𝑐௜଴ሻ 

5. Output Layer: Aggregates the results from all 
rules to produce the final model output. 𝑂ହ = ෍𝑤ഥ௜𝑓௜௜ = ∑ 𝑤௜𝑓௜௜∑ 𝑤௜௜  

Parameter estimation is performed using hybrid 
learning, combining the Recursive Least Squares 
Estimation (RLSE) for linear parameters and 
Backpropagation for nonlinear parameters (17). 
 
Support Vector Machine (SVM) 

SVM is a machine learning algorithm grounded in 
statistical learning theory, suitable for classification and 
regression tasks (11, 12). SVM maps input data into a 

 
Figure 1. Fuzzy Inference System 

 

 
 

Figure 2. Architecture of ANFIS 
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high-dimensional feature space using kernel functions, 
enabling the separation of non-linearly separable data. 
The kernel trick transforms data into a higher-
dimensional space, facilitating linear separation (13). 

Commonly used kernels include: 
1. Linear Kernel: Kሺx, zሻ = 𝑥்𝑧 
2. Sigmoid Kernel: Kሺx, zሻ = tanh (𝛾 . 𝑥்𝑧 + 𝑟) 
3. Radial Basis Function (RBF) Kernel: K(x, z) = 𝑒𝑥𝑝 ቊ−‖𝑥 − 𝑧‖ଶ2𝜎ଶ ቋ 

The optimal SVM parameters are typically identified 
using a grid search algorithm, which systematically 
evaluates combinations of parameters. 
 
Performance Metrics for Model Evaluation 

The accuracy of forecasting models is assessed using 
the following metrics: 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = ቆ∑(𝑦௜ − 𝑦ො௜)𝑛 ቇଵଶ 

Lower RMSE values indicate better predictive 
accuracy (14). 

Mean Absolute Percentage error (MAPE) 

𝑀𝐴𝑃𝐸 =  ∑ |(𝑦௜ − 𝑦ො௜ 𝑦௜ )௡௧ୀଵ | 100%𝑛  
Lower MAPE values denote higher forecasting 

precision (15). 

 

Results 
This study utilizes a dataset comprising daily closing 

prices of Jakarta Composite Index (JCI) shares over two 
years, specifically from January 2, 2020 to December 29, 
2023. The movement pattern of stock prices is highly 
volatile and exhibits non-linear characteristics. To 
address this, the research applies artificial intelligence 
methods, including the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) and Support Vector Machine (SVM). 
Before modeling, the dataset is divided into training and 
testing subsets, as detailed in Tables 1 and 2. 

Table 3 shows that the dataset consists of 974 
observations of JCI stock prices collected during the 
study period. The data is split so that 80% is allocated for 
training, and 20% is reserved for testing. The training 
data is utilized to build prediction models, which are 
subsequently validated using the testing data to evaluate 
their predictive performance. 
 
ANFIS Training Process 

The ANFIS model is implemented using MATLAB 
software, with an error tolerance of zero and a maximum 
of 20 epochs. Before the training process, the data is 
normalized to 0 to 1 to enhance computational efficiency 
and meet system requirements. The ANFIS model uses 
the JCI stock closing price as the target variable and 
includes six input variables derived from the prior six 
days. Mathematically, the ANFIS model is expressed as: 

 
Table 1. Training Data and Target Data 

Data Training Data Target Data 
1 Data from the 1st day to the 6th day Data from the 7th day 
2 Data from the 2nd day to the 7th day Data from the 8th day 
3 Data from the 3rd day to the 8th day Data from the 9th day 
… … … 
774 Data from the 768th day to the 773th day Data from the 774th day 

 
 

Table 2. Dataset division 
No Dataset division Period Number of Data 
1. Training Data January 2, 2014 – March 6, 2023 780 
2. Testing Data March 7, 2023 – December 29, 2023 194 

 

Table 3. Nonlinear Parameters of Trapezoidal Function 
Input a b c d 
Input 1 mf1 (A1) -0.7000 -0.3000 0.3032 0.6919 
Input 1 mf2 (A2) 0.2536 0.6983 1.3000 1.7000 
Input 2 mf1 (B1) -0.7000 -0.3000 0.2986 0.6892 
… … … … … 
Input 6 mf2 (F2) 0.2879 0.6988 1.3000 1.7000 
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𝑤ഥଵ௧.𝑓ଵ = 𝑤ഥଵ௧൫𝐶ଵ,ଵ𝑋ଵ + 𝐶ଵ,ଶ𝑋ଶ + 𝐶ଵ,ଷ𝑋ଷ + 𝐶ଵ,ସ𝑋ସ+ 𝐶ଵ,ହ𝑋ହ + 𝐶ଵ,଺𝑋଺ + 𝐶ଵ,଴൯ + ⋯+ 𝑤ഥ଺ସ௧൫𝐶଺ସ,ଵ𝑋ଵ + 𝐶଺ସ,ଶ𝑋ଶ + 𝐶଺ସ,ଷ𝑋ଷ+ 𝐶଺ସ,ସ𝑋ସ + 𝐶଺ସ,ହ𝑋ହ + 𝐶଺ସ,଺𝑋଺+ 𝐶଺ସ,଴൯ 
Here 𝑋ଵ,𝑋ଶ,𝑋ଷ,𝑋ସ,𝑋ହand 𝑋଺ represent the six input 

variables.wwithh denotes the normalized. firing strength 

for rule,Cij,and i represent the linear parameters for rule 𝑖. 
In the ANFIS architecture, the first layer performs 

fuzzification, transforming crisp values into Fuzzy 
numbers based on membership functions, such as 
Trapezoidal, Generalized Bell, and Gaussian. The 
nonlinear parameters in the membership functions are 
optimized using a backpropagation error method, as 

 
Figure 3. Anfis Structure Of Jci Stock Price Data 

 

 
Figure 4. Svm Prediction Before Optimization 

 

 
Figure 5. Svm Prediction Using Kernels 
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illustrated in Tables 3–5. The mathematical 
representations of the membership functions are as 
follows: 

a. Trapezoidal Membership Function: 𝜇஺ଵ(𝑋ଵ)
=
⎩⎪⎪
⎨⎪
⎪⎧ 0, 𝑋ଵ < − 0.7 𝑋ଵ − (−0.7)−0.3 − (−0.7) , 0.7 ≤ 𝑋ଵ ≤ −0.3 1, −0.3 ≤ 𝑋ଵ ≤ 0.3032 (0.5505 − 𝑋ଵ)0.6919 − 0.3032 , 0.3032 ≤ 𝑋ଵ ≤ 0.69190, 𝑋ଵ > 0.6919

 

 
b. Generalized Bell Membership 

Function: 𝜇஺ଵ(𝑋ଵ, 0.4823, 2.0050,−0.0036)= 11 + ቈቀ𝑥 − 0.00360.4823 ቁଶ቉ ଶ.଴଴ହ଴ 

c. Gaussian Membership Function: 𝜇஺ଵ(𝑋ଵ, 0.3614,−0.0213)= 𝑒𝑥𝑝 ቆ−(𝑥 − 0.3614)ଶ2(0.0213)ଶ ቇ 

The second layer computes the firing strength (αα-
predicate) using Zadeh's AND operator, combining the 
membership degrees generated in the first layer. The step 
produces 64 rules derived from 26, representing all 
possible combinations of inputs and membership 
functions. 

In the third layer, the firing strengths are normalized 
by dividing each by the total sum of all firing strengths. 
The normalized values are then defuzzified in the fourth 
layer, where fuzzy outputs are converted to crisp values 
using linear parameters optimized through the Least 
Squares Estimation (LSE) method, Tables 6–8 present 
detailed model parameters. The fifth and final layer 
aggregates the outputs to generate the final predictions in 
Table 9. 

A comparison of membership functions is carried out 
to find the best model with the following ANFIS best 
model criteria comparison. Based on the goodness of 
output model criteria in Table 10, the Generalized Bell 
function in ANFIS performs best with the lowest MAPE 
value of 0.4284. This function shows the highest relative 
accuracy in forecasting stock prices compared to the 
Gaussian and Trapezoidal functions. Therefore, the 
ANFIS model with the Generalized Bell membership 
function will be used for testing the Test Data. 
 
SVM Training Process 

SVM models are implemented using the e1071 
package in R Studio. This method transforms input data 
into a high-dimensional feature space using kernel 
functions, constructing an optimal hyperplane for 
classification or regression. Initially, the SVM model 
uses default parameters, resulting in predictions that 
deviate significantly from the actual data, as shown in 
Figure 4. 

Parameter optimization is conducted using a grid 
search method, testing combinations of parameters: 𝜀 = ሼ0,0.1,0.2, . . . ,1ሽ , 𝑐𝑜𝑠𝑡 =  ሼ2ିଶ, 2ିଵ, … , 2ଽሽ  and 𝑔𝑎𝑚𝑚𝑎 = ሼ2ଽ, 2଼, … , 2ଶሽ . Cross-validation is 
employed to evaluate model performance for each 
parameter combination. The tested kernel functions are 
the Radial Basis Function (RBF), linear, and sigmoid.  
The linear kernel produces predictions closest to actual 
data, as illustrated in Figure 5.  

The linear kernel achieves the lowest Root Mean 
Square Error (RMSE) compared to other kernels, with 
optimal parameter values of cost=10cost=10. This kernel 
is selected to forecast test data and predict future JCI 
stock prices. 

 

Discussion 
Following the training data analysis using both 

Table 4. Nonlinear Parameters of Generalized Bell Function 
Input a b c 
Input 1 mf1 (A1) 0.4823 2.0050 -0.0036 
Input 1 mf2 (A2) 0.4414 2.0005 1.0465 
Input 2 mf1 (B1) 0.4246 2.0113 -0.0250 
… ... ... ... 
Input 6 mf2 (F2) 0.4260 2.0132 1.0192 

 
Table 5. Nonlinear Parameters of Gaussian Function 

Input µ σ 
Input 1 mf1 (A1) 0.3614 -0.0213 
Input 1 mf2 (A2) 0.3477 1.0324 
Input 2 mf1 (B1) 0.3641 -0.0187 
… ... ... 
Input 6 mf2 (F2) 0.3493 1.0255 
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Adaptive Neuro-Fuzzy Inference System (ANFIS) and 
Support Vector Machine (SVM) models, forecasting was 
performed on the testing data to identify the most 
effective approach for predicting JCI stock prices. In the 
case of ANFIS, the model employed a Generalized Bell 
membership function, which demonstrated strong 
performance in the training phase. Conversely, the SVM 
model utilized a linear kernel with a cost parameter set to 
10, which was optimized during the grid search process. 

To evaluate and compare the forecasting performance 
of both models on the testing data, accuracy metrics, 
including Mean Absolute Percentage Error (MAPE) and 
Root Mean Square Error (RMSE), were calculated and 

are presented in Table 11. ANFIS achieved a MAPE of 
0.4647 and an RMSE of 39.894, whereas SVM 
outperformed ANFIS with a MAPE of 0.4516 and an 
RMSE of 36.728. These results clearly indicate that SVM 
offers superior accuracy and predictive power for 
forecasting JCI stock prices compared to ANFIS. 

