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Instructions to Authors

1. General Policy

The Journal of Sciences, Islamic Republic of Iran (J. Sci. I. R. Iran) is published quarterly by
the University of Tehran. Contributions from all fields of basic sciences may be submitted by
scientists from all over the world.

The papers submitted to this journal should not have been published previously, except in the
form of a brief preliminary communication, nor submitted to another journal. The decision to
accept a contribution rests with the Editorial Committee of the J. Sci. I. R. Iran. Manuscripts will
be considered for publication in the form of articles, preliminary communications, notes and
review articles. The work should be original or a through review by an authoritative person in a
pertinent field.

2. Copyright

Submission of a manuscript implies that the author(s) agree to transfer copyright to the J. Sci.
I R. Iran when the contribution is accepted for publication. Reproduction of the text, figures, or
tables of this journal is allowed only by permission of the Editorial Committee.

3. Preparation of Manuscripts

3.1. General considerations. Manuscripts must be submitted in English according to Journal
Instructions ( It is necessary to submit at least 2 files including “Title page” and “Main file”). They
must be typewritten in Microsoft Word (all versions). Authors are requested to reserve margins
of at least 3 cm at the top and bottom of each page and at least 4 cm on the left-hand side.

Tables and illustrations (both numbered in Arabic numerals) should be prepared on separate
pages. Tables require a heading and figures a legend, also prepared on a separate page. In
Electronic submission, figures should be with the following caveats: all figures should be
submitted at a minimum of 300 dpi and saved as TIFF files (avoid submitting JPEG files) after
your text file.

Manuscripts should be kept to a minimum length and should be subdivided into labeled
sections (Introduction, Materials and Methods, Results, Discussion, Acknowledgement,
References). A current issue of J. Sci. I. R. Iran should be consulted.

3.2. Title page. The title of a manuscript should reflect concisely the purpose and findings of
the work in order to provide maximal information for a computerized title search. Abbreviations,
symbols, chemical formulae, references, and footnotes should be avoided.

The authors’ full first names, middle initials and last names should be given, followed by the
address(es) of the contributing department(s). (e.g. Department, Faculty, University, City,
Country).

Telephone, Fax and Email of corresponding author should be footnoted on the bottom of the
first page of each manuscript.Footnotes may be added to indicate the present mailing address(es)
of the author(s). (e.g. *Corresponding author, Tel: 00982188012080, Fax: 00982188012081, E-
mail: jsciences@ut.ac.ir).

Special types of print should be indicated as follows:

Type Mark Symbol  Example Example (Printed)
Boldface® Single underline Introduction  Introduction
Italic® Wave-like underline A~ In vivo In vivo

NS
Small capital® Double underline —— 02m 02M
Boldface italic!  Underline with wavy line —~—~_ R R

a) Headings, designated numbers of chemical compounds, subheadings.

b) Configurational prefixes ((R)-, (S)-, cis-, trans-, tert-, etc); Latin words or abbreviations,
words in languages other than English; trade names of compounds (first letter should be
capitalized); names of authors if mentioned in the text.
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¢) Symbols of molar and normal concentrations (M and N), D- and L-, the names or initials of
the nomenclature of species.

d) Italicized terms and prefixes in headings.

The total number of pages (including references, tables, copies of formula collections (if any),
schemes and figures should be marked in the upper left-hand corner of the first page of each copy.
The complete address, including phone number, and E-mail address of the correspondence author
should also be given.

3.3. Main File:

a) The title of the article (The first letter of each word must be capital).

b) Abstract should be self-explanatory and intelligible without references to the text and titles,

it must not exceed 250 words.

c) At least between three to five keywords should be chosen by the author(s).

d) Introduction

¢) Materials and Methods

f) Results and Discussion ( they can be separate section too)

g) Figures and Tables ( if There are any)

Theoretical articles must have atleast two main title : Introduction and Results.

3.4. References. References may be numbered alphabetically or sequentially in the order they
are cited in the text. References typed with double spacing are to be listed in numerical order at the
end of the main text. They should be addressed according to the following examples:

Journals:
Noori-Daloii M.R., Swift R.A., Kung H.J., Crittenden L.B., and Witter R.L. Specific
integration of REV proviruses in avian bursal lymphomas. Nature, 294 (5841): 574-576 (1981).
Noori Daloii M.R., Saffari M., Raoofian R., Yekaninejad M., Saydi Dinehkabodi O., and Noori-
Daloii A.R. The multidrug resistance pumps are inhibited by silibinin and apoptosis induced in
K562 and KCL22 leukemia cell lines. Leukemia Research, 38 (5): 575-580 (2014).

Books:
Rang G.M. and Petrocelli S.R. Fundamentals of Aquatic Toxicology. Hemisphere Publishing
Corporation, New York, 1129 p. (1991).

Chapters in Books:

Walsh J.H. Gastrointestinal hormones. In: Johnson L., Christensen J., Jackson M., Jacobson E.,
and Walsh J.H. (Eds.), Physiology of the Gastrointestinal Tract, 2nd Ed., Raven, New York, pp.
181-254 (1987).

Thesis:

Kossir A. Extraction liquid-liquid du Zinc (I) en milieu cyanure. Application ala valorization
des minerais de zinc oxides, Ph.D. Thesis, University of Paris (VI), 116 p. (1991).

Please note that papers with incorrect formatted references will be returned.

4. Forwarding Address
Manuscripts should be submitted to the journal site (http://jscinces.ut.ac.ir).

M.R. Noori-Daloii, Ph.D.

J. Sci. I. R. Iran

University of Tehran
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Abstract

The study addresses the challenges of analyzing time-to-event data, particularly
emphasizing the discrete nature of durations, such as the number of years until divorce.
This frequently results in zero-inflated survival data characterized by a notable frequency
of zero observations. To address this, the study employs the zero-inflated discrete Weibull
regression (ZIDWR) model, which serves as a suitable framework for evaluating the
impact of explanatory variables in survival analysis. However, challenges such as
nonstationarity in the relationship between variables and responses and spatial
heterogeneity across geographical regions can result in a model with too many parameters
To mitigate this, we propose a spatial clustering approach to summarize the parameter
space. This Paper leverages nonparametric Bayesian methods to explore the spatial
heterogeneity of regression coefficients, focusing on the geographically weighted
Chinese restaurant process (gwCRP) for clustering the parameters of the ZIDWR model.
Through simulation studies, the gwCRP method outperforms unsupervised clustering
algorithms clustering K-means and the standard Chinese restaurant process (CRP),
exhibiting superior accuracy and computational efficiency, particularly in scenarios with
imbalanced cluster sizes. This improved performance is quantitatively demonstrated
through higher Rand indices, lower average mean squared error (AMSE) in parameter
estimation and superior log pseudo-marginal likelihood (LPML) values. Applying this
methodology to Iranian divorce data reveals distinct spatial clusters characterized by
varying covariate effects on the probability of divorce within the first five years of
marriage and the subsequent time to divorce.

Keywords: Survival Analysis; Varying Coefficient; Spatial Clustering.

This discretization may result in zero observations,

Introduction indicating events that occurred before the first time

Survival analysis is a statistical technique used to recording unit (e.g., daily, monthly, or yearly). These
evaluate time-to-event data. While survival time is zero values, sometimes referred to as "sampling
generally treated as a continuous random variable, it is zeros'"(1), arise from events that take place right at the
often recorded at discrete intervals (e.g., 0, 1, 2, 3...). )commencement of the study. Such occurrences are

* Corresponding Author: Tel:+989122066712; Fax:+982182883483: Email:mohsen m@modares.ac.ir
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prevalent across various domains. For example, in the
healthcare sector, pregnant women might spend less than
a day in the hospital before delivery. Likewise, in studies
related to job placement, a zero survival time may signify
an immediate job placement. Traditional survival models
often struggle to accommodate these instances. As a
result, researchers have turned to "zero-inflated survival
models" to tackle these challenges more effectively.
Applications of these models include zero-inflated Cox
models for analyzing rat sleep time following ethanol
exposure (2), Weibull models for investigating time until
banking fraud occurs (3-4), and zero-inflated cure models
employed in studies of labor duration and cervical cancer
(5-6). The choice of the baseline distribution is crucial in
zero-inflated discrete models. While the Poisson
distribution is frequently used for its intuitive
interpretation of count data, its inherent assumption of
equality between mean and variance often fails in
practice. This limitation leads to over- or under-
dispersion, resulting in inaccurate inferences and
underestimated standard errors. Although the negative
binomial distribution effectively addresses over-
dispersion, it is unsuitable for under-dispersed data.
Furthermore, by modeling the probability of a specific
number of events within a defined period and assuming
independence, the Poisson distribution is not directly
analogous to time-to-event distributions. Consequently,
generalizing discrete distributions in survival analysis is
necessary to accommodate all types of dispersion and
relax the independence assumption, mainly when
dealing with correlated data. The Type I Discrete Weibull
distribution proposed (7) is designed to mirror its
continuous counterpart, is well-suited for discrete
survival data and effectively handles both over- and
under-dispersion. The Zero-Inflated Discrete Weibull
(ZIDW) regression model is ideal for zero-inflated
discrete survival data as it captures dispersion in zero and
non-zero modes (8). This model includes two regression
relationships:one for the effect of explanatory variables
on the rate of non-zero responses and another for the
probability of zero, allowing each explanatory variable to
have two regression coefficients. Considering the spatial
references of survival data, known as survival spatial
analysis, enables the estimation and comparison of
survival across different geographical areas, revealing
spatial patterns. This helps identify areas with the highest
and lowest survival rates.

One notable aspect of spatial variability is the
difference in the influence of explanatory variables on
survival time across different locations, a phenomenon
known as spatial heterogeneity. Spatial heterogeneity
refers to how the relationship between explanatory and
response variables alters with geographical displacement.

S. Asadi, M. Mohammadzadeh.

206

J. Sci. . R. Iran

This variation arises because different locations exhibit
different properties or values. Consequently, the values
of regression coefficients can differ significantly from
region to region. As a result, traditional regression
models may fail to accurately capture the nature of these
relationships in the context of spatial data analysis. Two
main methods exist for estimating regression coefficients
in models with spatially variable coefficients. The first is
geographically weighted regression, a local method that
estimates model parameters by weighting them at any
point in the examined space. Unlike conventional
regression, which describes general relationships
between variables, geographically weighted regression
provides spatial information on the variations in these
relationships. The second method treats regression
coefficients as random variables following spatial
distributions. The spatial distribution can be assessed by
selecting appropriate prior probability functions for the

parameters. (9) examined the application of a
geographically weighted regression model for
accelerated failure time in spatial survival data. (10)

investigated the influence of explanatory variables
through a geographically weighted regression model on
the Cox survival models, explicitly applying the Weibull
distribution to handle the data.