As shown in Figure 6 and Table 12, the SVM model’s 
predictions are noticeably closer to the actual stock prices 
than the ANFIS model’s. The graphical representation 
further underscores the conclusion that the SVM method 
provides more accurate and reliable predictions for the 
Jakarta Composite Index (JCI) stock prices than the 
ANFIS model. 

Table 6. Linear Parameters of Trapezoidal Function 
Input 𝐂𝟏 𝐂𝟐 𝐂𝟑 … 𝐂𝟔 𝐂𝟎 
Output mf1 -0.1262 0.1866 -0.2717 … 0.8620 0.0656 
Output mf2 -3.0476 -4.4460 1.1517 … -0.7315 1.6118 
Output mf3 0.5082 -10.7592 0.5622 … -10.9661 2.7333 … … … … … … … 
Output mf64 0.0305 -0.0868 -0.0596 … 0.9014 0.0273 

 
Table 7.  Linear Parameters of Generalized Bell Function 

Input 𝐂𝟏 𝐂𝟐 𝐂𝟑 … 𝐂𝟔 𝐂𝟎 
Output mf1 0.4425 -0.0151 -0.9043 … -0.4460 0.4707 
Output mf2 -0.5735 -12.2232 3.5131 … 3.0817 1.8571 
Output mf3 -7.0566 4.5672 6.7993 … 0.9636 -5.0750 … … … … … … … 
Output mf64 -1.8858 0.7730 0.4699 … 0.6007 0.3415 

 
Table 8. Linear Parameters of Gaussian Function 

Input 𝐂𝟏 𝐂𝟐 𝐂𝟑 … 𝐂𝟔 𝐂𝟎 
Output mf1 0.1104 -0.2049 -0.5585 … -0.4439 0.4432 
Output mf2 -2.7432 -12.6954 5.3103 … -3.1770 4.4031 
Output mf3 -2.5234 4.1647 2.6423 … 0.3907 -2.8141 … … … … … … … 
Output mf64 -1.9919 1.2109 0.6571 … 0.5844 -0.0962 

 
Table 9. Forecasting Result of ANFIS 

Date Actual 
Data 

Gaussian Training 
Output 

Trapezoidal 
Training Output 

Generalized Bell 
Training Output 

1/10/2020 6274.941 6285.760 6282.905 6295.116 
1/13/2020 6296.567 6253.760 6280.237 6251.545 
1/14/2020 6325.406 6291.051 6299.900 6286.146 
1/15/2020 6283.365 6310.446 6292.180 6304.323 
… … … … … 
12/29/2023 6807.001 6822.114 6819.001 6816.086 

 
Table 10. Comparison of ANFIS Model Goodness Criteria 

Member Functions MAPE RMSE 
Trapezodial Function 0.6206 50.438 
Generalized Bell Function 0.4284 37.637 
Gaussian Funcstion 0.6520 52.153 
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This outcome suggests that SVM can effectively 
optimize hyperparameters using kernel methods and is 
better suited for capturing the non-linear patterns 
inherent in stock price data. Meanwhile, although ANFIS 
showed reasonable performance, SVM outperformed it 
in terms of both MAPE and RMSE, highlighting the 
advantage of SVM in this particular forecasting context. 
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Abstract 
This survey investigates some developments in the second-order characterization of 

generalized convex functions using the coderivative of subdifferential mapping. More 
precisely, it presents the second-order characterization for quasiconvex, pseudoconvex 
and invex functions. Furthermore, it gives some applications of the second-order 
subdifferentials in optimization problems such as constrained and unconstrained 
nonlinear programming. 
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Introduction 
Second-order subdifferentials and their application in 

the optimization and characterization of various kinds of 
convexity have attracted the attention of the literature. It 
is well known that the second-order differential of a twice 
continuously differentiable function 𝑔:ℝ𝐧 → ℝ  is 
convex if and only if ∇ଶ𝑔 (its Hessian matrix) is positive 
semidefinite and 𝑔  is strictly convex when ∇ଶ𝑔  is 
positive definite everywhere. 

This result is true even in normed spaces: 
 
Theorem 1.1 (Flett, 1980) Let X be a real normed 

space and let g: X → ℝ be a twice Fréchet differentiable 
function, then g is convex if and only if dଶg(x)(y)ଶ ≥ 0 
for all x, y ∈ X. 

Convex functions and their generalizations have 
many applications in optimization, economy, control 
theory and several other sciences; thus the 
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characterization of convex functions is fundamental and 
useful. We know that when a 𝐶ଶ  function 𝑔:ℝ𝐧 → ℝ 
attains its minimum at 𝑥,  its Hessian is positive 
semidefinite and conversely, the positive definiteness of 
its Hessian is sufficient for 𝑔 to reach its minimum at 𝑥 
when (∇𝑔)(𝑥) = 0. Indeed the strict local convexity of 𝑔 
guaranteed by positive definiteness of ∇ଶ𝑔(𝑥).  Some 
authors have studied the characterization of convex 
functions and their generalizations by their 
subdifferentials. Also, the second-order optimality 
conditions have received much attention in optimization 
theory, in recent years; see (1,2,3) for example. 

Theorem 1.2 (4, Rockafellar 1970) The maximal 
monotonicity of Fréchet subdifferential of a lower 
semicontinuous function is a necessary and sufficient 
condition for its convexity.  

Characterization of generalized convex functions by 
second-order subdifferentials can be more useful, 
especially in optimization. 



Vol. 35  No. 3  Summer 2024 M. T. Nadi and J. Zafarani. J. Sci. I. R. Iran 

268 

Second-order characterization of convex functions by 
generalized second-order directional derivatives have 
studied by some authors.  

The upper Dini-directional derivative of 𝑔 at 𝑥 ∈ 𝑋 
in direction 𝑣 ∈ 𝑋 is defined as an element of ℝ by  g′ା(x; v) = limsup୲↓଴  tିଵ(g(x + tv) − g(x)). (1) 

 The second-order upper Dini-directional derivative 
of 𝑔 at 𝑥 ∈ 𝑋  in direction 𝑣 ∈ 𝑋  for which 𝑔′ା(𝑥;𝑣) is 
defined by  gା" (x; v) = limsup୲↓଴  2tିଶ(g(x + tv) − g(x) −tg′ା(x; v)). (2) 

 In the case of an infinite 𝑔′ା(𝑥;𝑣),  the derivative 𝑔ା" (𝑥; 𝑣) will not be considered. 
 
Theorem 1.3 (5, Ginchev and Ivanov 2003) Let g: X → ℝ be u.s.c. Then g is convex on X if and only if 

the following Conditions (Cଵ)  and (Cଶ)  hold for each x, u ∈ X: (Cଵ) g′ା(x; v) + g′ା(x;−v) ≥ 0,  
  if  the  expression  on  the  left-hand  side  has the 

sense (Cଶ) g′ା(x; v) + g′ା(x;−v) = 0,   implies that  gା" (x; u) ≥ 0.  
  
Example 1.1 The function g(x) = −|x|, x ∈ ℝ, 

satisfies the equality gା" (x; v) = 0 for all x, v ∈ 𝐑. It is 
continuous, but not convex. Obviously, g′ା(x; v) +g′ା(x;−v) = −2.  

 
  
Example 1.2 The function g:ℝ → ℝ defined as  g(x) = ൜xଶ,   if x is rational ;0,  otherwise  

satisfies conditions (𝐶ଵ)  and (𝐶ଶ),  but 𝑔  is not 
convex. This function is not u.s.c. 

Some other authors used the second-order Fréchet 
(Second-order regular subdifferentials) and 
Mordukhovich (limiting) subdifferentials defined by the 
coderivative of the subdifferential mappings. See (6,7) 
for the following definitions and more details. 

Let 𝑋 be a Banach space endowed with a norm ∥. ∥,𝑋∗ its dual space, 𝑋∗∗ its second dual space and 〈. , . 〉 be 
the dual pairing between 𝑋  and 𝑋∗.  For a set-valued 
mapping 𝑇:𝑋 ⇉ 𝑌  between Banach spaces, we define 
the effective domain and the graph of 𝑇 by 𝑑omT = ሼx ∈ X: T(x) ≠ ∅ሽ,     gphT = {(x, y)∈ X × Y: y ∈ T(x)}. 

 The sequential Painlevé-Kuratowski upper limit of 𝑇 
at 𝑥 in the topology of 𝑌 is defined by limsup௫→௫̅𝑇(𝑥) = {𝑦 ∈ 𝑌:∃ sequences 𝑥௞ →�̅�,𝑦௞ → 𝑦   with 𝑦௞ ∈ 𝑇(𝑥௞), ∀𝑘 =                                                  1,2, . . . }.  

Given 𝜀 ≥ 0  and Ω ⊆ 𝑋 , the 𝜀 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑠  to Ω  at �̅� ∈ 𝑐𝑙(Ω) is defined by  N෡க(xത;Ω): = {x∗ ∈ X∗: limsup୶ಈ→୶ത
〈x∗, x − xത〉||x − xത|| ≤ ε}, 

where the symbol 𝑥 ఆ→ �̅� means that 𝑥 → �̅� with 𝑥 ∈Ω. When 𝜀 = 0, the set 𝑁෡଴(�̅�,Ω) = 𝑁෡(�̅�,Ω) is named the 
prenormal cone or Fréchet normal to Ω at �̅�. 

The limiting or Mordukhovich normal cone to Ω at �̅� 
is  N(xത;Ω): = limsup୶→୶ത,க↓଴N෡க(x;Ω), 

where the sequential Painlevé-Kuratowski upper 
limit is taking in the 𝑤𝑒𝑎𝑘∗ topology of 𝑋∗. When 𝑋 is 
an Asplund Banach space and Ω is closed, we can put 𝜀 = 0.  

 
Definition 1.1 (6) The Fréchet or regular coderivative 

of T at (xത, yത) is  D෡∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N෡((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
The limiting or Mordukhovich coderivative of T at (xത, yത) is  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
i.e.,  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩)  with  (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.2 (6) The mixed coderivative of T  at (xത, yത) is  D୑∗ T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩, y୩∗)→ (xത, yത, y∗), x୩∗ ୵∗ሱሮ x∗ with (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.3 (6) A single-valued mapping 𝑔:𝑋 → 𝑌 

is said to be strictly differentiable at �̅� if there is a linear 
continuous operator ∇𝑔(�̅�):𝑋 → 𝑌 such that  lim୳,୶→୶ത g(x) − g(u)− 〈∇g(xത), u − x〉∥ x − u ∥ = 0. 