The second method, Spatial Variable Coefficient
(SVC), addresses this spatial heterogeneity by treating
regression coefficients as spatial random variables. This
method considers regression coefficients as spatial
random variables that follow spatial distributions. By
selecting suitable prior probability functions for the
parameters, it is possible to assess the spatial variability
of the parameters at different locations in the Bayesian
spatially-varying coefficient (BSVC) model and to
estimate the regression coefficients from their posterior
probability (11). Simulation studies indicate that SVC
processes outperform GWR by accurately estimating
regression coefficients, so GWR must be considered a
purely exploratory tool (12). In survival data analysis, the
spatial variable coefficients (SVCs) method in the Cox
model with a frequency-oriented perspective has been
suggested by (13). (14) have suggested an AFT model
with prior spatial distributions for spatially variable
regression coefficients. (15) have suggested a
geographically weighted Cox regression model for sparse
spatial survival data.

Although these methods enhance survival prediction
accuracy by considering the spatial variability of
regression coefficients, they also raise model fitting
complexity for ZIDWR models, assuming spatial
variability of parameters for both regression coefficient
vectors. This is because not only can the effect of
explanatory variables on non-zero response have spatial
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variability, but their effect on the probability of zeroing
can also be different in different places. Thus, all
regression coefficients have spatial variability.

Moreover, there are often censored observations in
these data due to limited follow-up time that cannot be
overlooked. Clustering the model parameters with
similar spatial features is a proper method for efficiently
reducing model dimensions and summarizing data.
Spatial clustering methods, such as the K-means method,
can be used to summarize data efficiently. Hence,
Bayesian nonparametric processes, such as the Dirichlet
mixture process, are used to investigate the spatial
heterogeneity of regression coefficients (16). This
process  simultaneously  considers intra-cluster
correlation and heterogeneity between clusters in the
spatial clustering structure. These processes turn the
model into a simple parametric form by clustering with
complex data on the model parameter space. Given its
computational ease, the Dirichlet Process is one of the
best random processes among nonparametric processes
(for instance, the Gaussian process, Pdlya tree process
(17), and so on) for clustering parameters in models with
SVCs. In this method, we can cluster coefficients into
homogeneous groups by choosing prior probabilities on
the distribution of discrete partitions, where several
parameters get the same value simultaneously.

As a representation of the infinite mixture Dirichlet

process, the Chinese Restaurant Process (CRP)
introduced by (18,19) allows for dividing model
parameters into homogeneous clusters  without

predetermined assumptions about the cluster count. As
our purpose of spatial clustering of parameters is to
reduce the spatial heterogeneity in the data, it is necessary
to consider the geographical location of the units in the
allocation of clusters because the presence of common
factors in close areas causes the parameters in them to be
similar. In other words, each member's allocation within
each cluster will be such that if that member is closer to
the other cluster members regarding geographical
distance, it has a better chance of being in that cluster.
Hence, the distance between regions has a significant role
in this clustering. (20) offers a compelling alternative:the
distance-dependent Chinese restaurant process (ddCRP).
This model directly incorporates the probability of
assigning data points to existing clusters, making the
assignment dependent on the distance between data
points. An excellent way to do this is to make this
function one of the weighting functions in geographically
weighted regression models. Recently (21) introduced a
Geographically Weighted Chinese Restaurant Process
(gwCRP) to analyze the spatial heterogeneity of
regression coefficients. This method simultaneously
considers intra-cluster correlation and spatial clustering

207

structure heterogeneity and estimates the number of
clusters using a nonparametric Bayesian approach. While
recent studies have explored the spatial heterogeneity of
regression coefficients in count data models (22) and
zero-inflated models (23), the spatial clustering of
coefficients within survival models incorporating both
zero-inflated and right-censoring remains an uncharted
area of research.

Here, we demonstrate the adaptability of the
geographically weighted Chinese restaurant process
(gwCRP) clustering method for zero-inflated and right-
censored survival models and show that compared to
traditional CRP and k-means methods, gwCRP
consistently estimates the number of clusters regarding
distances while maintaining precise parameter estimation
of each component of our two-part generalized linear
regression model. To our knowledge, we are the first to
introduce the spatial varying coefficients in the ZIDW
regression model. Finally, we demonstrate how a Zero-
Inflated Discrete Weibull (ZIDW) model, incorporating
covariates such as the husband's employment status,
wife's financial autonomy, age gap, and spousal
similarity, could best fit the data. By spatial analysis, we
will reveal significant regional variations in the effects of
these covariates on both the probability of early divorce
and the duration of marriage when divorce occurs later.
Our novel approach, combining survival analysis with
spatial ~ clustering, provides a more nuanced
understanding of divorce than traditional CRP and k-
mean methods and offers valuable insights for targeted
policy interventions.

The remainder of the paper is organized as follows.
Section 2 summarizes ZIDW regression models. Section
3 defines the variability of SVC regression coefficients in
ZIDW survival data and provides an overview of CRP
and gwCRP methods. Section 4 presents the Bayesian
analysis with a Gibbs sampling algorithm for clustering
parameters of the ZIDW model with spatial variability of
regression coefficients. Section 5 compares the existing
methods in a simulation study. Then, numerical results
on divorce data are presented in Section 6.

Materials and Methods

Let the random variable T has a discrete Weibull
distribution T ~ DW(q,B) with probability mass
function f(t) = P(T = t) = qt* — q®+V* t =0,1,2, ..
One uses the discrete Weibull regression model with
some link functions of the parameters q or § to consider
the effects of some covariates on T. To define a ZIDW
regression model, let the survival time T be a non-
negative random count variable with the probability mass
function
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P(T=t1X,2)
p(Z) + (1 -p(2)A - qX)), t=0

- {(1 -p@) (a0 — a0V, t=12,..
denoting by T | X,Z ~ ZIDW(p(Z), q(X), B), where the
parameters q = q(X) and p = p(Z) depend on the
covariates KXnx(my+1) = (1,X1, ...,Xml) and
Znsqny+1) = (1, Z4, .., Z,), tespectively, through the
link functions (24):

X'a

log(—log(q(X))) =X'a, = q=q(X)=e"°
i ’ EZ,Y 7 -1
logit(p(2)) = 2y, = p=p(2) =1 = (1+e7)

where a = (ao, ...,aml) and y = (yo, ---:sz) are
the vectors of regression coefficients.
The ZIDW regression models assume that the effect of
explanatory variables on the response variable is the
same in different places. However, other conditions in
each region may cause spatial heterogeneity. Here, we
consider the spatial variability for all regression
coefficients. Let Ty, for i=1,..,n, and £ =1, ..., n;
denote the survival time for the case ¢ at site s; =
(u;, v;), n; denotes the number of subjects at site s;, and
X,(s;),Zp(s;) are the vectors of covariates. Let Tp; |
X,Z ~ ZIDW (psi(2), q¢;(X), B), then the equations (1)
and (2) considering the spatial variability of regression
coefficients a,; and y,; will be as follows:

e Ze(sy(si)
Dei (Z) 1+ ezf(si)y(si) ) q{’l(X) e

Where y(s;) = (yo(si), ...,yp(si)) and a(s;) =

(ao (5)) wnr (si)) are the model components that can

Xp(s)(s;)

be estimated by fitting two separate models. So

1 11 Dsins) —¢Resials) =
L cBlin) 1“) el ¢ } t=0

Y |
Lpeelsinted) _(e

_ My ,_Exgixl)\[ﬁ+1}:

[

-(e J

| t=12..

Zero-Inflated Discrete Weibull (CZIDW) model, if Ty; is
the survival time of the £-th unit and C,; the censored
from the right that is independent of Ty;, then for a
censored unit, the only available information is Cp; < T;.
By defining Y,; = min(Ty;, Cp;), 8;p = 1if Tp; = Cp; and
Joi =1, if Yp; =0, we can divide all the data, D =
{(Toi 601, X, (s)),i = 1,...,n,£ = 1, ...,n;}, as follows
Joi = 1,6, = 0 Y, is zero and not right-censored
Joi = 0,8, =0 Y, is non-zero and not right-censored
Joi = 0,6, =1 Y, is non-zero and right-censored
In this case, the likelihood of the CZIDW model can

be defined as follows
L(BayInYX,Z)= nfnn;‘;]["}z + (1 = Fp) (1 — Gp)Jui=8e0)

y_5 Datnf (1=Je)(1=84i)
[t Foo (62 - o]

[1-Fi—-F(1-68)]

S. Asadi, M. Mohammadzadeh.

M
(2)

208

J. Sci. . R. Iran

where F,; = (1 + e—Zt’(Si)V(Si))_l and G,; = e—eXl(Si)ll(Si).

1. Clustering of Model Coefficients

For each particular location s;,i = 1, ..., n, we define
0(s;) = (a(s)7,y(s;))T the collection of parameters.
CRP assumes n customers enter a Chinese restaurant
with
unlimited tables (5). In our setting, we assume that the n
parameter vectors can be clustered into k groups, i.e.,
0(s;) = 6;, €{64,...,0,}, where 1; € {1,..., k}, with k
being the total number of clusters. One popular way to
model the joint distribution of 4 = (44, ...,4;) is the
CRP, which is an essential representation of the Dirichlet
process and defines a series of conditional distributions
as
_Thie existing cluster
a*+i—1

i )
new cluster

Phi=cldy)
ar+i—1

where A_; = (4, ..., 4;_1) and n; . is the number of
elements in cluster ¢, and a* is the concentration
parameter of the underlying Dirichlet process. Equation
(4) expresses the conditional probability of placing the
i*" unit in the c®® cluster, given that the i — 1 of the
previous unit is clustered. (15,20) introduced the
"geographically weighted Chinese Restaurant Process"
(gwCRP) clustering method based on the weight
functions of distances. So in equation (3), we have n; . =
Z;"_:11Wi il (/1]- = C), where w;; s are elements of the
weight matrix W . Spatial weights are accommodated
using a Stochastic Neighborhood Conditional
Autoregressive (SNCAR) model (25), extending the
conventional Conditional Autoregressive (CAR) model
(26) to account for areal data. (27) defined a weight
matrix based on graph distance. Assume that the whole
area we are considering is a graph A with a set of vertices
V(A) ={vq,...,v,} and a set of edges E(A) =
{e1, ...,en} then the matrix elements are w;; =1 if

dviv}-

) where
h

dvi,,]. < 1, otherwise w;; = exp <—

|]V(e) |, if eis the shortest path connecting v; and v;
{oo, if v; and v; are not connected
is the distance graph between A; and 4;, and h is the
bandwidth (28). Moreover, |V (e)| is the cardinality of
the V(e) set, where e is the shortest path to the two
vertices. It is evident that when h = 0, the suggested
gwCRP technique is identical to the traditional CRP
technique. In this particular situation, the CRP technique
tends to cluster excessively. Another significant pattern

dy;

su 3is that as h rises, the estimated number of clusters

decreases before rising again. Simultaneously, the Rand
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index demonstrates an initial increase followed by a
decrease as h becomes excessively large. This pattern
emerges because, starting from h =0, the gwCRP
technique effectively begins to capture the inherent
spatial relationships in the data. Nevertheless, as h — oo,
the geographic weights w;; for spatial-discontinuous
areas decrease to zero. As a result, only neighboring areas
are categorized within the identical cluster, bringing back
the problem of excessive clustering.