 
 When 𝑔 is single-valued and strictly differentiable at �̅�  or continuously differentiable around �̅� , with the 

adjoint operator ∇𝑔(�̅�)∗:𝑌∗ → 𝑋∗, we have  
 D∗g(xത)(y∗) = D෡∗g(xത)(y∗) = {∇g(xത)∗y∗} for all y∗ ∈Y∗. 
Let g: X → ℝഥ = [−∞, +∞]  be an extended real-

valued function. We define  domg = {x ∈ X: |g(x)| < ∞} and epi(g) = {(x, μ)∈ (X × ℝ):μ ≥ g(x)}. 
 The Fréchet subdifferential or presubdifferential of g 

at xത ∈ dom g is defined by  
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∂෠g(xത) = {x∗ ∈ X∗: (x∗,−1) ∈ N෡((xത, g(xത)), epi g)} 
and the basic or Mordukhovich limiting 

subdifferential is defined by  ∂g(xത) = {x∗ ∈ X∗: (x∗,−1) ∈ N((xത, f(xത)), epi g)}. 
For �̅� ∉ dom 𝑓, we put 𝜕መ𝑔(�̅�) = 𝜕𝑔(𝑥) = ∅. Also, 𝑔 is said to be lower regular at �̅� if 𝜕መ𝑔(�̅�) = 𝜕𝑔(�̅�).  
 
Definition 1.4 (6) Let g: X ⟶ℝഥ  be a function and its 

value at xത is finite, (i) For any yത ∈ ∂g(xത), the mapping ∂ଶg(xത, yത): X∗∗ ⇉X∗ with the values  ∂ଶg(xത, yത)(v) = (D∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the limiting or Mordukhovich second-order 

subdifferential of g at xത relative to yത. (ii) For any yത ∈ ∂෠g(xത), the mapping ∂෠ଶg(xത, yത): X∗∗ ⇉X∗ with the values  ∂෠ଶg(xത, yത)(v) = (D෡∗ ∂෠g)(xത, yത)(v), (v ∈ X∗∗), 
is called the Fréchet second-order subdifferential of g 

at xത relative to yത. (iii)  For any yത ∈ ∂g(xത),  the mapping ∂෰ଶg(xത, yത): X∗∗ ⇉ X∗ with the values  ∂෰ଶg(xത, yത)(v) = (D෡∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the Combined second-order subdifferential 

of g at xത relative to yത. (iv)  For any yത ∈ ∂g(xത) , the mapping ∂୑ଶ g(xത, yത): X∗∗ ⇉ X∗ with the values  ∂୑ଶ g(xത, yത)(v) = (D୑∗ ∂g)(xത, yത)(v), (v ∈ X∗∗), 
is called the mixed second-order subdifferential of g 

at xത relative to yത. When the function g is Cଶ around xത and v ∈ X∗∗, we have  ∂෠ଶg(xത)(v) = ∂ଶg(xത)(v) = ∂୑ଶ g(xത)(v) = ∂෰ଶg(xത)(v)= {(∇ଶg(xത))∗v}, 
where (∇ଶg(xത))∗  is the adjoint operator of the 

Hessian ∇ଶg(xത). 
 
Definition 1.5 (PSD) holds for g: X ⟶ℝഥ , in the 

Fréchet sense, when 〈z, v〉 ≥ 0 for every v ∈ X∗∗ and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. 
When 〈z, v〉 > 0 whenever v ≠ 0, (PD) holds in the 

Fréchet sense for g. 
Also, (PSD) holds in the limiting sense, when 〈z, v〉 ≥0  for every v ∈ X∗∗  and z ∈ ∂ଶg(x, y)(v)  with (x, y) ∈gph∂g. 
When 〈𝑧, 𝑣〉 > 0 whenever 𝑣 ≠ 0, (PD) holds in the 

limiting sense for 𝑔. 
Chieu and Huy considered these cases and extended 

those results for the class of 𝐶ଵ  functions 𝑔:𝑋 → ℝ , 
where 𝑋 is a Hilbert space or an Asplund space. 

 
Theorem 1.4 (8, Chieu, Huy 2011) Let g: X → R be a Cଵ function and X be an Asplund space. Then g is convex 

if the following condition holds:  

〈z, v〉 ≥ 0 for all v ∈ X∗∗, z ∈ ∂෠ଶg(x, y)(v)with (x, y)∈ gph ∂෠g. 
Results 

 Definition 2.1 A proper subdifferentials and their 
application in the optimization and characterization of 
various kinds of convexity have attracted the attention of 
the literature. It is well known that the second-order 
differential of a twice continuously differentiable 
function 𝑔:ℝ𝐧 → ℝ  is convex if and only if ∇ଶ𝑔  (its 
Hessian matrix) is positive semidefinite and 𝑔 is strictly 
convex when ∇ଶ𝑔 is positive definite everywhere. 

This result is true even in normed spaces: 
 
Theorem 1.1 (Flett, 1980) Let X be a real normed 

space and let g: X → ℝ be a twice Fréchet differentiable 
function, then g is convex if and only if dଶg(x)(y)ଶ ≥ 0 
for all x, y ∈ X. 

Convex functions and their generalizations have 
many applications in optimization, economy, control 
theory and several other sciences; thus the 
characterization of convex functions is fundamental and 
useful. We know that when a 𝐶ଶ  function 𝑔:ℝ𝐧 → ℝ 
attains its minimum at 𝑥,  its Hessian is positive 
semidefinite and conversely, the positive definiteness of 
its Hessian is sufficient for 𝑔 to reach its minimum at 𝑥 
when (∇𝑔)(𝑥) = 0. Indeed the strict local convexity of 𝑔 
guaranteed by positive definiteness of ∇ଶ𝑔(𝑥).  Some 
authors have studied the characterization of convex 
functions and their generalizations by their 
subdifferentials. Also, the second-order optimality 
conditions have received much attention in optimization 
theory, in recent years; see (1,2,3) for example. 

Theorem 1.2 (4, Rockafellar 1970) The maximal 
monotonicity of Fréchet subdifferential of a lower 
semicontinuous function is a necessary and sufficient 
condition for its convexity.  

Characterization of generalized convex functions by 
second-order subdifferentials can be more useful, 
especially in optimization. 

Second-order characterization of convex functions by 
generalized second-order directional derivatives have 
studied by some authors.  

The upper Dini-directional derivative of 𝑔 at 𝑥 ∈ 𝑋 
in direction 𝑣 ∈ 𝑋 is defined as an element of ℝ by  g′ା(x; v) = limsup୲↓଴  tିଵ(g(x + tv) − g(x)). (1) 

 The second-order upper Dini-directional derivative 
of 𝑔  at 𝑥 ∈ 𝑋  in direction 𝑣 ∈ 𝑋  for which 𝑔′ା(𝑥;𝑣) is 
defined by  gା" (x; v) = limsup୲↓଴  2tିଶ(g(x + tv) − g(x) −tg′ା(x; v)). (2) 

 In the case of an infinite g′ା(x; v),  the derivative 
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gା" (x; v) will not be considered. 
 
Theorem 1.3 (5, Ginchev and Ivanov 2003) Let g: X → ℝ be u.s.c. Then g is convex on X if and only if 

the following Conditions (Cଵ)  and (Cଶ)  hold for each x, u ∈ X: (Cଵ) g′ା(x; v) + g′ା(x;−v) ≥ 0,  
  if  the  expression  on  the  left-hand  side  has the 

sense (Cଶ) g′ା(x; v) + g′ା(x;−v) = 0,   implies that  gା" (x; u) ≥ 0.  
  
Example 1.1 The function g(x) = −|x|, x ∈ ℝ, 

satisfies the equality gା" (x; v) = 0 for all x, v ∈ 𝐑. It is 
continuous, but not convex. Obviously, g′ା(x; v) +g′ା(x;−v) = −2.  

 
 Example 1.2 The function g:ℝ → ℝ defined as  g(x) = ൜xଶ,   if x is rational ;0,  otherwise  

satisfies conditions (𝐶ଵ)  and (𝐶ଶ),  but 𝑔  is not 
convex. This function is not u.s.c. 

 
 Some other authors used the second-order Fréchet 

(Second-order regular subdifferentials) and 
Mordukhovich (limiting) subdifferentials defined by the 
coderivative of the subdifferential mappings. See (6,7) 
for the following definitions and more details. 

Let 𝑋 be a Banach space endowed with a norm ∥. ∥,𝑋∗ its dual space, 𝑋∗∗ its second dual space and 〈. , . 〉 be 
the dual pairing between 𝑋  and 𝑋∗.  For a set-valued 
mapping 𝑇:𝑋 ⇉ 𝑌  between Banach spaces, we define 
the effective domain and the graph of 𝑇 by dom𝑇 = {𝑥 ∈ 𝑋:𝑇(𝑥) ≠ ∅},     gph𝑇 = {(𝑥, 𝑦)∈ 𝑋 × 𝑌:𝑦 ∈ 𝑇(𝑥)}. 

 The sequential Painlevé-Kuratowski upper limit of 𝑇 
at 𝑥 in the topology of 𝑌 is defined by limsup௫→௫̅𝑇(𝑥) = {𝑦 ∈ 𝑌:∃ sequences 𝑥௞ →�̅�,𝑦௞ → 𝑦   with 𝑦௞ ∈ 𝑇(𝑥௞), ∀𝑘 =                                                  1,2, . . . }.  

Given 𝜀 ≥ 0  and Ω ⊆ 𝑋 , the 𝜀 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑠  to Ω  at �̅� ∈ 𝑐𝑙(Ω) is defined by  N෡க(xത;Ω): = {x∗ ∈ X∗: limsup୶ಈ→୶ത
〈x∗, x − xത〉||x − xത|| ≤ ε}, 

where the symbol 𝑥 ఆ→ �̅� means that 𝑥 → �̅� with 𝑥 ∈Ω. When 𝜀 = 0, the set 𝑁෡଴(�̅�,Ω) = 𝑁෡(�̅�,Ω) is named the 
prenormal cone or Fréchet normal to Ω at �̅�. 

The limiting or Mordukhovich normal cone to Ω at �̅� 
is  N(xത;Ω): = limsup୶→୶ത,க↓଴ N෡க(x;Ω), 

where the sequential Painlevé-Kuratowski upper 

limit is taking in the 𝑤𝑒𝑎𝑘∗ topology of 𝑋∗. When 𝑋 is 
an Asplund Banach space and Ω is closed, we can put 𝜀 = 0.  

 
Definition 1.1 (6) The Fréchet or regular coderivative 

of T at (xത, yത) is  D෡∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N෡((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
The limiting or Mordukhovich coderivative of T at (xത, yത) is  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗: (x∗,−y∗)∈ N((xത, yത), gph T)}  ∀y∗ ∈ Y∗. 
i.e.,  D∗T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩)→ (xത, yത), (x୩∗ , y୩∗) ୵∗ሱሮ (x∗, y∗)   with  (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.2 (6) The mixed coderivative of T  at (xത, yത) is  D୑∗ T(xത, yത)(y∗) = {x∗ ∈ X∗:∃ε୩ ↓ 0, (x୩, y୩, y୩∗)→ (xത, yത, y∗), x୩∗ ୵∗ሱሮ x∗ 
  with (x୩∗ ,−y୩∗) ∈ N෡கౡ((x୩, y୩), gph T) as k → ∞}. 
 