2. Bayesian Analysis

Suppose for the CZIDW model for the set of
parameters O = (a,y,m k), we have separated the
model parameters by to k < n. In that case, we expect
that each member of the parameter space 8 = (64, ..., 6,,)
where 0(s;) = 0, is equal to one of the k separate values
of the separation set 07, ..., 8- If K* denotes the number
of clusters excluding the i-th observation 04, ...,0;_;.
Thus, if G, is a continuous distribution Polya Urmn
scheme, the conditional distribution of 8; given 0_; =
{64, ... ,0,,} will be as follows:
P(6; 16y, a",Gy)

1 . .
{f K T w1(0(s)) = 04) 56, (0(sD)

’ 91'—1; 9i+1l

o a*+i—1
a*Go(0(s)
at+i—1
Where §(-) is the indicator function. Then by defining
Prior hierarchically as follows:

T1X,Z,U ~ ZIDW (p;,(2),43,(X), B), i = 1, ...,m,

ap ~ N(0,Z,), v» ~ N(0,%,), h=1,..k,

Go(a,y) x P(@)P(y) = MVN(0,%,),

Ai | T,k ~ Multinomial(ry, -+, ),

T ~ gwCRP(a*, h), k ~ P(-).

For data D = (Y, X,Z,],8), with L(© | D), our goal
is to sample from the posterior distribution of the
parameters kA=, .., )€, ... kLa=
(ay, ..., ), and ¥y = (yq1,...,¥x) . In nonparametric
Bayesian models with the prior Dirichlet Processes (8),
due to the unavailability of the analytical form for the
posterior distribution of ©, we employ the Gibbs
sampling (27) to repeatedly draw values for each 6; from
its conditional distribution given both the data and the §;
for j #i. Then, we combine this result with the
likelihood and derive the full conditional distribution for
6; for use in Gibbs sampling:

0;16-,Y ~ Q[TiwrL(6; 1 n,Y, X1, X5)84,(6)
+a*(J Lo,
| n,Y, X1, X,)dGo(6))H;(6,)],
Where Q is the normalizer constant, H;(0) is the
posterior distribution of 6 obtained by combining
information from the prior distribution G, and observed
data D;.

new cluster.

existing cluster
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3. Cluster Configurations

Using Dahl's method introduced by (28) allows for
obtaining posterior estimates of cluster memberships
A4, .., A, and other model parameters y and a. This
method selects an "average" clustering using all posterior
clusterings in the three below steps:

Step 1. Define membership matrices A® =
(ADGN), jepm = (1A = A}”)))nxn, where b =
1, ..., B is the index for the retained MCMC draws after
burn-in, and /(-) is the indicator function.

Step 2. Calculate the element-wise mean of the
membership matrices over MCMC

draws A = %Zgzlo‘l(b).

Step 3. Identify the most representative posterior A
draw based on minimizing the element-wise Euclidean
distance Y-, X7y (AP, ) —z(i,j))2 among the
retained b = 1, ..., B posterior draws.

The algorithm accuracy can be evaluated using the
Rand index (29) for comparing cluster configurations
obtained with different methods to the actual clusters.
The Rand index computes a similarity measure between
two clusterings by considering all sample pairs and
counting pairs assigned in the same or different clusters
in the predicted and true clusterings. This index allows us
to measure the similarity between different clustering
results, providing valuable insights into the match ability
of these configurations. To measure the agreement
between A(°Ls) and the true clustering configuration. The
Rand index of two partitions, §; = {Uy, ..., U} and S,
{Vi, ...V}, of a set of n objects S = {oy,...,0,}, is
defined as

a+b a+b
RI_a+b+c+d_ )

where a represents the number of pairs of objects in
set S that are in the same cluster in §; and the same
cluster in §,, b represents the number of pairs of objects
in set S that are in different clusters in §; and different
clusters in §,, ¢ represents the number of pairs of objects
in set S that are in the same cluster in §; and different
clusters in S, and d represents the number of pairs of
objects in set S that are in different clusters in §; and the
same cluster in §,. The Rand index varies from 0 to 1,
where a higher value signifies more excellent agreement
between the two partitions. When the partitions are in
complete agreement, the Rand index equals 1.

For model selection, the decaying effect parameter h
for geographical weights needs to be tuned, and we use
the logarithm of the Pseudo-Marginal Likelihood (30)
based on conditional predictive ordinate to select h. The
LPML is defined as LPML YN log (CPO;), where
CPO; is the i — the conditional predictive ordinate. The
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Table 1. Comparison of LPML for different h values in both scenarios

h-values
Scenario 1 1.6 2 2.6 3
Balanced -22402  -155942  -12658 -8360 -9653
Imbalanced -20188  -21070 -13181 -5133 -6671

Monte Carlo estimate of the CPO, within the Bayesian
obtained  as CPOl_1 =
, where B is the total number of Monte

framework, can be
1 @B 1
p&b=1 " p )
B f(pue /11')
Carlo iterations, Gf{i is the b — the posterior sample, and
f () is the likelihood function defined in (3). An estimate
of the LPML can subsequently be calculated as LPML =
N . log (C’P\Oi) . A model with a more considerable
LPML value is preferred.

4. Simulation Study

A simulation study compares the K-means and the
CRP clustering methods with the proposed gwCRP
clustering for zero-inflated discrete time-to-event data
with spatially varying covariates. The study will examine
two balanced and imbalanced scenarios for data
geographical clustering patterns. Under the balanced
scenario, each group contains an equal number of units.
Under the imbalanced scenario, the group sizes differ,
and we have three to four clusters over two scenarios. The
number of sites is set to the number of provinces in Iran,
i.e., 31. We then generated a sample of size n; = 5 for
each province with center s;, so the total number of
observations is n = 155. We assumed X is equivalent to
Z and a similar set of covariates affect ¢ and p
parameters. Then, we generated spatial covariates X,(s;)
from Normal distribution N(0,1) . The temporal
component pdf for the £**, ¢ = 1,...,n; observation in
province s;, follows the distribution Ty | Xy ~
ZIDW (p(X,;), q(Xp:), B), with a fixed value of § = 1. 2.
So, two related responses were controlled under two
generalized linear models, logit(p) and log (—log (q)).
We set initial values for model coefficient parameter
Qeal » (—2,0.5), (1.5,0.6), (2.1,—0.4), (1.1,0.3), and for
Yreal » (0.95,1.1), (—0.4,0.6), (0.5,0.8), (1,1.5)
corresponding to each of the 4 clusters, respectively.
Then, to investigate the right censoring, we considered
the quantile 93% of data as the censored point C;, and as
a threshold to cut the simulated sample, such that all
values y,; = C,; were re-valued to be equal to Cyp;. Also,
if Ty; is not greater than the generated censored time Cjy,
we set §p; = 1, otherwise, it is considered zero. To add a
zero-inflated feature for each response, first, a random
vector from a uniform distribution U = (uq, ..., u,) ~
U(0,1) is generated if u,; < py;, setJp,; =0and Y, =0

otherwise, we considered J,; = 1 and generated Y,; from
DW distribution. We generated the outcome data under
the following two generalized linear models
logit(pie) = Yor(si) + v1exp, ()
log(—10g(qir)) = aoe(si) + aze(si)x,  (6)

We used Normal prior distributions N(0,52) for
regression coefficients @, and a;, with precision
parameters, 6,2 ~ T(1075,1073). Similarly, for y, and
y1 , the Normal priors N (O, af), are considered,
respectively, with o, % ~T(107°,107°) . To assess
gwCRP's clustering performance across a range of h
values, we will evaluate it from 1 to 3 in a grid of 0.2.
The optimal value of h will be determined using LPML
(Table 1). We fixed the concentration parameter a* = 1.
We provide information on estimating the number of
clusters and the compatibility of clustering
configurations. The maximum distance in the spatial
structure of the 31 regions is 10k.m, so yielding an
optimal bandwidth (hopt = 2.6) induces a weighting
scheme that ensures relative weights are assigned
appropriately. Each replicate involves running an
MCMC chain of length 10,000 with a thin of one and
burn-in of 2,000 samples.

Results

After meticulously examining the MCMC chain
length, we run our proposed algorithm in 100 separate
data replicates. A vital part of this process is obtaining
100 RI values, which we then compare with the real
values to validate our results. We calculated the mean in
the 100 replicates and the posterior means of the
parameters. Each replicate runs a total of MCMC
iterations. We calculated the cover rate for each scenario,
which equals the percentage of replicates in which our
proposed algorithm accurately recovers the number of
clusters. In our gwCRP model for scenario 2, we observe
that the correct number of clusters is inferred in at least
25 out of 100 instances. Specifically, for model 1 under
scenario 2, the final estimate of the number of clusters
consistently reaches five across 90 replicates. However,
in scenario 1, 75 cases underestimate the number of
clusters by 10. We also provide a detailed comparison of
our method with the K -means Algorithm. As the K-
means algorithm cannot infer the number of clusters,



Bayesian Clustering of Spatially Varying Coefficients ...

B
12 8818
&,

14

i

Bandwidth ()

THHI

I

Rand Index

Bandwidth (h)

50

100
75
gso
. 25
25
0 0
5 10 15 20 30

Number of Clusters

(Balanced Scenario)

Bandwidth (h)

5 10 15 20 30

Number of Clusters.

(Imbalanced Scenario)

Figure 1. Histogram of estimates of k under h-optimal and box plot of Rand index under different h and LPML selection.

Table 2. RI indexes for different clustering methods (h,pt = 2.6)

Type CRP K-means gwCRP
Balanced 0.8931 0.6865 0.9344
Imbalanced 0.8122 0.7624 0.9581

such values must be pre-specified. We supplied them
with the number of clusters inferred by our method in
each replicate, providing a comprehensive understanding
of their differences. We also present the histogram of the
final number of clusters inferred for each cluster scenario
and data generation model combination in (Figure 1).
As the Gibbs sampler does not directly yield the
posterior distribution of k, we employed Dahl's method
to estimate it. The RIs for each scenario and data
generation model are reported in Table 2. We also
thoroughly compared our method to the K means
algorithm. As the K-means algorithm cannot infer the
number of clusters, such values need to be pre-specified,
and we supplied them with the number of clusters
inferred by our method in each replicate. As the Gibbs
sampler does not directly yield the posterior distribution
of k, we employed Dahl's method to estimate it. Table 2
demonstrates  the significant improvement in
computational efficiency offered by our proposed
gwCRP model with vectorization for both scenarios. This
enhancement, coupled with the model's highest RI,
underscores its innovative approach and high accuracy in
clustering. The K -means model, while having an RI
greater than 0.6, does not match the performance of our
proposed model. Furthermore, using the optimal value of
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h determined by LPML has resulted in excellent
clustering performance. In addition to assessing
clustering performance, we also evaluate the estimation
performance of covariate coefficients.

Let A = (44, ...,4,) be the actual clustering label
vector, 0,.(s;) be the true parameter value of cluster
jokr = Y32 1(4; = 1) be the number of provinces in
cluster v (where r = 1, ...,k and ¥¥_, x, = n). For the
simulated dataset t, let é(t) (s;) be the estimate of Dahl's
method at location s;. Then, the average of mean squared
error (AMSE) is calculated as

k 100
1 1 1 — 2
AMSE = Ez K_r Z _1002 (e(b)(si) - or(si))
r=1 ilAj=r b=1

Which calculates mean squared errors for each cluster
first and then averages across clusters. Table 3 presents
the AMSE results for parameter estimation of gwCRP
using optimal values of h in two different scenarios.
Table 3 presents the AMSE results for parameter
estimation of gwCRP using optimal values of h in two
different scenarios. Generally, the K-mean method has a
higher AMSE than other methods. Our research
Identifies a pattern in clustering performance, showing
that gwCRP exhibits a lower AMSE than traditional
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Table 3. Performance of parameter estimates under the two true cluster scenarios with AMSE (h = 2.6)

Balanced Imbalanced
Method Qo aq Yo V1 Xo a, Yo V1
gwCRP 0.0115 0.0266 0.0029 0.0350 0.0023 0.0023 0.0143 0.0009
CRP 0.0268 0.0214 0.1059 0.0901 0.0137 0.0319 0.0269 0.0401
K-mean 0.1810 0.0815 0.0297 0.3112 0.0997 0.1069 0.1018 0.1704

CRP. This result indicates the importance of selecting the
optimal h based on LPML for accurate estimation. The
AMSE fluctuates more in the balanced scenario than the
imbalanced scenario;in this scenario, AMSE values are
lower overall due to being mis-clustered.

In conclusion, our simulation studies clearly show
that the gwCRP models outperform the standard CRP
models in terms of clustering accuracy and parameter
estimation. Our proposed model selection criterion, the
LPML, effectively identifies the optimal h value,
yielding superior results for clustering and parameter
estimation tasks. These conclusions should convince the
audience of the strength of our research findings.

The computational costs of our different clustering
methods vary significantly. K-means has a time
complexity of 37,200 units and is faster when the number
of clusters is pre-defined, but it cannot automatically
determine the optimal number of clusters. The Chinese
Restaurant Process (CRP) has a more complex time
complexity of around 24,025 units due to its iterative
evaluation of potential cluster assignments, making it less
efficient for larger datasets. In contrast, the proposed
method, gwCRP, utilizes vectorization and optimized
techniques, achieving a time complexity of
approximately 930 units per iteration, leading to faster
convergence. Additionally, the use of the LPML criterion

Number of Divorces

helps identify the optimal value for parameter (h), further
enhancing efficiency. In conclusion, while K-means is
computationally efficient for fixed clusters but lacks
flexibility, CRP is more adaptable but computationally
intensive. The gwCRP method offers a balance of robust
clustering performance and improved efficiency.
Simulation studies confirm that gwCRP outperforms
standard CRP in clustering accuracy and parameter
estimation, with carefully designed parameters reflecting
realistic scenarios in geographical data, highlighting the
strengths of the proposed research.

1. Analysis of Divorce Data

Understanding the dissolution of marriages is crucial
in addressing the social issue of divorce through Survival
analysis. Recent studies show a worrying inflation of
divorce in the first five years of marriage. To further
investigate, we have partitioned the time axis into six 5-
year periods, [0,5),[5,10),...,[30,35) . The starting
points of these intervals, namely 0,1, ...,6, define the
discrete survival times. Fifty couples who had
experienced one or more marriages between 1989 and
2019 were selected from each of Iran's 31 provinces. The
final dataset comprised 1,550 couples, of which 874 had
experienced divorce. Other couples who did not
experience divorce by the end of 2019 were considered

Distribution

ZI|_Dizcrete Weibull

ZI_Poisson

.
» ZI_Negative Binomial

" s-year ume intervais

Figure 2. Histogram and Zero-inflated distributions of marriage duration among couples.
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Table 4. Demographic characteristics.

Variable Group NumberPercent
Fixed 514 83
, Temporary 907 58.5
Husband's employment status Unemployed 129 332
Independent 1128  72.8
Wife's Financial Autonomy Dependent 422 272

Less than fifteen years 1128  72.8

Age gap

Similarity

More than fifteen years 422 27.2

No 1283  82.8
Yes 267 17.2

right-censored data. Approximately %36 of divorces
occurred within the initial five years of marriage.
Consequently, it is imperative to employ censored zero-
inflated discrete distributions to model the data. The
dispersion index represents the ratio of the observed
variance from the data to the observed mean. In this case,
the dispersion index equals 1.69, indicating over-
dispersion in the data. Three distributions, namely Zero-
Inflated Discrete Weibull (ZIDW), zero-inflated negative
Binomial, and zero-inflated Poisson, have been fitted to
the time data to reach the divorce event. Based on the
observation in (Figure 2), it is evident that the ZIDW is
better suited for these data than the other two
distributions.

Due to the multidimensional nature of the divorce
issue and the existence of various economic, social,
cultural, demographic, etc. factors influencing the risk of
divorce during the marriage period and also the
probability of divorce less than five years, the
demographic information of people such as the age
difference of spouses, employment status are included in
the CZIDW model as auxiliary variables according to
(Table 4). In this study, we also examine the effect of
spousal similarity.

To fit the  distribution Ty | X,Z(s;) ~
ZIDW (pgi (X (s:)), 40:(X (), B) to the data, first, it is
necessary to build the 5 Xn scenario matrix X =
(1,X,, ..., X,), including the covariates "Husband's
employment status" X;, "Similarity" X,, "Age gap" Xs,
and "Wife's Financial Autonomy" X,. Then we have:

log (—log (qi) = @oe(s)) + Tn=1 Ame(S)Xme(si)
(7

®

We first fit the two-part ZIDW model for each area
using the covariates selected. Before being visualized,
the covariates are adjusted to have a mean of 0 and a

logit(pir) = Yor(si) + Xm=1 Yme(S)Xme(s))

standard deviation of 1. According to the geographical
patterns specified in (Figure 2-5) for each of the four
covariates in both models, the probability of divorce in
less than five years (zeroing the marriage survival time)
and the duration of cohabitation provided that the couple
has lived together for at least five years (non-zero count
values), emphasizes the necessity of using SVC model.
Also, it is seen that some provinces have similar
characteristics, not limited to only adjacent counties,
indicating possibilities of globally discontiguous
clusters. In more detail, (Figure 3) shows significant
spatial variation in divorce rates across Iranian provinces,
strongly influenced by the husband's employment status
(temporary, permanent, or unemployed). This variation
reflects substantial socioeconomic disparities, including
unemployment rates, job security, access to social
services, and cultural and religious factors. These factors
affect the relationship between a husband's employment
and divorce probability, leading to stronger associations
in some provinces than others. This is demonstrated by
the varying regression coefficients for the husband's
employment status across the country, as mapped in
(Figure 3) for both models (6 and 7).

Additionally, according to spatial disparities shown
in (Figure 4), the regression coefficient for both models
in (7) and (8) for the wife's financial autonomy covariate
in Iran is expected to vary spatially due to significant
regional differences in socioeconomic development and
cultural norms. More developed provinces with higher
female education and employment may show weaker
links between financial autonomy and divorce, while less
developed, more conservative regions might exhibit
stronger negative correlations, reflecting societal
pressures and differing views on gender roles and
responsibilities.

Moreover, As shown in (Figure 5) the impact of
spousal similarity (education, socioeconomic status,
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Figure 3. The spatial varying covariate effects of Husband's employment on the two-part ZIDW model of provinces in Iran a:the
probability of marriage survival becoming zero, b:the duration of time to divorce.
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Figure 4. The spatial varying covariate effects of Wife's Financial Autonomy on the two-part ZIDW model of provinces in Iran
a:the probability of marriage survival becoming zero, b:the duration of time to divorce.

religious observance, ethnicity, and attitudes/personality)
on time until the divorce event occurs in Iran varies
significantly across provinces. For example, educational
similarity is greater in provinces with higher literacy
rates, while socioeconomic disparity's negative impact is
stronger in provinces with high-income inequality.
Similarly, religious similarity matters more in religiously
conservative provinces, and ethnic similarity is more
impactful in ethnically diverse regions.

Finally, we visualize how the impact of age
differences in couples varies significantly across
provinces of Iran (Figure 6). Societies with traditional

214

values or limited opportunities may show less adverse
effects from larger age gaps than those with more liberal
views or better opportunities.

We run 10,000 MCMC iterations, dropping the first
2000 as burn-in. We retained every fifth observation to
reduce autocorrelation. We adopted a non-informative
prior for the bandwidth and estimated the optimal
bandwidth by the LPML method, choosing an optimal
value of h at 4.2. The maximum distance between any
two points is 10. The result from Dahl's method for the
gwCRP model suggests that all couples are to be
classified into five groups. However, our proposed
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Figure 5. The spatial varying covariate effects of Similarity on the two-part ZIDW model of provinces in Iran a:the probability of
marriage survival becoming zero, b:the duration of time to divorce.
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Figure 6. The spatial varying covariate effects of the Age gap on the two-part ZIDW model of provinces in Iran a:the probability
of marriage survival becoming zero, b:the duration of time to divorce.

gwCRP model, with its unique features, presents a
different perspective. The sizes of the five groups in our
model are7,9,4,6 and 5, respectively. The arrangement of
these cluster assignments is based on Dahl's method, and
the mode is depicted in (Figure 7), which illustrates their
spatial distribution.

From (Figure 7), our gwCRP approach effectively
identifies spatially connected and disconnected clusters.
Provinces in the "light green" cluster exhibit spatial
contiguity, and provinces in the "dark green" cluster
display spatial discontinuity. Several interesting

observations can be made from (Figure 6 and Table 5):

1. WestAzarbaijan, Kermanshah, Ilam, Khuzestan,
Isfahan, Qom, Semnan, Khorasan North, Sistan, and
Baluchestan all four covariates have moderate hazard
effects compared with other counties.