Definition 1.3 (6) A single-valued mapping 𝑔:𝑋 → 𝑌 

is said to be strictly differentiable at �̅� if there is a linear 
continuous operator ∇𝑔(�̅�):𝑋 → 𝑌 such that  lim௨,௫→௫̅ 𝑔(𝑥) − 𝑔(𝑢) − 〈∇𝑔(�̅�),𝑢 − 𝑥〉∥ 𝑥 − 𝑢 ∥ = 0. 

 
 When 𝑔 is single-valued and strictly differentiable at �̅�  or continuously differentiable around �̅� , with the 

adjoint operator ∇𝑔(�̅�)∗:𝑌∗ → 𝑋∗, we have  𝐷∗𝑔(�̅�)(𝑦∗) = 𝐷෡∗𝑔(�̅�)(𝑦∗) = {∇𝑔(�̅�)∗𝑦∗} for all 𝑦∗∈ 𝑌∗. 
Let 𝑔:𝑋 → ℝഥ = [−∞, +∞]  be an extended real-

valued function. We define  dom𝑔 = {𝑥 ∈ 𝑋: |𝑔(𝑥)| < ∞} and epi(𝑔) = {(𝑥,𝜇)∈ (𝑋 × ℝ): 𝜇 ≥ 𝑔(𝑥)}. 
 The Fréchet subdifferential or presubdifferential of 𝑔 

at �̅� ∈ dom 𝑔 is defined by  
 𝜕መ𝑔(�̅�) = {𝑥∗ ∈ 𝑋∗: (𝑥∗,−1) ∈ 𝑁෡((�̅�,𝑔(�̅�)), epi 𝑔)} 
and the basic or Mordukhovich limiting 

subdifferential is defined by  
 𝜕𝑔(�̅�) = {𝑥∗ ∈ 𝑋∗: (𝑥∗,−1) ∈ 𝑁((�̅�,𝑓(�̅�)), epi 𝑔)}. 
For �̅� ∉ dom 𝑓, we put 𝜕መ𝑔(�̅�) = 𝜕𝑔(𝑥) = ∅. Also, 𝑔 is said to be lower regular at �̅� if 𝜕መ𝑔(�̅�) = 𝜕𝑔(�̅�).  
 
Definition 1.4 (6) Let 𝑔:𝑋 ⟶ ℝഥ  be a function and its 

value at �̅� is finite, (𝑖)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕ଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  
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𝜕ଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷∗𝜕𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the limiting or Mordukhovich second-order 

subdifferential of 𝑔 at �̅� relative to 𝑦ത. (𝑖𝑖)  For any 𝑦ത ∈ 𝜕መ𝑔(�̅�) , the mapping 𝜕መଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕መଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷෡∗𝜕መ𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the Fréchet second-order subdifferential of 𝑔 

at �̅� relative to 𝑦ത. (𝑖𝑖𝑖)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕෰ଶ𝑔(�̅�,𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕෰ଶ𝑔(�̅�,𝑦ത)(𝑣) = (𝐷෡∗𝜕𝑔)(�̅�,𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the Combined second-order subdifferential 

of 𝑔 at �̅� relative to 𝑦ത. (𝑖𝑣)  For any 𝑦ത ∈ 𝜕𝑔(�̅�) , the mapping 𝜕ெଶ 𝑔(�̅�, 𝑦ത):𝑋∗∗ ⇉ 𝑋∗ with the values  𝜕ெଶ 𝑔(�̅�,𝑦ത)(𝑣) = (𝐷ெ∗ 𝜕𝑔)(�̅�, 𝑦ത)(𝑣), (𝑣 ∈ 𝑋∗∗), 
is called the mixed second-order subdifferential of 𝑔 

at �̅�  relative to 𝑦ത . When the function 𝑔 is 𝐶ଶ  around �̅� 
and 𝑣 ∈ 𝑋∗∗, we have  𝜕መଶ𝑔(�̅�)(𝑣) = 𝜕ଶ𝑔(�̅�)(𝑣) = 𝜕ெଶ 𝑔(�̅�)(𝑣) = 𝜕෰ଶ𝑔(�̅�)(𝑣)= {(∇ଶ𝑔(�̅�))∗𝑣}, 

where (∇ଶ𝑔(�̅�))∗  is the adjoint operator of the 
Hessian ∇ଶ𝑔(�̅�). 

 
Definition 1.5 (PSD) holds for g: X ⟶ℝഥ , in the 

Fréchet sense, when 〈z, v〉 ≥ 0 for every v ∈ X∗∗ and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. 
When 〈z, v〉 > 0 whenever v ≠ 0, (PD) holds in the 

Fréchet sense for g. 
Also, (PSD) holds in the limiting sense, when 〈z, v〉 ≥0  for every v ∈ X∗∗  and z ∈ ∂ଶg(x, y)(v)  with (x, y) ∈gph∂g. 
When 〈𝑧, 𝑣〉 > 0 whenever 𝑣 ≠ 0, (PD) holds in the 

limiting sense for 𝑔. 
Chieu and Huy considered these cases and extended 

those results for the class of 𝐶ଵ  functions 𝑔:𝑋 → ℝ , 
where 𝑋 is a Hilbert space or an Asplund space. 

 
Theorem 1.4 (8, Chieu, Huy 2011) Let g: X → R be a Cଵ function and X be an Asplund space. Then g is convex 

if the following condition holds:  〈z, v〉 ≥ 0 for all v ∈ X∗∗, z ∈ ∂෠ଶg(x, y)(v)with (x, y)∈ gph ∂෠g. 
  

Convex case 
 The following questions were raised (8, Chieu, Huy 

2011): 
  1. Is it true that, for any Fréchet differentiable 

function 𝑔:𝑋 ⟶ ℝഥ , 𝑃𝑆𝐷 implies convexity? 
2. Which class of locally Lipschitz functions does 𝑃𝑆𝐷, imply the convexity of the corresponding function? 
3. How to extend the characterizations to a general 

Banach setting? 
We proved in (11), that (PSD) holds for any function 𝑔:𝑋 → ℝഥ , defined on an arbitrary Banach space, where 𝑔 is a lower semicontinuous strongly convex. 
 
Theorem 2 .1 (11, Nadi, Yao, Zafarani) Let X be a 

Banach space and g: X ⟶ℝഥ  be a lower semicontinuous 
strongly convex function. Then  (PSD)  holds. 

 
 The foregoing result also holds when we replace 

second-order Fréchet coderivative with mixed second-
order coderivative: 

 
Corollary 2.1 (11, Nadi, Yao, Zafarani) Let X be a 

Banach space and g: X → ℝഥ  be a lower semicontinuous 
strongly convex function. Then (PSD) holds in the mixed 
second-order sense, that is  

 〈z, v〉 ≥ 0 for any v ∈ X∗∗ and z ∈ D୑∗ ∂g(xത, yത)(v) =∂୑ଶ g(xത, yത)(v). 
Also, (PSD) guarantees the convexity of 𝑔:𝑋 → ℝ 

for some classes of functions. For example, (PSD) 
guarantees convexity for the class of continuously 
differentiable functions ( 𝐶ଵ  functions) defined on 
Asplund spaces. Theorem 2.1 of (8, Chieu, Huy, 2011) 
and (PSD) imply convexity of lower-𝐶ଶ functions on ℝ௡ 
(12, Theorem 4.1). In the following, we illustrate that 
(PSD) is not a sufficient condition for convexity, when 
the function is differentiable at a point. 

 
Example 2.1 (11, Nadi, Yao, Zafarani)  Consider the 

function g:ℝ⟶ ℝ as follows:  

 g(x) = ቐ ଵ୬మ , x ∈]0,1], ଵ୬ାଵ < x ≤ ଵ୬ , n ∈ ℕ0, x ≤ 02, x > 1,  

It is clear that 𝑔 is differentiable at zero, but is not 
convex. Also, by an easy calculation, we can show that 
(PSD) holds for 𝑔. 

In the following theorem, we showed that (PD) 
guarantees the convexity of 𝑔:𝑋 → ℝ  when 𝑔  is 
differentiable on 𝑋 and 𝜕መ𝑔 is non-empty on 𝑋. 

We proved it for 𝑋 = ℝ and afterwards for Banach 
spaces. 

 
Theorem 2.2 (11, Nadi, Yao, Zafarani) Let g:ℝ → ℝ 

be a differentiable function and (PSD)   holds in the 
Fréchet sense and ∂෠gᇱ  be nonempty on ℝ.  Then g  is 
convex. 

We concluded the following corollary for 𝑔  on 
Banach spaces by using the above argument. For 
arbitrary 𝑎, 𝑣 ∈ 𝑋,  𝑔:𝑋 → ℝ  and 𝑠 ∈ ℝ,  define 𝑔௔,௩(𝑠) = 𝑔(𝑎 + 𝑠𝑣). We know that 𝑔 is convex on 𝑋 if 
and only if 𝑔௔,௩  is convex on ℝ for any 𝑎, 𝑣 ∈ 𝑋; See, 
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(13) for more details. 
Corollary 2.2 Let g: X → ℝ  be a differentiable 

function on X, (D෡∗∇g)(x)(v) be non empty for any x, v ∈X  and 〈z, v〉 ≥ 0  for every x, v ∈ X  and z ∈(D෡∗∇g)(x)(v). Then g is convex. 
Corollary 2.3 Let g: X → ℝ  be a differentiable 

function on X, (D෡∗∇g)(x)(v) be non empty for any x, v ∈X  and 〈z, v〉 ≥ 0  for every x, v ∈ X  and z ∈(D∗∇g)(x)(v) or z ∈ (D୑∗ ∇g)(x)(v). Then g is convex. 
We concluded that (PSD) and differentiability, imply 

the continuity of differential mapping. 
Corollary 2.4 Let g: X → ℝ  be differentiable on X 

and D෡∗(∇g)(x)(v)  be non-empty for any x, v ∈ X . If (PSD) holds in the Fréchet sense, then g is of class Cଵ. 
  
Theorem 2.3 (14, Nadi, Zafarani) Let g: X → ℝ be a 

locally Lipschitz approximately convex function and X 
be an Asplund Banach space. Then g is convex, if (PSD) 
holds in the regular sense: 〈z, v〉 ≥ 0,∀v ∈ X  and  z ∈ ∂෠ଶg(x, y)(v)  with  (x, y)∈  gph  ∂෠g 

 
Theorem 2.4 (15, Nadi, Zafarani) Let g: X → ℝ be a 

lower semicontinuous approximately convex function, X 
be an Asplund space and (PSD) holds. Then g is convex.  

For 𝑋 = ℝ௡, two classes of lower-𝐶ଵ  functions and 
lower semicontinuous approximately convex functions 
are the same (16, Daniilidis, Georgiev, 2004). The class 
of lower- 𝐶ଵ  functions was initially introduced by 
Spingarn (1981) and afterwards, the smaller class of 
lower- 𝐶௞  functions was introduced in 1982 by 
Rockafellar. The function 𝑔:ℝ௡ → ℝ is said to be lower-𝐶௞  for ( 𝑘 ∈ ℕ ) if, for each �̅� ∈ ℝ௡,  there exists a 
neighbourhood of �̅�  as 𝑉  such that 𝑔  has the 
representation  𝑔(𝑥) = max௦∈ௌ 𝑔௦(𝑥), 

 where the index set 𝑆 is compact, the functions 𝑔௦ 
are of class 𝐶௞  on 𝑉,  and 𝑔௦(𝑥)  and all of the partial 
derivatives of the functions 𝑔௦  of order 𝑘  are jointly 
continuous on (𝑠, 𝑥). 

 
Definition 2.4 We say that a locally Lipschitz 

function g: X → ℝ  is directionally Clarke regular (d-
regular) at z if, for every v ∈ X, the Clarke directional 
derivative of g  at z  in the direction v  coincides with dିg(z, v), where  dିg(z, v): = liminf୲→଴శ g(z + tv) − g(z)t . 

Remark 2.1 The above Theorem is the lower-𝐶ଵ 
version of Theorem 4.1 (12, Chieu, Lee, Mordukhovich, 
Nghia, 2016). We know that in finite dimensional spaces, 
a lower- 𝐶ଵ  function 𝑔  is approximately convex and 

locally Lipschitz (16, Daniilidis, Georgiev, 2004). Also, 
we answer question 2 posed in (8, Chieu, Huy, 2011) by 
this result. By a similar proof, we concluded that (PSD) 
holds for d-regular and semismooth functions defined on 𝑋 = ℝ௡. 

We show by the following example that in the 
foregoing theorem, approximate convexity is essential. It 
means that, the class which was asked in question 2 of (8, 
Chieu, Huy, 2011) is approximately convex functions 
(the class of lower-𝐶ଵ functions when the space is finite-
dimensional). We show that the following function which 
is Lipschitz and was given in (8, Chieu, Huy, 2011), 
theorem 4.2, is not approximately convex (lower-𝐶ଵ). 

 
Example 2.2 (15, Nadi, Zafarani) For all x ∈ ℝ ; 

define g(x) = ୶଴׬ χ୉(t)dt, where 𝐸 is a subset of ℝ which is 
measurable and the intersection of both 𝐸  and its 
complement with each nonempty open interval of ℝ has 
positive Lebesgue measure. The function 𝑔 is Lipschitz, 
and (PSD) holds but it is not convex. 

  
Corollary 2.5 (15, Nadi, Zafarani) Let g: X → ℝ be a 

lower semicontinuous approximately convex function 
and X be a Hilbert space. Then the function g is strongly 
convex (with modulus κ > 0) if and only if  

 〈z, v〉 ≥ κ ∥ v ∥ଶ,∀v ∈ X and z ∈∂෠ଶg(x, y)(v) with (x, y) ∈ gph ∂෠g. (3) 
  

Convex mappings 
We assume that the spaces  𝑋  and 𝑌   are Banach 

spaces and 𝑋 is reflexive, 𝐾 ⊆ 𝑌 is a closed convex and 
pointed cone (𝐾 ∩ −𝐾 = 0) and 𝐾∗ is the positive dual 
cone of 𝐾; that is 𝐾∗ = {𝑦∗ ∈ 𝑌∗:𝑦∗(𝑘) ≥ 0, for all 𝑘 ∈𝐾}.  

Definition 2.5 Let g: X ⟶ Y  be a vector valued 
function. g  is K-convex on X  if for any xଵ, xଶ ∈ X  and λ ∈ [0,1],  

 g(λxଵ + (1 − λ)xଶ) ≤୏ λg(xଵ) + (1 − λ)g(xଶ). 
Theorem 2.5 (15, Nadi, Zafarani) Let g: X → Y be a Cଵ mapping. If (PSD) holds in the limiting sense, then g 

is K-convex. 
Also, the converse holds for twice continuously 

differentiable case: 
 
Theorem 2.6 (15, Nadi, Zafarani) Let Y and X be 

Banach spaces and 𝑔:𝑋 → 𝑌 be a 𝐶ଶ  mapping. Then 
(PSD) holds if and only if g is K-convex. 

 
The following example illustrates the foregoing 

theorem. 
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Example 2.3 (15, Nadi, Zafarani) Consider 𝑔:ℝଶ →ℝଶ  with 𝑔(𝑧) = g(𝑧ଵ, 𝑧ଶ) = (zଵଶ + 𝑧ଶଶ, zଵଶ + 𝑧ଵ) and 𝐶 ={(𝑧ଵ, 𝑧ଶ) ∈ ℝଶ: 𝑧ଵ, 𝑧ଶ ≥ 0 and 𝑧ଶ ≤ 𝑧ଵ}. Then g is a C-

convex mapping, twice continuously differentiable and 
(PSD) holds because for every 𝑧 = (𝑧ଵ, 𝑧ଶ) and 𝑣 =(𝑣ଵ, 𝑣ଶ) ∈  ℝଶ  we have: 

 ∇ଶ𝑔(𝑧)(𝑣) = 2𝑣ଵ ቀ1 00 0ቁ + 2𝑣ଶ ቀ0 10 0ቁ + 2𝑣ଵ ቀ0 01 0ቁ= ቀ𝑣ଵ + 𝑣ଶ𝑣ଵ ቁ. 
But this means that  
 ∇ଶ𝑔(𝑧)(𝑣) = ൬2𝑣ଵଶ + 2𝑣ଶଶ2𝑣ଵଶ ൰ ∈ 𝐶. 
 
 

Quasi convex functions 
 Characterization of pseudoconvexity and 

quasiconvexity by their second-order subdifferentials 
and their applications are studied in the literature. For 
twice differentiable pseudoconvex and quasiconvex 
functions 𝑔:𝐶 ⊆ ℝ௡ → ℝ , where ∇𝑔  is locally 
Lipschitz,  the second-order characterization has been 
extended by (13, Crouziex and Ferland, 1996). 

Given a normed linear space 𝑋 and a convex subset 𝐾 of 𝑋, a function 𝑔:𝐾 → ℝ is called  
(i) quasiconvex on 𝐾, where for every 𝑥,𝑦 ∈ 𝐾 and 𝑡 ∈]0,1[,  g(x + t(y − x)) ≤ max{g(x), g(y)}, 
or equivalently where its level sets (𝐿𝑒𝑣ఈ𝑔)  are 

convex, i.e.,  
for every 𝛼 ∈ ℝ , Lev஑g =: {x ∈ K: g(x) ≤ α}  is 

convex, 
(ii) pseudoconvex on 𝐾 if for every 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦 

and 𝑥∗ ∈ 𝜕መ𝑔(𝑥),  〈x∗, y − x〉 ≥ 0 ⟹ g(y) ≥ g(x). 
Definition 2.6 [(14), Nadi, Zafarani] Let X  be a 

Banach space and F: X ⇉ X∗  be a set-valued mapping 
and, for every xത ∈ X and v ∈ X∗∗, define: D෡ାF(xത, v): = sup{〈z, v〉: z ∈ D෡∗F(x, y)(v), x → xത, y→ yത, y ∈ F(x)}. D෡ିF(xത, v): = inf{〈z, v〉: z ∈ D෡∗F(x, y)(v), x → xത, y → yത, y∈ F(x)}. 

 
Here we mention a result for the quasiconvex case: 
 Theorem 2.7 (14, Nadi, Zafarani) Let g: X → R be a 

locally Lipschitz function. If the following assertions 
hold for every xത, u ∈ X: 

(i) φ୳(xത) = inf{〈y, v〉: y ∈ ∂ୡg(xത)} = 0  implies that D෡ା ∂ୡg(xത, v) ⩾ 0; 
(ii) φ୳(xത) = 0 , D෡ା ∂ୡg(xത, v) ≥ 0, D෡ି ∂ୡg(xത, v) ≤ 0 

and 〈y୲̅, v〉 > 0  (for some t ̅ < 0  and y୲̅ ∈ ∂ୡg(xത + t ̅v) ), 
implies that there exists t̂ > 0 such that 〈y୲, v〉 ≥ 0 for 
every t ∈ [0, t̂] and y୲ ∈ ∂ୡg(xത + tv). 

(iii) g is approximately convex. 
Then g is quasiconvex. 
 
Example 2.4 (14, Nadi, Zafarani) Consider the 

function g: S = {z: ∥ z ∥< ଵଶ} ⊆ ℝଶ → ℝ defined as  g(zଵ, zଶ) = f(z) = −∥ z ∥ଶ +∥ z ∥. 
It is easy to see that g is continuously differentiable 

on S\{(0,0)}. Also, the Clarke subdifferential at (0,0) is  
  
For every 0 ≠ 𝑣 ∈ ℝଶ,  we have inf{〈y, v〉: y ∈∂ୡg((0,0))} < 0,  because the closed unit ball is a 

balanced subset of ℝଶ. Therefore, clearly (i) holds. 
For (ii), assume that v ≠ (0,0) is arbitrary. Now, an 

easy calculation shows that  〈∇g(tv), v〉 = (vଵଶ + vଶଶ)(−2t + 1ඥvଵଶ + vଶଶ) ≥ 0, 
for every t ∈ [0, t̂]  with t̂: = 2(vଵଶ + vଶଶ)ିభమ,  which 

means that (ii) holds. 
 

Pseudo convex functions 
 A similar result holds for the pseudoconvex case: 
Theorem 2.8 (14, Nadi, Zafarani) Let g: X → ℝ be a 

locally Lipschitz function. Suppose that the following 
conditions hold for every xത, v ∈ X: 

(i) φ୴(xത) = inf{〈y, v〉: y ∈ ∂ୡg(xത)} = 0  implies that D෡ା ∂ୡg(xത, v) ⩾ 0; 
(ii) φ୴(xത) = 0, D෡ା ∂ୡg(xത, v) ≥ 0 and D෡ି ∂ୡg(xത, v) ≤0, implies that: there exists t̂ > 0 such that 〈y୲, u〉 ≥ 0 

for every t ∈ [0, t̂] and y୲ ∈ ∂ୡf(xത + tu). 
(iii) 𝑔 is approximately convex. 
Then 𝑔 is pseudoconvex. 
For the case of strictly pseudoconvex functions, the 

following result is interesting: 
Theorem 2.9 (17, Khanh Phat 2020) Let g:ℝ୬ → ℝ 

be a Cଵ,ଵ-smooth function satisfying x ∈ ℝ୬, v ∈ ℝ୬\{0}, 〈∇g(x), v〉 = 0,⇒ 〈z, v〉> 0, for all  z ∈ ∂ଶg(x)(v). 
Then 𝑔 is a strictly pseudoconvex function. 
Also, for the case of strictly quasiconvex functions, 

the following result is interesting: 
Theorem 2.10 (17, Khanh Phat 2020)  Let g:ℝ୬ →ℝ be a Cଵ,ଵ-smooth function satisfying x ∈ ℝ୬, v ∈ ℝ୬\{0}, 〈∇g(x), v〉 = 0,⇒ 〈z, v〉> 0, for   all  z∈ ∂෠ଶg(x)(v) ∪ −∂෠ଶg(x)(−v). 
Then 𝑔 is a strictly quasicoconvex function. 
Invex function 
 In recent years, the mathematical landscape has 

witnessed numerous extensions and generalizations of 
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classical convexity, particularly through the invex 
functions by Hanson in 1981(18). This pivotal 
advancement sparked a wave that has substantially 
enriched the applications of invexity within nonlinear 
optimization and related fields. Notably, Hanson 
demonstrated that the Kuhn-Tucker conditions, which 
are fundamental in optimization theory, serve as 
sufficient criteria for optimality when dealing with invex 
functions. This revelation has prompted further 
exploration into the properties and applications of 
generalized convexity.  