2. East Azarbaijan, Golestan, Bushehr, Hormozgan,
Kohgiluyeh, Buyer Ahmad, Chahar Mahall, and
Bakhtiari starkly contrast in risk effects. Husband's
employment status demonstrates significantly higher risk
effects than Wife's Financial Autonomy status.

3. North Khorasan, Razavi Khorasan, Yazd, Gilan,
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Figure 7. Clustering by gwCRP for the mean of estimated coefficients of the model
Table 5. Dahl's method estimates regression coefficients by gwCR

Cluster @ a a a3 ay Yo 71 Y2 V3 V4
1 0.216 0.135 0.535 1.419 1.063 1.052 0.975 0.988 0.999 1.1103
2 2.492 0.364 0.785 1.668 1.110 0.965 0.981 0.065 1.000 0.3042
3 0.304 0.066 0.428 1.056 1.066 1.013 0.936 0.072 0.152 0.2587
4 1.975 -0.280 0.578 2.011 1.197 -0.259 0.753 -0.588, -1.633 1.089
5 -0.801 0.135 0.047 -0.441 0.583 -0.417 1.539 2.444 -0.821 0.876

Ghazvin, Hamedan, and Lorestan are similar and have
the highest risk effects in both model parts.

4. Mazandaran, Tehran, Kerman, and Fars:The
spouses' Age differences have a negative risk effect in the
model of non-zero count values and a positive effect in
the probability of survival time becoming zero. The
husband's employment has the most impact compared to
other provinces.

5. Ardebil, Kordestan, Markazi, Alborz:The Wife's
Financial Autonomy has the least hazard on the average
duration of cohabitation, provided that the couple has
lived together for at least 5 years.

Table 5 shows that the Bayes estimates of our spatial
varying regression covariates coefficients through the
gwCRP approach are quite different across different
clusters.

®, and ¥ are respectively the estimated regression
coefficients for the models (7) and (8) in each cluster.
They represent the effect of predictor variables
(Husband's employment status, Wife's Financial
Autonomy, Age gap, Similarity) on the duration of
cohabitation provided that the couple has lived together
for at least five years, within each cluster. For example,
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in Cluster 1, the estimated coefficient for Husband's
employment status is 0.135. This means, that within
Cluster 1, a one-unit increase in this covariate is
associated with a 0.135 unit increase in c-log-log(q) in
(1), holding all other variables constant. The intercept @,
represents the value of c-log-log(q) when all predictor
variables are zero within that cluster. Also, in this cluster,
the coefficient ¥; is 0.975 for the same covariate
Husband's employment status in the logit model (8),
suggesting a positive relationship between the Husband's
employment status and the probability of divorce in less
than five years represented by p. The effect is more
substantial here than in the c-log-log model.

Finally, to show that our proposed clustering method,
gwCRP, performs better than the two methods,
traditional CRP and K-mean, in clustering regression
coefficients in models 7 and 8 and determine which
method yields estimation that best suits the data, the
LPML values are calculated. As a more considerable
LPML value indicates a better fit, we base our conclusion
on the gwCRP results (Table 6).

It can be seen in (Figure 8) that the traditional K -
mean  method, high  dimensional supervised
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Table 6. LPML values for different methods in modeling divorce data

Method gwCRP

CRP K-mean

LPML -367700.24

-406588.20

-416597.30

Legend
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classification, and clustering, categorizes the provinces
into 8 clusters, which leads to over-clustering.

To determine the optimal number of clusters (k), the
Elbow method is used in k-means -clustering, an
empirical approach. This method is based on examining
a graph that shows the value of the Within-Cluster Sum
of Squares (WCSS) in terms of the number of clusters.
WCSS is the sum of the squares of the distances of each
data point to the center of its corresponding cluster. In
(Figure 9), the horizontal axis represents the number of
clusters (k), and the vertical axis represents WCSS. In
this graph, the value of WCSS usually decreases as k
increases. This decrease is significantly rapid at first, but
after reaching a certain point (number 8), this decrease
loses its speed and the downward trend becomes slower.
This point, which resembles an elbow, indicates the
optimal number of clusters.

Also, Comparing the clustering results using the
traditional CRP method shown in (Figure 10) with the
proposed method, we see that our proposed method
successfully detects both spatially continuous clusters
and discontinuous clusters simultaneously, however in
the traditional CRP clustering method, neighboring
provinces are more likely to be in the same cluster.

Discussion
In the present study, we propose an innovative

Legend
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(b)

Figure 8. Clustering by the k-mean with 8 clusters for the mean of a:@ and b:y

Bayesian clustered coefficients regression model that
employs a gwCRP to capture the spatial homogeneity of
the regression coefficient proficiently. Our gwCRP
models effectively address the intricate challenges
associated with spatially varying coefficients in datasets
characterized by right censoring and zero inflation.
Through a combination of theoretical foundations and
empirical evaluations, we provide compelling evidence
that our methodologies yield precise parameter estimates
within the ZIDW model while adeptly identifying the
number of clusters and their configurations, even amidst
varying proportions of zero counts. Furthermore, a
comparative analysis with established clustering
methodologies, such as K-means and traditional Chinese
restaurant processes, illustrates that our approach
achieves superior clustering concordance without
additional tuning parameters, as indicated by higher Rand
indexes, lower average mean squared error (AMSE), and
improved log pseudo-marginal likelihood (LPML).
Extensive simulation results are carried out using R
version 4.3.3., to show that our proposed method has
better clustering performance than the others. No issues
with likelihood calculation were encountered in the
simulations or the application to Iranian divorce data,
however, the existence of two indicator functions often
leads to extremely small likelihood functions,
complicating the modeling process and requiring careful
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consideration. While the discrete Weibull distribution
proved beneficial for simulation data generation, using
two-part regression models increased computational
demands due to high-dimensional parameter spaces,
resulting in extended convergence times. Furthermore,
spatial heterogeneity and the inherent complexity of
Bayesian hierarchical models contributed to substantial
computational costs, particularly when analyzing the
Iranian divorce dataset. Despite these computational
challenges, our gwCRP model provides a robust and
superior approach for analyzing spatially varying
coefficients in complex datasets.

There are several possible directions for further
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Legend

(b)

Figure 10. Clustering by the CRP with 5 clusters for the mean of a:@ and b:y

investigation. The current model needs to be adapted to
handle other related data (e.g., number of events) and
longitudinal data (repeated measurements over time).
Additionally, in this paper, our posterior sampling is
based on the Chinese restaurant process, allowing for the
inference of the number of clusters based on the unique
latent cluster labels. To enhance the model, we suggest
using a Mixed Finite Mixture (MFM) prior, allowing for
the joint estimation of both regression coefficients and
the probabilities of zero inflation (23) along with their
associated clustering information. Finally, research is
needed to improve computational efficiency, particularly
for handling high-dimensional and sparse datasets, which
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can be challenging to analyze.
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Abstract

Some social surveys address sensitive topics for which respondents do not report
reliable responses. Randomized response techniques (RRTs) are employed to increase
privacy levels and provide honest answers. However, estimates obtained from this
method tend to exhibit increased variances. Repeating randomized responses for each
individual increases the sample size, and the mean of observations for each individual
reduces the variance of the parameter’s estimator, bringing them closer to reality. In this
study, considering continuous additive repeated randomized responses (RRRs), we apply
the averaged RR of each individual using the linear regression model for sensitive
variable mean. Data on the income of family heads were collected from students, and
each respondent was asked to randomize their responses five times. The maximum
likelihood estimators of parameters are obtained by two methods. In the first method, the
response variable is the first reported observation, and in the second method, we
considered the averaged RR for each individual. The results emphasize that the estimators
from the second method are closer to reality and have lower variance.

Keywords: Randomized Response; Repeated Randomized Response; Linear Regression Model;
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Continuous Sensitive Variable; Repeated Individual Observations.

Introduction

In many social sampling surveys, some questions
may be sensitive to respondents, leading to insecurity in
providing honest answers. A sensitive variable has a high
level of social privacy or pertains to individuals’ private
lives. For example, research related to addiction, bribery,
specific political views, socially undesirable behaviors,
or income. The RR technique is a sampling process in
which respondents are more willing and confident in
providing honest answers to questions.

As the pioneer paper, the RR technique for sensitive
binary questions was introduced in 1965 (1). It included
answering a sensitive question or its complement using a

Bernoulli trial (tossing a coin). Considering this trick, the
sensitive answer remains hidden from the researcher,
preserving the respondent’s privacy. Afterward, many
methods were proposed to examine sensitive qualitative
data, including the unrelated response method or Simon’s
method (2). Many authors extended this method (3-5).
Another method is the forced response technique
introduced in 1971 (6). An estimate of the sensitive
proportion through the maximum likelihood method was
obtained using the proposed RRR (7). The RRR
technique increases privacy protection and provides a
truthful answer by reporting different responses by an
individual. The logistic regression parameters for RR
data gathered using Warner’s method were estimated (8,
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9). Subsequently, many researchers estimated the
sensitive proportion and regression parameters using
various RRTs for univariate or multivariate logistic
regression models (10-16). The additive RR method was
used when the sensitive attribute is a discrete quantitative
variable, and the mean of the item-sum technique was
estimated (17-18).

For continuous sensitive variables, the mean estimate
is obtained using the systematic random sampling design
in the presence of a non-sensitive auxiliary variable (19).
Additionally, methods for estimating the mean of
sensitive variables in the presence of measurement error
have been developed (20-21), and variance estimators for
sensitive variables using RRT have also been proposed
(22). Quantitative RRTs were investigated to enhance
respondent trust (23- 24). The effect of the initial non-
response on the regression estimator in panel surveys was
reduced using RRT (25). By assuming truthful responses
about domain membership, non-sensitive quantitative
variables were estimated for specific sensitive domains
(26). RRs can shorten the length of certain confidence
intervals with a conditional coverage guarantee (27).

Modeling for continuous RRs is a less explored topic.
In many cases, the sensitive variable is continuous. For
example, income, tax evasion, expenses for election
campaigns, drug or alcohol consumption during a week,
student grade point averages, and financial or ethical
corruption. The unrelated question design was employed
in 1971 (28) to estimate the mean of the quantitative
sensitive variable. The sensitive response was added to a
random number of the scramble variable (a variable with
known-finite mean and variance) (29). The multiplicative
method was introduced by multiplying the sensitive
variable by the scramble variable (30). Additive and
multiplicative approaches, the optional and mixture RR
methods, increase reliability and reduce bias in the
reported responses (31, 32). Regression-cum-ratio
estimator estimates the sensitive variable mean (33).The
authors apply several estimation methods. The regression
parameters using forced RRT and the EM algorithm in a
Poisson distribution were estimated (34). Multiplicative
RR regression parameters were estimated using the least
squares method (35). The regression coefficients were
estimated using the maximum likelihood method for the
multiplicative design when the scramble variable was
distributed as uniform (36). Later, a multiplicative RR
design was applied as the dependent variable, and the
regression parameters were estimated using the least
squares method (37). The regression parameters for the
model introduced in (39) were estimated (38). The model
parameters were estimated for a generalized linear mixed
effects model employing the forced-response technique
(40). There are some reasons for the limited research on
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modeling based on RRs, including the complexity of the
model and the limited packages in commonly used
software. Furthermore, changing the method of
randomizing responses also affects the modeling, making
it more complex (40).