Definition 2.7 A set C is said to be invex with respect 
to η: X × X → X, when for any x, y ∈ C and 0 ≤ λ ≤ 1, y + λη(x, y) ∈ C. 

 
Definition 2.8 A vector valued function η: X × X → X 

is said to be skew, if  η(x, y) + η(y, x) = 0,   for any   x, y ∈ X. 
The following assumptions are frequently used in the 

literature: 
ASSUMPTION A: Let 𝐶 be an invex set with respect 

to 𝜂, and 𝑔:𝐶 → ℝ. Then  g൫y + η(x, y)൯ ≤ g(x)  for any   x, y ∈ C. 
 
ASSUMPTION C: Let 𝜂:𝑋 × 𝑋 → 𝑋. Then, for any 𝑥,𝑦 ∈ 𝑋 and for any  ∈ [0,1],  𝜂(𝑦,𝑦 + 𝜂(𝑥,𝑦)) = −𝜂(𝑥,𝑦), 𝜂(𝑥,𝑦 + 𝜂(𝑥,𝑦)) = (1 − )𝜂(𝑥,𝑦) 
  
 Definition 2.9 A differentiable function g: X → ℝ is 

said to be invex with respect to η, if for any x, y ∈ C, one 
has  〈∇g(y),η(x, y)〉 ≤ g(x) − g(y). 

 
 Definition 2.10 A locally Lipschitz function g: C ⊆X → ℝ is called invex with respect to η, if for any x, y ∈C and any ξ ∈ ∂g(x), one has  〈ξ,η(x, y)〉 ≤ g(x) − g(y). 
 
 Remark 2.2 Note that, in the above definitions by 

letting η(x, y) = x − y,  we reduce to the convex case. 
Indeed, invex functions reduce to convex functions, and 
invex sets, to convex sets.  

 
Proposition 2.1 (19, Nadi, Zafarani) Let g:ℝ୬ → ℝ 

be an invex function with respect to a skew η:ℝ୬ ×ℝ୬ → ℝ୬, be twice differentiable at x ∈ ℝ୬ and η(. , x) 
be differentiable at x. Then 〈η୶(x, x)v, Dଶg(x)v〉 ≥ 0 for 
any v ∈ ℝ୬. 

 
 Theorem 2.11 (19, Nadi, Zafarani) Suppose that g:ℝ୬ → ℝ is Cଵ,ଵ, invex function with respect to a skew η:ℝ୬ × ℝ୬ → ℝ୬, where η is differentiable in the first 

argument at x and continuous. Then 〈η୶(x, x)v, x∗v〉 ≥ 0, 
for any v ∈ ℝ୬ and x∗ ∈ ∂gᇱ(x). 

  
Remark 2.3 The above results are the natural 

extensions of the convex case. In fact, by replacing η(x, y) with x − y, we have the classical form of Hessian. 
In the following example, we show that sometimes 

characterizing the invexity of a function by the second-
order condition is easier than using the first order 
condition. 

 
Example 2.4 (19, Nadi, Zafarani) Consider the 

following Cଵ,ଵ function g:ℝ → ℝ,  g(x) = ൝−xଶ + x, x ≤ 0xଶ + x, x > 0. 
Consider, also η(x, y) = xଷ − yଷ.  An easy 

calculation implies that  ∂gᇱ(x) = ൞−2, x < 0{[−2,2]}, x = 02, x > 0, 
which means that 〈η୶(x, x)v, x∗v〉 = 3xଶx∗ < 0,  by 

letting x = −1 and any arbitrary v ∈ ℝ. 
  
Theorem 2.12 (19, Nadi, Zafarani) Let g:ℝ୬ → ℝ be 

a twice differentiable function, g  and η  satisfy 
Assumptions A and C, η(. , y) be onto for any y ∈ ℝ୬ and 
skew. If 〈η୶(x, x)v,∇ଶg(x)v〉 ≥ 0 , for any x, v ∈ ℝ୬ , 
then g is invex with respect to η. 

 
 Optimization 

 Consider the nonlinear programming (NLP) as 
follows, with Cଵ  data ( f, g୧: X → ℝ  for 1 ≤ i ≤ n  are 
continuously differentiable):  minimize    f(x)  subject to g୧(x) = 0,   for  i ∈ E  and  g୧(x) ≤ 0  for  i ∈ I, 

 Where for the constrains, E: = {1, . . . , nଵ}  and I: ={nଵ + 1, . . . , nଵ + nଶ} are finite index sets and n: = nଵ +nଶ. The point x is called a feasible point of the foregoing 
(NLP) problem if  x ∈ Γ: = {y ∈ X: g୧(y) = 0 for i ∈ E and g୧(y) ≤ 0 for i∈ I}. 

Also, the classical Lagrange function is:  L(x, λ): = f(x) + 〈λ, g〉(x),   for  x ∈ X  and  λ ∈ ℝ୪. 
 
When xത  is a solution for (NLP), the first order 

necessary condition is that there exist λ୧ for i = 1, . . . n, 
which are said to be the Lagrange multipliers, with  
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λ୧g୧(xത) = 0  (for i= 1, . . . , n)  and  ∇f(xത) + ෍୬୧ୀଵ λ୧∇g୧(xത)= 0 
 and the standard second-order sufficient condition 

(SSOSC) is that there exists 𝑘 > 0 such that  ∇୶ଶL(xത, λത)(v, v) ≥ k ∥ v ∥ଶ   with λത = (λതଵ, . . . , λത୪) (4) 
 for all v ∈ X, with 〈∇g୧(xത), v〉 = 0 for i ∈ E ∪ Iା(λത) 

and 〈∇g୧(xത), v〉 ≤ 0 for i ∈ I଴(λത), where  Iା(λത) = {i ∈ I: λത୧ > 0}  and  I଴(λത) = {i ∈ I: λ୧ = 0}. 
 
Also, when 𝑋  is finite-dimensional, we can change 

the inequality (4) as follows:  ∇୶ଶL(xത, λത)(v, v) > 0  with λത = (λതଵ, . . . , λത୪). (5) 
 Indeed, when X  is finite-dimensional, the second-

order sufficient condition implies optimality of xത  (the 
critical point) for Lagrange multipliers λത, when ∇୶ଶL(xത, λത) 
is positive definite on the critical cone of (NLP) at (xത, λത); 
it means that C(xത) =: {v: 〈∇g୧(xത), v〉= 0 for Iା(λത) ∪ E and 〈∇g୧(xത), v〉≤ 0 for i ∈ I଴(λത)}. 

We continue with the following second-order 
sufficient condition for optimality of a KKT-point of 
(NLP). In the following, 𝑋 is a reflexive Banach space. 

 
Theorem 3.1 (20, Nadi, Zafarani) (Point-based 

sufficient condition) Assume the foregoing stated (NLP) 
problem with zത ∈ Γ a KKT-point of (NLP) and Lagrange 
multipliers λത.  Suppose that the second-order condition 
holds:  D෡ି∇L(zത, λത, v) > 0    for all  v ∈ C(zത)\{0}. (6) 

 Then zത is a strictly local minimum for (NLP). 
In condition (6), we use the coderivative of the 

differential mapping and it is more efficient than the other 
similar second-order optimality conditions which have 
been introduced by the various kinds of generalized 
second-order directional derivatives. As illustrated by the 
following example, the following theorem due to (21, 
Ben-Tal and Zowe) and its constrained version can not 
be used for the 𝐶ଵ  data case. 

Let g:ℝ୬ → ℝ be differentiable at xത. We denote by gᇱᇱ(xത, v), the second-order directional derivative of g at x 
in direction v ∈ ℝ୬  which is defined as an element of ℝഥ = ℝ ∪ {−∞} ∪ {+∞}; that is  gᇱᇱ(xത, v): = lim୲→ାஶ 2tଶ (g(xത + tv) − g(xത)− t∇g(xത)v). 

  
Theorem 3.2 (21, Ben-Tal and Zowe) Suppose that g ∈ Cଵ,ଵ(ℝ୬) , ∇g(xത) = 0  and gᇱᇱ(xത, v) > 0  for all v ∈ℝ୬\{0}. Then xത is a strict local minimizer of g. 
 

  
Example 3.1 (20, Nadi, Zafarani) Consider the 

function g:ℝଶ → ℝ defined as  g(zଵ, zଶ): = (max(0, zଶ − 2zଵସଷ))ଷଶ + (max(0, zଵସଷ − zଶ))ଷଶ. 
 One can show that gᇱᇱ(xത, v) > 0  for xത = (0,0)  and 

all nonzero direction v,  but xത  is not a strict local 
minimum of g  since g(z) = 0  for all z  between the 

curves zଶ = zଵరయ and zଶ = 2zଵరయ. 
Letting (z୩)  be an arbitrary sequence which 

converges to zero, we have (z୩, ଷଶ z୩రయ) → (0,0). It is trivial 

that ∇g(z୩, ଷଶ z୩రయ) = 0  because g  is equal to zero in a 

neighbourhood of (z୩, ଷଶ z୩రయ). 
Now, it is easy to see that 0 ∈ D෡∗∇g(z୩, ଷଶ z୩రయ)(v) for 

all v ∈ ℝଶ,  which implies that D෡ି∇g(xത, v) ≤ 0.  This 
means that condition (6) in the above theorem does not 
hold. 

Pseudoconvexity of the cost function in addition to 
the quasiconvexity of constrained functions implies the 
optimality of the point that satisfies the Karush Kahn-
Tucker conditions. More precisely, if the cost function or 
one of the active constrained functions with positive 
Lagrange multipliers is pseudoconvex and the rest are 
quasiconvex, then the Lagrange function is 
pseudoconvex. Booth of quasiconvexity and 
pseudoconvexity of constrained functions imply the 
convexity of the feasible set and optimality of a KKT-
point will be obtained. But we know that the convexity 
of the feasible set is not necessary in (NLP). As 
mentioned below, the pseudoconvexity of the cost 
function and quasiconvexity of constraint functions at a 
KKT-point is sufficient for its optimality. 

 
Theorem 3.3 (Mangasarian) Let the set constraint be 

open. The functions f  and g୧  for i = 1, . . . , nଵ  are the 
functions defined on X and xത is a feasible point. Assume 
that f  is pseudoconvex at xത ,  f  and g୧  for i ∈ I(xത)  are 
differentiable at xത, and g୧ for i ∈ I(xത) are quasiconvex at xത.  If there exist Lagrange nonnegative multipliers λଵ, . . . , λ୪భ  with λ୧g୧(xത) = 0  for i = 1, . . . , nଵ  and ∇L(xത) = 0  where L = f + ∑୪భ୧ୀଵ λ୧g୧,  then xത  is a global 
minimizer of (NLP). 