A privacy criterion was introduced (41). The larger
this criterion, the more confidential the RRT becomes,
and respondents are expected to be more willing to
participate in the study. A measure for comparing
quantitative RR methods based on the variance-to-
privacy was proposed (42). The smaller the value, the
greater the privacy for the RRT. In this paper, we use this
criterion to evaluate the privacy of quantitative RRTs.

The main focus of this article is to study models for
continuous RRRs. Using RRs gets the parameter
estimators closer to reality and improves efficiency;
however, it increases the variance of the estimators. We
consider the RRR model for the mean individual
observations, which can remedy the variance growth by
increasing the number of responses for each respondent.
It is worth mentioning that the scramble variable with a
known mean should be chosen so that the true sensitive
value cannot be discerned from the participant’s reported
value. Otherwise, they may lack confidence in providing
honest answers.

We studied repeated additive RR responses from 512
students in 2018. The information included the number
of family members, education, occupation, age of the
family head, and the monthly income in millions of the
family head. The monthly income of the family head was
added to an existing random number of the scramble
variable, and the result was reported, and this process was
repeated five times. Regression parameter estimators
were obtained using the first response of each respondent
and the average of each respondent’s responses, which
was reported.

The remainder of the paper is structured as follows.
In the second section, the parameters for the additive,
multiplicative, mixture, and optional techniques are
estimated when considering the normal sensitive and
scramble variable(s). The third section explains the real
data application. In the fourth section, simulations are
performed to evaluate the parameter estimates. Their
privacy is compared using thecriteria above. The
discussion is in the last section.

1. Randomized Response Techniques (RRTs)

Let Y~N(u,0%) , and S~N(us 02) denote the
sensitive variable and the scramble variable (ug and o2
known), respectively. We consider two cases. In the first
case, to reduce response bias and enhance privacy, each
respondent should add their response with a random
value of the scramble variable, report only the result, and
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then repeat the procedure m times. Let RR variable
denote byZ, then for individual i, the j-th RR is given by:
Zil-zyi+si]- i=1,..,n, j=1,...,m,

where y; and s;; denote the true value of the sensitive
variable and a random value of the scramble variable for
the i-th individual in j-th repeat of RR. If T denotes the
predictor variable for the sensitive variable, the unbiased
prediction for i-th individual in j-th RR is as follows:
tij=Zi]'_uS' i=1,..,n, ]=1,,m

Then, the estimation of the sensitive variable mean
and its variance are calculated as follows:

2 2

fe=z-w V@ =T

In the second case, considering the average of m RRs
for each individual as observation, the predictor for i-th
individual is t =% —p,i=1,..,n , where
TN o 4+ %), and fl= 7 — o V@) = (C b &

o' +—),and i =7 —pg, V() = (—+ ).

The matrix form of the model for the sensitive
variable y is as follows:

y=XB+e &)

where X denotes the matrix of explanatory variables.
Suppose the error term € has zero mean and variancev =
021, where I denote the identity matrix. Since its true
value is not observable, the RR variable is used.
Therefore, the model that uses the averaged RRs is as
follows:

z=gXp)+¢ 2
gXB) =XB+ps, E=€+8s,
where 85 = (5—pus)~N(0,T) is the error of

2
selecting the scramble value, and T=%I is the

covariance matrix of the vector S . Assuming
independence of S and Y, & is distributed as N(0, yr)
where y = Z + 1.

The model parameters are estimated using the
maximum likelihood method. The log-likelihood
function is given by

n
12(B, 02) = — log(2m)

L Lo L
—3 n|lIJ|—§(Z— B—u)Y~(z

- XB - us):
and the maximum likelihood estimators (MLEs) of
the unknown parameters are

B= X7 = k),

— 5 e 5 o?
~(z-XB- 1) (z—XB~ ) = %/rm

The distribution of the regression coefficient
estimators is as follows:

R 05\ o ron1
(o (o + %))

82 =
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Then, the use of RRTs can increase the variance of
parameter estimates.

1.1. Additive-Scrambled RR Technique

Suppose respondents report RR variable Z = aY + bS
instead of the sensitive value Y where a and b are known
constant values, and S denotes a random value from the
independent scramble variable S~N(ug,62) . Then,
Z~N(ap + bug, a?0? + b?0%) and, the j-th reported RR
variable of individual i is zi; = ay; + bsy, i=1,..,n,
j=1,..,m.

The predictor variable based on one observation, T, is
given by T = w = Z_TbuS~N(u, (a’0? + b2%c3)/
a?), and the unbiased predictor of Y using m repetitions
. = _Z-b b2
isT="— S N(u, 0% + Ecé)).

The log-likelihood function for the predictor variable

is given by
1(y, 0%)
_ 1
PR 1 T (T
2<nln2m + nln (0‘ +m—azcs) +T(T —wW'(T—p
(02 o oé)

~

The MLEs of the model parameters are [l
52 = I WA-DH_Db2 o

=Tt and

- =205 and, the variance of the
. ~- AN T @ _ 0'_2 b20%
estimator of fiis V(i) = V(t) ==t

Let the model error for the sensitive variable
distribute as e~N(0, 62]). Due to the lack of the latent
variable, its predictor variable, t, is used. The model is

given by

t=XB+¢, 3)
in which &'~N(0,06%1) , where o = (a?0? +

b%c3 2

)/

The log-likelihood function for the RR model is

bZ
1(B,02) = —1/2{ nln2m + nln ( o2+ @(%)

+ (T —XB) (T — XB) ;-

2
( o? + WO’%)

The MLEs of the proposed model parameters are as
follows:

5 _ , 1y Az_l__Al__A_

B=&X'X'T, and 6* =~ (T — XB) (T — XB)
ma2’

The distribution of the regression coefficients
estimators is given by:

SN ,  b%ag S~
P )
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1.2. Additive-Scrambled-Scrambled Technique

Suppose the respondents multiply their sensitive
answer by a known constant value a, and randomly
selecte two independent values, S; and S,,from known
scramble  variables N(us,,0¢) and N(us,, 02),
respectively and it is reported the RR variable Z = a¥ +
bS; + ¢S, to the researcher for two known constants b
and c. Then, the reported variable Z is distributed as
Z~N(ap + bus, + cus,,a*c® + b*c¢, + c*0¢). The j-
th reported value of Z for individual i is:
Zij =ayi+bslij+cszij, i= 1, e, n,

j=1,...m

The unbiased predictor variable for a single RR, T, is

as follows:
a¥ + bS; + ¢S, —

bus, — cus,

a

_Z _b”51_cﬂ52~N<H o2
a )

N b%a§ + c20522>
a? ’
where the averaged RR for each individual is:
7 2,2 2,2
Z —bug, —cus, N (,u,az N b*ag, +2c 052>.
a ma
The log- hkelihood function is given by

T =

NI»—\

l(u,o*

2,2 2,2
bag, + c*0g,
ma?

|
4 nin2m + nin (02 +
|
N

(a\lz +
- }
)

The MLE’s of parameters are given by g = £, and

1

T —w)(T
bzasz1 + c20322> T=m(

+

ma?

~y _ (T-R)/(T-p) b%03 +c?0}d . .
g2 =R T=m _ 2%, 2 where, The variance of fi
n ma? ) 5
V(Z) o2 b2051+c2052
isV =V(t)=—=—+—"—7—=
@=v()= — o—

Consider the sensmve variable, which is defined
using equation (1). Consequently, the variance of the

b20§ +c?o}

. S .
model error is & =02 + " 2 for the predictor

variable in equation (3), where *~N (0, 621).
The log-likelihood function for estimated MLE’s of
model parameters is as follows:
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(
|
1(B,0%) —1/24nln2n+nln <02 +

t
+<02+

\
|
—XmVﬁ—Xm}

1 —
242 2,2
b%ag + c?o;,
ma?

Then, the parameters MLE’s are ,@ = (X X)X'T
b2
and 3% =2 (T - xB)'(T - xf) - 7"51” %2

The distribution of the regresswn coefficients

. b
estimators is f~N ([3, (az + M) X'X) )

1.3. Optional RR Technique

In the additive-optional RRT, respondents either
report the sensitive value or add it with a random value
of the scramble variable. Let Y~N (u, 2), and G be the
sensitive variable and a Bernoulli random variable with
probability p, respectively, then the reported variable is
Z=YG+ (Y +S)(1—G). It shows that the sensitivity
level of the variable Y is (1 — p). The j-th reported

value of Z for individual i is as follows:
_ with probability p ;
%4 = \y; + sy, withprobability 1—p’
=1,..,n, j=1...m

Then, the additive-optional RR variable has the
following mixture density function

12(Z) Yy
=g (—)
+(1—-p)e <y+sa_z—%2#5)> ©))

From density (4), we have the following equation:
E,(Ex((ZI6)))) = Ey(pY + (1 = p)(Y +5)).

The mean and variance of Z are u, = u + (1 — p)us
and, 02 = (p — pH)us? + (1 —p)o2 + a? respectively
and, the MLE’s of the parameters are I = Z — (1 — p)ug

and 67 = (CELELD _ (1~ p)o? - (p - pPIps?)

where, the variance of fi is:
N _-pHE+ - .
V@) = > V.

n
The unbiased predictor Variable, T, and the averaged
RR T, have variances o = 0%+ (1 —p)oZand gZ =
o =c*+(A-p)a}/m+@-pi/m
respectively where, T = Z — (1 — G)ugand, T

p)aé + 62

7 —
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(1 — p)us. Based on T, the log-likelihood function for
the predictor variable is:

v T 302
_ Zm(Ftexp{—g( lcrf) D

Furthermore, the MLE’s of the parameters are:

t—p)' (E-m _U-p)o?/m
n
-(p- pz)u?/m> (5)

Consider regression equation (1) for the sensitive
variable, the log-likelihood function is rewritten as

I(u,0%) =—-1/2 {nann + nin(o?)
1 _ _
+ U_z-z(Z —XB+ (A —pus))'(Z
-Xp+(1- P)Hs))}

1 _ _
=-1/2 {nann +nin(of) + = (E—XB)' (T — X,B)}
Ot
Then, the MLE’s of parameters are as follows:
B=&X)TX'(Z-A-pus),
O . ' A
% =—(Z=Xp = (1 =plus) (2= XB = (1 = p)us)
(p —pHus’
-(1-paZ/m —TS-
Therefore, the distribution of the
coefficients estimators is given by:

B~N(B, (1 —p)a2/m+ (p — p*)us?/m
+02)(X'X)7Y).

regression

1.4. Productive RR Technique
Assume that respondents multiply their sensitive
value Y by a known value from the scramble variable S.
Then, the RR variable is Z = Y'S, and the j-th answer for
individual i is given by:
Zij = YiSij» i=1,..,n,
Then, the unbiased predictor variable T = Z s

Us
defined for a single RR. The mean and variance

estimators of the sensitive variable are /i = £ and 62 =
((t—ﬁ)’(t—ﬁ)_uza§>
n Hs?
2
o§ )
1+—5
( us?
u?+o?, o?