The following example shows that the 
pseudoconvexity at a point for the cost function in the 
foregoing Theorem is more than what is required. 

 
Example 3.2 (20, Nadi, Zafarani) Consider the 

following (NLP) with Cଵ,ଵ data:  
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minimize    f(x): = − 12 zଵ|zଵ| + zଵzଶ − zଵ + zଶ  for  z= (zଵ, zଶ) subject to   gଵ(z): = zଵଶ + zଵ − zଶ ≤ 0,  gଶ(z): = zଵ + zଶ − 1 ≤ 0,   gଷ(z): = −2zଵ + zଶ ≤ 0. 
 
The Lagrangian function for λ = (λଵ, λଶ, λଷ) is  L(z, λ) = − 12 zଵ|zଵ| + zଵzଶ + λଵ(zଵଶ + zଶ − 1) + λଶ(zଵ+ zଶ − 2) − λଷzଵ. 
 Now, we can show that zത = (0,0) is a KKT-point for 

(NLP) with Lagrange multipliers λത = (1,0,0). Also, for 
all z ∈ ℝଶ we have  ∇L(z) = (−|zଵ| + zଶ + 2zଵ, zଵ). 

 For zଵ > 0 and v = (vଵ, vଶ) ∈ ℝଶ,  ∇ଶL(z)(v) = ቀ1 11 0ቁ ቀvଵvଶቁ = ቀvଵ + vଶvଵ ቁ 
 and for zଵ < 0 and v = (vଵ, vଶ) ∈ ℝଶ we have  ∇ଶL(z)(v) = ቀ3 11 0ቁ ቀvଵvଶቁ = ቀvଵ + vଶvଵ ቁ. 
 Thus, for zଵ > 0  and p ∈ D෡∗(∇L)(z)(v) =∇ଶL(z)(v) we derive  〈p, v〉 = vଵଶ + 2vଶvଵ. 
 
Also, for zଵ < 0  and p ∈ D෡∗(∇L)(z)(v) =∇ଶL(z)(v) we deduce  〈p, v〉 = 3vଵଶ + 2vଵvଶ. 
 
On the other hand, the set of active indexes in zത is I(zത) = {1,3}  and Iା(λത) = {1}  and I଴(λത) = {3}. 

Therefore, by an easy calculation, we conclude that the 
critical direction cone at xത is  C(zത) = {v: 〈∇gଵ(zത), v〉 = 0 and 〈∇gଷ(zത), v〉 ≤ 0}   = {(vଵ, vଶ): vଵ = vଶ and − 2vଵ + vଶ ≤ 0} = {(vଵ, vଶ): vଵ = vଶ and vଵ, vଶ ≥ 0}. 

 This means that 〈p, v〉 > 0 for all p ∈ D෡∗(∇L)(z)(v) 
with z ≠ 0 and v ∈ C(zത)\{0}. It is not difficult to see that D෡∗(∇L)(z)(v) = ∅  for all z = (0, zଶ).  Therefore, the 
second-order sufficient condition D෡ି(∇L)(z, v) > 0 
holds for all v ∈ C(zത)\{0} by our Theorem. Moreover, it 
is easy to see that the cost function f  is strictly 
pseudoconvex in direction v = (1,1) ∈ C(zത), because for 
all t > 0: f(zത + tv) = f(t, t) = − 12 tଶ + tଶ − t + t = 12 tଶ > f(zത) = 0. 

 But for u = (1,0) ∉ C(zത) and all t > 0:  f(zത + tu) = f(t, 0) = −12 tଶ − t < f(zത) = 0 
 This means that 𝑓  is not pseudoconvex at 𝑧̅ in the 

direction 𝑢. Therefore, 𝑓 is not pseudoconvex at 𝑧̅, but 𝑧̅ 
is a minimizer for (NLP).  

Instead of pseudoconvexity and quasiconvexity at a 
point, we use the pseudoconvexity and quasiconvexity at 

a point in a direction and present the following extension 
of Mangasarian’s theorem in the case of local solution. 

 
Theorem 3.4 (20, Nadi, Zafarani) Let the set 

constraint be open. The functions f  and g୧  for i =1, . . . , nଵ  are defined on X  and zത  is a feasible point. 
Suppose that there exist Lagrange nonnegative 
multipliers λଵ, . . . , λ୪భ  with λ୧g୧(zത) = 0  for i = 1, . . . , nଵ 
and ∇L(zത) = 0  where L = f + ∑୪భ୧ୀଵ λ୧g୧.  If f  and g୧  for i ∈ I(z) are differentiable at z, f is pseudoconvex at zത in 
all critical directions v ∈ C(zത)  and g୧  for i ∈ I(zത)  are 
quasiconvex at xത in all critical directions v ∈ C(zത), then zത 
is a local minimizer of (NLP). 

Now, we give some applications in tilt-stability 
theory, as an application of our results in classical 
optimization. 

 
Proposition 3.1 (14, Nadi, Zafarani) Let (PSD) hold 

for g: X → ℝ  that is a differentiable function and D෡∗(∇g)(z)(v) be non-empty for any z, v ∈ X. If ∇g(zത) =0, then zത is a global minimizer of g. 
 
Definition 3.1 (22, Tilt Stability, Poliquin- 

Rockafellar 1998) Given g: X → ℝഥ , a point zത ∈ domf is a 
tilt-stable local minimizer of g, if there is γ > 0 such that 
the mapping  Mஓ: z∗ ⟼ argmin{f(z) − 〈z∗, z〉: z ∈ Bஓ(zത)} 

is a single-valued mapping and Lipschitz continuous 
on some vicinity of 0 ∈ 𝑋∗ with 𝑀ఊ(0) = 𝑧̅. 

  
Proposition 3.2 (14, Nadi, Zafarani) Let g: X ⟶ℝ 

be a strongly convex lower semicontinuous function and X be a Banach space. Then the following conditions hold: (i) If zത is a global minimizer for g, then it is the tilt-
stable local minimum of g. (ii) The point zത is a local minimizer for g when X is 
an Asplund space. Also, there exist numbers r ∈ (0, ଵச) 
and ε > 0 such that  g(x) ≥ g(xത) + 〈yത, z − yത〉 − r2κ ∥ z − zത ∥ଶ   whenever  z∈ Bக(zത). 

 
Proposition 3.3 (20, Nadi, Zafarani) Let g:ℝ୬ → ℝ 

be a twice differentiable function which satisfies 
Assumption A with respect to some η and ∇g(zത) = 0. 
Moreover, suppose that one of the following holds: 

(i) 〈η୸(z, z)v,∇ଶg(z)(z)v〉 ≥ 0 , for any z, v ∈ ℝ୬ , 
where η is skew and satisfies Assumption C and η(. , y) 
is onto for any y ∈ ℝ୬. 

(ii) 〈η(y, zത),∇ଶg(zത)η(y, zത)〉 ≥ 0, for any y ∈ ℝ୬. 
Then 𝑧̅ is a local minimizer of 𝑔. 
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 Consider the following constrained optimization 
problem:  min  𝑔଴(𝑧) subject to  𝑔௜(𝑧) ≤ 0   (𝑖 = 1, . . . ,𝑚), (7) 

 which g଴, gଵ, . . . , g୫  are twice differentiable 
functions defined on ℝ୬. 

Let g(z) = (g଴(z), . . . , g୬(z)) . We know that the 
existence of a vector λ = (λଵ, . . . , λ୬) ∈ ℝ୬  which 
satisfies the following conditions, (Kuhn-Tucker 
conditions) is necessary for zത to solve this problem:  ∇g(zത) + 〈λ,∇g(zത)〉 = 0 (8) 〈λ, g(zത)〉 = 0 (9) λଵ, . . . , λ୬ ≥ 0. (10) 

 Hanson 1981 showed that the Kuhn-Tucker 
conditions are also sufficient for 𝑧̅ to be a solution of (4), 
when each 𝑔௜ is invex with respect to the same 𝜂. Indeed, 
only the invexity in a neighbourhood of 𝑧̅ for each 𝑔௜ 
guarantees that the foregoing conditions are sufficien 
(Craven 1982). 

Now, we give some second-order sufficient 
conditions for constrained optimization problems, by 
using our results. 

 
Proposition 3.4 (20, Nadi, Zafarani) Suppose we 

have the constrained optimization problem (4). If the 
Kuhn-Tucker conditions hold in zത,  each g୧  satisfies 
Assumption A, and one of the following second-order 
conditions holds (with respect to the same η): 

(i) 〈η୸(z, z)v,∇ଶg୧(z)v〉 ≥ 0 , for any z, v ∈ ℝ୬ , 
where η is skew and satisfies Assumption C and η(. , y) 
is onto for any y ∈ ℝ୬, 

(ii) 〈η(y, zത),∇ଶg୧(z)η(y, zത)〉 ≥ 0 for any y ∈ ℝ୬, 
then zത is a solution for the constrained optimization 

problem (4). 
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  چكيده 
ــته  تي بر ماه  ژه ي وو به پردازديم  دادي زمان تا وقوع رو  يهاداده   لي تحل  يهامطالعه به چالش ني ا ــس مدت   گس

بقا با    يهاغالباً منجر به داده  تي وضـع ني . اكنديم  دي تا طلاق، تأك  يهامانند تعداد سـال  شـامد،ي تا وقوع پ زمان
فر افزوده م  عي توز ود،يصـ فر ب  يفراوان   راي ز شـ اهدات صـ ت. برا  يطور قابل توجه  همشـ  ني مقابله با ا  يبالا اسـ

كل، مطالعه از مدل رگرسـ ته صـفر آماسـ  بولي وا وني مشـ سـ تفاده م  ده ي گسـ چارچوب   كي كه به عنوان  كندياسـ
مانند عدم    ييهاحال، چالش ني . با اكنديبقا عمل م  لي در تحل يحي توضـ  يرهاي متغ  ري تأث   ياب ي ارز  يمناسـب برا

تاي ا خ  رهاي متغ  ني ب   ابطهدر ر  ييسـ ا  يها و ناهمگون و پاسـ   يمنجر به مدل  توانديم  يياي در مناطق جغراف ييفضـ
  ي ساز خلاصه  يرا برا  ييفضا  يبندروش خوشه  كي مشكل، ما    ني كاهش ا  يشود. برا  ادي ز  اري بس يبا پارامترها

 ييفضــا  يناهمگون  يررســب   يبرا  ينا پارامتر  زي ب   يهامقاله از روش ني . امي كن يم  شــنهادي پارامترها پ  يفضــا
  ي پارامترها   يبندخوشـه  يبرا  يياي جغراف ي موزونن ي رسـتوران چ ندي و بر فرآ برديبهره م  وني رگرسـ بي ضـرا

شود ي نشان داده ميسازهي مطالعات شب از طريق   . كنديتمركز م  ده ي گسسته صفر آماس بولي وا  وني مدل رگرس
بدون نظارت    يبندخوشـه  يهاتمي نسـبت به الگور  يعملكرد بهتر  يياي جغراف موزون ين ي رسـتوران چ ندي فرآكه 

  ي ها با اندازه   ييوهاي در سـنار  ژه ي وبهدارد، اسـتاندارد    ين ي رسـتوران چ ندي و فرآ  ميانگينK-ي  بندمانند خوشـه
ــه نامتعادل از دقت و كارا ــبات   ييخوش ــاخص  يبالاتر  يمحاس ــت. ش   ن ي انگي م  و  رند بالاتر  يهابرخوردار اس

  ي هـاداده   يبر رو  روش ني . اعمـال ادنـكن يم  ديـتـأك  مـدل پيشــنهـادي مـا يي و دقـت  بر كـارا  ترنيي پـا  يمربعـات خطـا
  ي بند خوشـه كي منجر به    ران،ي در ا  ييزناشـو يسـال اول زندگ  پنجدر  يبا انباشـتگ  ،طلاق  شـامدي زمان تا وقوع پ 

يوني متغيرهاي تبييني دخيل در اين امر با تغييرپذيري فضـايي كارامد   يوردهاآو بر  نهي به از ضـرايب رگرسـ
  شده است. 

    
تحليل بقا؛ ضريب متغير فضايي؛ خوشه بندي فضايي  هاي كليدي: واژه   
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 چكيده 

 
قابل   پاسخهاي  بالا،  حساسيت  دليل  به  كه  است  مواجه  موضوعاتي  با  محقق  اجتماعي  تحقيقات  برخي  در 

آيد. روشهاي پاسخ تصادفيده براي افزايش سطح محرمانگي و ارائه پاسخ صادقانه به اعتمادي به دست نمي
مي بزرگتري  كار  واريانس  روش  اين  از  آمده  دست  به  برآوردهاي  وجود  اين  با  پاسخ  روند.  تكرار  دارند. 

هر  مشاهدات  ميانگين  از  استفاده  و  شده  مشاهدات  تعداد  افزايش  باعث  نمونه  عضو  هر  ازاي  به  تصادفيده 
نمايد.  دهد و مقادير برآورد را به واقعيت نزديكتر ميشخص براي برآورديابي واريانس برآورد را كاهش مي 

ي پيوسته مكرر، ميانگين پاسخهاي هر شخص در نظر  ي جمعدر اين مقاله با استفاده از پاسخهاي تصادفيده 
گرفته شده است و در قالب يك مدل خطي به برآورد ميانگين متغير حساس و پارامترهاي رگرسيوني پرداخته  

ي جمعي  هاي درآمد خانوار جمع آوري شده از دانشجويان به روش تصادفيده شده است. براي اين منظور داده 
مكرر بررسي شده است كه از هر شخص تفاضا شده پاسخ خود را پنج بار تصادفيده كند. نتايج به دست آمده  
با دو روش، يك بار براي مشاهده اول و بار ديگر با در نظر گرفتن ميانگين مشاهدات هر شخص در قالب مدل 

ديكتر  دهد برآوردهاي به دست آمده از روش دوم به واقعيت نزرگرسيون به دست آمده است. نتايج نشان مي 
  بوده و واريانس كمتري دارند.

  
تكرار   ؛متغير پيوسـته حسـاس  ؛مدل رگرسـيون خطي  ؛پاسـخ تصـادفيده مكرر  ؛پاسـخ تصـادفيده  واژه هاي كليدي: 

 مشاهدات
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سازي برخي  هاي گسسته پايه و مشخصهايي براي ورآنتروپي توزيعكران 
  هاي گسستهتوزيع 

 
  *فرانك گودرزي

 ايران كاشان، جمهوري اسلامي گروه آمار، دانشكده علوم رياضي، دانشگاه كاشان،

  چكيده 

هاي  اي براي ورآنتروپي برخي توزيعبسته  شكلو از آنجا كه   تروپي در نظريه اطلاعآن با توجه به اهميت ور
ها و معرفي ورآنتروپي گذشته  هايي براي ورآنتروپي اين توزيعتوان يافت، هدف ما تعيين كرانگسسته نمي

هاي  هاي بالا و پاييني را براي ورآنتروپي توزيعدر اين مقاله، ابتدا كران  .براي متغيرهاي تصادفي گسسته است
هاي بالاي حاصل كه كرانايم. با توجه به آنبه دست آورده   فوق هندسياي منفي و  اي، دوجملهپواسون، دوجمله

رياضي  صورت  به دوماميد  مي  لگاريتمي    توانهاي  از  بيان  استفاده  با  معادل  عبارت  يك  تفاضل شوند،  ضرايب 
 .دهيم ارائه مي  ضرايب تفاضل لگاريتميهاي پاييني را نيز برحسب  كنيم. به همين ترتيب، كران ارائه مي لگاريتمي  

آيد. همچنين، به دست مي   واريانس تابعي از تابع باقيمانده عمر معكوس گسستهيي براي  علاوه بر اين، كران بالا
شامل  نامساوي منتخبگشتاورهاي هايي  توابعي  طريق    هاي  را  شكستنرخ  از  برخي   معكوس  و  كرده  بررسي 

 .كنيمسازي ميمشخص نامساوي كُشي شوارتز هاي گسسته را با استفاده از توزيع
  

    شوارتز نامساوي كُشي ؛تبديل دو جمله اي ؛نرخ شكست معكوس ؛ورآنتروپيواژه هاي كليدي: 
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اقتصادي: كاربرد براي بيني كلان هاي انتخاب ويژگي براي پيشابي روشارزي
 اقتصادي ايران متغيرهاي كلان 

 
  مهدي گلداني* 

  وار، جمهوري اسلامي ايران واري، سبزهگروه اقتصاد و علوم سياسي، دانشكده علوم انساني، دانشگاه حكيم سبزه
 

  چكيده 
 

اقتصــادي  هـاي كلانبيني مـدلهـاي مختلف انتخـاب ويژگي براي بهبود دقـت پيشاين مطـالعـه بـه ارزيـابي روش
اند. يك هاي بانك جهاني اســتخراج شــده اقتصــادي ايران كه از داده هاي كلانپردازد، با تمركز بر شــاخصمي

هاي  هاي فيلتري، روشهاي روشتكنيك انتخاب ويژگي انجام شـد كه در دسـته 14مقايسـه جامع با اسـتفاده از 
اند. چارچوب ارزيابي  بندي شـده هاي مبتني بر شـباهت طبقهو روش  ، شـده هاي تعبيهروش،  مبتني بر پوسـته

بخشـي -10در يك فرآيند اعتبارسـنجي متقاطع   و ميانگين مطلق خطا شـامل معيارهاي ميانگين مربعات خطا
ان داد كه روش ابود. يافته هاي مبتني بر  هاي مبتني بر درخت و تكنيكروش،  گامبهنتخاب گامهاي كليدي نشـ
بيني بالاتري از خود نشـان دادند.  و اقليدسـي، به طور مداوم دقت پيش هاي هاسـدورفويژه فاصـلهشـباهت، به

دورف    32.03گام  بهبراي روش انتخاب گام  ميانگين مطلق خطا ميانگين مقادير له هاسـ بود.    62.69و براي فاصـ
ــتي ويژگيدر مقابل، روش ــتانه هاي حذف بازگش ــعيفي با مقادير گذاري واريانسو آس ــبتاً ض  عملكرد نس

اهـت، ميـانگين رتبـه  مراتـب بـالاتر داشــتنـد. روشبـه ميـانگين مطلق خطـا را در بين   9.125هـاي مبتني بر شــبـ
انمجموعه داده  ب كردند كه نشـ تحكام آنها كسـ اقتصـادي با ابعاد بالا اي كلانهها در مواجهه با داده دهنده اسـ

هاي سـنتي انتخاب ويژگي براي بهبود دقت و اسـت. اين نتايج بر پتانسـيل ادغام معيارهاي شـباهت با روش
گذاران  هاي ارزشـمندي براي پژوهشـگران و سـياسـتبيني تأكيد دارد. اين مطالعه بينشهاي پيشكارايي مدل

 .اعتماد هستندبيني اقتصادي قابلدهد كه به دنبال توسعه ابزارهاي پيشارائه مي
 

هاي روش  ؛اقتصاديتحليل كلان  ؛هاي بانك جهانيشاخص  ؛بينيدقت پيش  ؛انتخاب ويژگي هاي كليدي: ه واژ
  شباهت 
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هاي ماشين بردار  و روش مقايسه سيستم استنتاج فازي مبتني بر عصبي تطبيقي 
 بيني شاخص تركيبي جاكارتاپشتيبان براي پيش

 

 ، سري آستوتي تامرين، جورجينا ماريا تينونگكي*آيو موتمينه
 

 اندونزي ماكاسار، اندونزي  90245گروه آمار، دانشكده رياضيات و علوم طبيعي، دانشگاه حسن الدين، ماكاسار، 

 
  چكيده 

) يك معيار اسـاسـي براي ارزيابي عملكرد تمام سـهام هاي فهرسـت شـده در JCIشـاخص تركيبي جاكارتا (
هـاي  ) اســـت. بـا توجـه بـه پيچيـدگي ذاتي، غيرخطي و غيرثـابـت بودن داده IDXبورس اوراق بهـادار انـدونزي (

هام، انتخاب روش تنتاج عصـبي  هاي پيشبازار سـ تم اسـ يسـ ت. اين مطالعه عملكرد سـ بيني قوي ضـروري اسـ
كند. محقق مقايســه مي  JCIبيني حركات ) را در پيشSVM) و ماشــين بردار پشــتيبان (ANFIS(فازي تطبيقي  

)  MAPE) و ميانگين درصـد مطلق خطا (RMSEبيني را با اسـتفاده از ريشـه ميانگين مربعات خطا (دقت پيش
كند يافته اسـتفاده ميبهينه از تابع عضـويت زنگ تعميم  ANFISارزيابي كرد. مرحله آموزش نشـان داد كه مدل  

از يك هسته    SVMكربندي  كند. به طور همزمان، بهترين پي اي و گاوسي بهتر عمل ميهاي ذوزنقهو از جايگزين
هاي  ) و هســتهRBFكند كه عملكرد برتر را در مقايســه با تابع پايه شــعاعي () اســتفاده مي10خطي (هزينه = 

دســت يافت، در   MAPE=0.4647و   RMSE=39.894به   ANFISدهد. در مرحله آزمايش، ســيگموئيد نشــان مي
 SVMبيني برتر  هاي پيشرا ثبت كرد. اين نتايج بر قابليت  MAPE=0.4516و   SVM RMSE=38.728حالي كه 
اكيـد مي اد براي پيشتـ ابـل اعتمـ ام قرار ميكنـد و آن را بـه عنوان ابزاري قـ افتـهبيني بـازار ســهـ هـاي اين دهـد. يـ

رمايهمطالعه بينش مندي را براي سـ تهاي ارزشـ ياسـ هاي بازار و يابي عدم قطعيتگذاران در جهتگذاران و سـ
 كند. گذاري فراهم ميهاي سرمايهيسازي استراتژبهينه

  
شـتيبانيواژه هاي كليدي:   سـيسـتم اسـتنتاج فازي مبتني بر    ;شـاخص تركيبي جاكارتا  ;پيش بيني؛ ماشـين بردار پ

 عصبي تطبيقي
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