AN 2 o5
@ =0+ (5%,

j=1,...m

respectively when, the variance of /i is
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The averaged RR for each individual is T = ui which
S
is an unbiased predictor variable with the mean and
2 2 2
variance u and, 62 + (%) Z—SZ, respectively. Then, the
S

estimators of the mean and variance are i = t,and 62 =
(M_ﬁ)

e respectively where, the variance of f1 is
()
mu; 2 2 2
7)) = 2- 4 (BHITN s . :
V(g = - + ( n ) 2 and the privacy level is

2
calculated as P, = (u? + 0?) (% + (us — 1)2).
The log-likelihood equation using the predictor
variable T is given by

[

l(u,0%) = log

_T;(i_ﬂ)z>ds>.

Numerical methods estimate these parameters since
the likelihood equation does not lead to a closed-form
solution

Considering the regression equation (1) for sensitive
variable, the log-likelihood function using equation (3),

is as follows:
/f‘” 1 ( m (s_ - ,us>2
———exp|——
o 2452 2\ o
\ 2m|5]. |22 s

e

—L(T —Xp)? |ds
202 /

1(B,02) = log

2 2 2
where = g2 + (%) % The likelihood equations
S
do not have closed-form solutions, so numerical methods

are used.

2. Application

In this section, the real data is applied to investigate
the proposed RR method. In the data collection, fifty
random values from the normal scramble variable
S~N(3.6,0.52) are selected and recorded in fifty cards.
The income of the family head is one of the sensitive
questions in social sciences studies. In a questionnaire,
512 bachelor’s students at Shahid Chamran University
were asked to report the number of family members,
education level, occupation, and age of the head of the
family. they also summed up the monthly income (of
millions) of the family head with one of the given random
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scramble values and repeated this process five times. The
students randomly selected one card from the deck of 50
cards and without anyone noticing, added the income of
their family head to the number on the card and returned
the card to the deck. The cards were then shuffled to
maintain privacy, and only the sum of two values was
reported. We repeated the process five times and reported
the results for each repetition. The j-th RR for an i-th
individual was as follows:

Zij =Yl+Sl] i = 1,...,512, _]= 1,...,5.

Considering the RR Model (case one), the MLEs of
the mean and variance of the family head income were
obtained as iy = 3.50662 and 62 = 1.97, respectively.
The explanatory variables include the number of family
members, the age of the family head, the level of
education (coded as a binary variable: 1 for university
attendance and 0 for non-attendance), and the occupation
of the family head. Occupation is treated as a nominal
variable with five categories: "others" (used as the
reference level), "self-employed," "doctor," "engineer,"
and "retired or deceased".

The results summarized in Table 1 indicate that the
number of family members and the age of the family head
were not statistically significant. Considering “others” as
the reference level for the occupation, levels of “doctor”
and “engineer” had a significant impact on income
compared to employees. The results also showed that
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having university attendance compared to non-
attendance led to a significant increase in income.

Table 1 also shows that the family head jobs “doctor”
and “engineer” had a significantly increasing effect on
family head income compared to “others”. However,
“self-employed” and “retired” did not significantly affect
family head income compared with “others”. Our
findings indicated that the variance of the sensitive
variable was estimated at 1.83.

For RR model 1 (case two), the estimated mean and
variance of the family head income were fy =
3.579 and, 6% = 1.932, respectively. The estimated
parameters and their significant levels are presented in
Table 2 where the estimated variance of the sensitive
variable is 2.09.

The results of Tables 1 and 2, are consistent with
previous ones; however, the standard error of estimates
decreased (Table 2).

3. Simulation Study

For the models presented in Section 2, simulation and
comparison were conducted using privacy criteria. Let
Bo = 5 and ; = 2, and the covariate X and model error
& were generated from normal N(1,4) and N(0,1),
respectively. Therefore, the sensitive variable had a
normal distribution of N(5 + 2x,1). On the other hand,
the distribution of the scramble variables must be such
that their mean falls within the parameter space of the

Table 1. Estimated Parameters of the RR model (case one)

Parameter Coefficient SE p-value
Intercept 2.46 0.65 <.001
Age 0.0091 0.01 0.414
Education non-attendance - - -
university attendance 1.13 0.2 <.001
Family number -0.04 0.06 0.447
Occupation of others -- -- --
the family head self-employed -0.16 0.21 0.449
Doctor 2.6 0.48 <.001
Engineer 2.37 0.37 <.001
Retired 0.1 0.35 0.765
Table 2. Estimated Parameters for averaged RR (case two).
Parameter Coefficient SE 95% CI t -value p-value
Intercept 2.16 0.62 [1.18,3.75] 3.51 <.000
Age 0.017 0.01 [-0.01, 0.03] 1.6 0.11
Education Non-attendance - - - - -
University attendance 1.146 0.19 [0.73,1.53] 5.96 <.001
Family number -0.042 0.055 [-0.16, 0.07] -0.76 0.45
Occupation of the Others -- -- -- -- --
family head self-employed -0.2 0.2 [-0.57,0.25] -1 0.317
Doctor 2.77 0.46 [ 1.65,3.55] 6.08 <.001
Engineer 2.28 0.35 [ 1.64,3.11 6.45 <.001
Retired 0.076 0.33 [-0.57,0.78] 0.23 0.815
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Table 3. MSE and bias of parameter Estimations for additive-scrambled RR.

n Oy B4 Bo
Est. 100 0.944 2 4.995
Bias -0.056 0? -0.005
MSE 0.046 0.019 0.104
Est. 50 0.893 1.993 5.021
Bias -0.107 -0.007 0.021
MSE 0.11 0.04 0.219
Est. 20 0.817 1.993 5.005
Bias -0.183 -0.007 0.005
MSE 0.177 0.07 0.378
Table 4. MSE and bias of parameter Estimations for averaged-additive-scrambled RR.
n Oy B4 Bo
Est. 100 0.984 2.001 5
Bias -0.016 0.0006 0.0004
MSE 0.0094 0.0095 0.049
Est. 50 0.96 2.001 4.998
Bias -0.04 0.0008 -0.002
MSE 0.019 0.019 0.105
Est. 20 0.9 2.006 4.98
Bias -0.101 0.006 -0.021
MSE 0.052 0.054 0.279
sensitive variable. The parameters were estimated using 3.2. We considered the additive-scrambled-

the maximum likelihood method. The simulation was
repeated K times, and the results included the average
parameter estimatesand the bias and mean squared error
(MSE) of these estimates.

The simulations are as follows:

3.1 We considered the additive model with one
scramble variable. This variable was sampled from
normal N(6,4). We consider a = 3 and b = 2, so the
RR variable has a normal distribution of Z~N (27 +
6x,25). For m =5 times repeat of RR for each
individual, the averaged RR variable has a normal
distribution of Z~N (27 + 6x,12.2).

Tables 3 and 4 present the simulation results for k =
2000 repetitions for both RR and averaged RR models,
respectively.

scrambled RR model with two scramble variables. The
scramble data were generated from a normal distribution
of S;~N(6,4) andS,~N(8,16).Setting a = 3,b =
2 and, c = 2,the RRvariable Z = aY + bS; + ¢S, had
a normal distribution of N (43 + 6x, 89). The mean of m
= 5 times the repeat of RR for each individual had a
normal distribution of Z~N(27 + 6x,25). Simulation
results for both cases are provided in Tables 5 and 6,
respectively.

3.3. Given a normal distribution N(6,4), and a
sensitivity level of 0.6, we used an optional RRT model.
So, the probability of answering the sensitive variable
was p = 0.4. The regression model is as follows:

v, =5+2x;+¢, i=1,..,n,e~N(0,1).

Table 5. MSE and bias of parameter Estimations for additive-scrambled-scrambled RR.

n gy B4 Bo
Est. 100 0.793 1.997 5.012
Bias -0.207 -0.003 0.012
MSE 0.398 0.0675 0.364
Est. 50 0.731 2.003 4.986
Bias -0.27 0.003 -0.014
MSE 0.55 0.138 0.752
Est. 20 0.707 2.016 4.938
Bias -0.293 0.016 -0.061
MSE 0.662 0.254 1.32
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Table 6. MSE and bias of parameter Estimations for averaged-additive-scrambled-scrambled RR.

n gy B4 Bo
Est. 100 0.953 2 5.001
Bias -0.047 0? 0.001
MSE 0.043 0.019 0.103
Est. 50 0.893 2.008 4.975
Bias -0.106 0.0078 -0.025
MSE 0.102 0.04 0.211
Est. 20 0.743 1.991 5.037
Bias -0.257 -0.009 -0.037
MSE 0.243 0.114 0.607

The optional RR variable had a mean of 8.6 + 2X and
variance of 12.04. The mean of RRs for m=5
observations per individual had the same mean and a
variance of 10.12. Parameter estimatesand their MSE and
biases are provided for k =2000 repetitions in Tables 7
and 8.

3.4. Finaly, simulation results were provided for the
multiplicative RR. The scramble variable data were
sampled from N(6,4), so the mean and variance of the
multiplicative RR variable were  yu, =30+ 12x
ando? = 16(5 + 2x)% + 52, respectively.

The mean of the multiplicative RRs for m =5
observations per individual had the same mean and
variance 62 = 3.2(5 + 2x)? +39.2 . The simulation
results are provided for k=2000 repetitions in Tables 9
and 10.

According to the simulation results, the maximum
likelihood estimates were very close to the true values
with high accuracy. Moreover, as the number of

simulated data, n, increases, the accuracy of estimates
improves, whereas the variance and bias of the estimates
decrease.

3.5 Privacy criteria

The privacy criterion, Py, (the privacy level), is the
mean squared difference between the RR, Z, and the true
v
PL
was proposed for comparing quantitative RR methods
(42). The privacy evaluation criteria for single and
repeated observations of techniques are presented in
Table 11. For each n, the techniques in terms of the P
criterion are sorted as follows:

The technique with two scramble variables is the best,
and after that, the techniques are sorted as follows: The
technique with one scramble variable, the multiplicative
technique, and the optional technique. However,
considering the § criterion, the multiplicative technique
came first, followed by the techniques with one and two

response Y or P, = E(Z — Y)?. The measure § =

Table 7. MSE and bias of parameter Estimates for optional RR.

n Oy B1 Bo
Est. 100 0.791 2.005 5
Bias -0.209 0.005 -0.001
MSE 0.318 0.079 0.444
Est. 50 0.686 2.001 5.006
Bias -0.314 0.001 0.006
MSE 0.422 0.17 0911
Est. 20 0.615 1.984 5.029
Bias -0.385 -0.016 0.029
MSE 0.521 0.301 1.61

Table 8. MSE and bias of parameter Estimates for averaged-optional RR.

n Oy B Bo
Est. 100 0.924 2.001 4.998
Bias -0.076 0.001 -0.002
MSE 0.066 0.022 0.116
Est. 50 0.849 2.005 4.991
Bias -0.15 0.005 -0.008
MSE 0.138 0.048 0.246
Est. 20 0.717 2.007 4.985
Bias -0.283 0.007 -0.015
MSE 0.276 0.129 0.69
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Table 9. MSE and bias of parameter Estimates for multiplicative RR.

n gy B4 Bo
Est. 100 3.246 2.002 4.998
Bias 2.246 0.002 -0.002
MSE 0.078 0.084 0.27
Est. 50 3.18 2.003 4.988
Bias 2.18 0.003 -0.012
MSE 0.145 0.166 0.57
Est. 20 3.039 1.993 4.983
Bias 2.038 -0.007 -0.017
MSE 0.352 0.5 1.73
Table 10. MSE and bias of parameter Estimates for averaged-multiplicative RR.
n Oy B1 Bo
Est. 100 1.61 1.999 5.008
Bias 0.613 -0.001 0.008
MSE 0.017 0.02 0.08
Est. 50 1.695 1.992 5.014
Bias 0.695 -0.008 0.014
MSE 0.034 0.048 0.18
Est. 20 1.67 1.997 5.01
Bias 0.67 -0.003 0.01
MSE 0.088 0.124 0.511
Table 11. Privacy criteria of the RR techniques.
n Privacy Results from one Results for the mean of
evaluation observation m = 5 observations
criteria Mean Var. Mean Var.
20 P, 943.1 5209.87 928 5719.02
Z =aY + bS, ) 0.0016 3x1078 -0.0011 55 %1077
50 P, 944.36 3193.87 932.19 2280.68
1) 0.00098 54 x 107° -0.00045 18 x 107°
100 P, 943,58 1597.88 930.127 1155.3
1) 0.00049 69 x 10710 -0.00012 2x107°
Z =a¥Y + bS; + cS,, 20 P, 2214.71 31578.69 2165.62 17363.07
1) 0.0018 14 x 1078 0.0011 15x 1078
50 P, 2219.29 1779791 2159.43 7626.24
1) 0.0011 29 x107° 0.00045 11 x107°
100 P, 2225.44 9425.88 2158.821 3702.596
) 0.00054 42 x107° 0.00023 13 x 10710
20 P, 23.93 24.81 15.17 6.13
1) 0.111 0.00016 0.04 0.0001
50 P, 24.05 14.77 15.14 2.5
Z=YG+ Y +S(1-06), ) 0.066 37 x 1076 0.017 10 x 107
100 P, 24.1 7.61 15.16 1.21
) 0.033 64 x 107° 0.009 14 x 1077
20 P, 88.32 122.42 2280.34 126752
Z=YS 5 0.0004 39 x 10710 0.0001 46 x 10711
50 P, 87.75 47.41 2266.81 47221.5
) 0.00015 29 x 1071t 0.00004 29 x 10712
100 P, 87.88 23.23 2271.15 22501.78
5 0.00008 37 x1072  0.00002 38x 10713

scramble variables, and the optional technique was the

last one.

For techniques with averaged RRs, the best-
performing technique in terms of the P; criterion was the
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multiplicative technique.The technique with two
scramble variables was the second one, followed by the
technique with a single scramble variable.The last was
the optional technique. The behavior of the § criterion
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for this case is consistent with the single-observation
case.

When comparing privacy criteria between single-
observation models and models with averaged RRs, the
P; criterion significantly increased for the multiplicative
model with averaged observations. Models with one and
two scramble variables showed a slight reduction in P,
while the optional model had nearly a halving of P;. The
¢ criterion favors single-observation responses across all
techniques, emphasizing the preference for models with
averaged RRs.

Results and Discussion

In social surveys, when studying a sensitive variable,
respondents may refuse to answer questions or provide
socially desirable responses. The RR techniques help
mitigate this issue. The RRR technique is one approach
that increases privacy levels while moderating the
increase in estimates variance. When studying
continuous RR data, collecting multiple observations
from each increases the sample size and improves
parameter estimates. Averaging the observations for each
respondent helps achieve more precise estimations.
Linear models are applied for the mean of observations.
The findings of this study demonstrate that the averaged
RRs for each individual in various RR techniques yield
more accurate estimations and reduce their variance.

In the study of the family head income, modeling the
RR techniques are evaluated with demographic variables,
including the number of family members and age,
education level, and occupation of the family head. The
results of the averaged RR model indicate that the
number of family members and the age of the family head
are not statistically significant. Levels of “doctor” and
“engineer” of occupation variable, have a significant
impact on income compared to the reference category,
“others”. The results also show that having a university
education may lead to a significant increase in income.
This finding provides a valuable avenue for further
investigations in this field.
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Abstract

Given the importance of varentropy in information theory, and since a closed form
cannot be derived for some discrete distributions, we aim to establish bounds for the
varentropy of these distributions and introduce the past varentropy for discrete random
variables. In this article, we first acquired lower and upper bounds for the varentropy of
the Poisson, binomial, negative binomial, and hypergeometric distributions. Since the
resulting upper bounds are expressed as squared logarithmic expectations, we provide an
equivalent formulation using squared logarithmic difference coefficients. Similarly, we
present lower bounds in terms of logarithmic difference coefficients. Furthermore, an
upper bound is derived for the variance of a function of discrete reversed residual lifetime
function. We also investigate inequalities involving moments of selected functions via
the reversed hazard rate and characterize certain discrete distributions by the Cauchy-

Schwarz inequality.

Keywords: Varentropy; Reversed hazard rate; Binomial transform; Cauchy-Schwarz inequality.

Introduction

If X is absolutely continuous with probability density
function f(x), then the entropy of X is given by

H(X) = = [77 f (0)logf ()dx, (1)

where —log f(X) is the information content of X.
Notably, the existence of H(X) is not guaranteed. When
it exists, its values range belongs to [—oo, 0], while the
entropy of discrete random variables (RVs) does not take
negative values.

It is noteworthy that the variance entropy (for short
varentropy) of a RV X is given by

VX) = [ f(0)[logf (x)]2dx — [H(X)]2. )

The importance of this measure in the fields of
mathematics and physics has been emphasized in various
studies, such as those by (1), (2), and (3).

As an application of varentropy, we consider a system
with complex network. A complex network, in reality,
contains a large amount of information necessary to
describe the system’s behaviors. (1) stated that
varentropy is utilized as a general measure of
probabilistic uncertainty for a complex network in terms
of the laws of thermodynamics. Next, we will mention
the application of variance of entropy in computer
science. One of the most significant threats internet users
and cloud computing services face is denial-of-service
(DDoS) attacks. The nonlinear time series model is
employed to predict future network traffic states by (4)
and used to predict the future values of entropy variance.

* Corresponding Author: Tel: 03145249136; Email: f-goodarzi@kashanu.ac.ir
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Also, they determined prediction errors by comparing the
actual variance of entropy and the predicted variance of
entropy. (5) have derived an explicit formula of the
varentropy measure for the invariant density of one-
dimensional ergodic diffusion processes.

Furthermore, (3) found an optimal varentropy bound
applicable to log-concave distributions. (2) obtained a
sharp varentropy bound on Euclidean spaces for convex
probability measures. Another method to compute a
bound for varentropy is given in (6) and (7) via reliability
theory. (8) proposed the concept of varentropy for
doubly truncated RVs and extensively analyzed its
theoretical properties. A method for computing
varentropy measure for the order statistics is introduced
by (9). (10) introduced the variance residual entropy
measure. (11) and (12) obtained bounds for past
varentropy for continuous RV. Also, (13) obtained a
bound for residual varentropy of discrete RV. Moreover,
(14) recently offered a few estimators for varentropy for
a continuous RV. The lossless source coding research
(15) stated that the source dispersion equals its
varentropy for Markov sources.

Suppose X is a discrete RV supporting S =
{0,1, ..., b}, where b is an integer and 0 < b < oo, If we
express the probability mass function (PMF) and
distribution function of X by p(x) and F(x) ,
respectively, then, in comparison with (1) and (2), the
entropy and varentropy of a nonnegative discrete RV X
are given as follows.

H(X) = — Y30 p(x)logp(x),

V(X) = X320 p(0)[logp(0)]* — [H(X)]%.

)
4)

The entropy of a discrete RV is the average amount
of information, measured in bits, gained from observing
a single symbol.

Characterizations of distributions are essential to
many researchers in applied fields. In particular, in
reliability theory, given an RV that often denotes a unit’s
lifetime, aging functions are assigned to it and
characterize this variable. Among the most used are
reversed failure rate and reversed mean residual life.

One can define the reversed hazard rate of X as

0(0) = P(X = x|X < x) = 2

F(x)

hence, F(x) is specified as follows

F() =Mlfexrs A=), x=0,..,b—1 (5)

Also, the reversed mean residual lifetime is given by
1

rx) =E(x—-X|[X<x)= oD L F(t—1),(6)

with defining 7(0) = 0. See (16) for more details.

Definition 1. (a) F is said to be decreasing reversed

F. Goodarzi.
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hazard rate (DRHR) if ¢ (x) is decreasing in x.

(b) F is said to increase expected inactivity time
(IEIT) if r(x) increases in x.

To derive variance bounds for functions of RVs, we
employ Chernoff’s inequality. For a discrete RV X with
PMF p(x), x = 0,1,2, ..., bounds for Var[g(X)] can be
obtained using the forward difference of g(X). Notably,
these bounds were derived utilizing the Cauchy-Schwarz
(C-S) inequality. We utilize the following lemma to
derive these bounds, as presented in (17).

Lemma 2. Let X be a nonnegative and integer-valued
RV with probability function p(x) with support
{0,1,2, ...} and let its mean be p. Additionally, let g(X)
be a real-valued function with Var[g(X)] < oo. Then

s2E2[w(X)Ag(X)] < Var[g(X)]
< G2 E[w(X)(Ag(X))?], )
where Ag(x) = g(x + 1) — g(x) and w(x) satisfies

a?p()w(x) = Xi=o (u —k)p (k). ®)
The equality satisfies iff g is linear.

The layout of the article is as follows. In Section 1,
we compare two sequences by the coefficient of variation
for coding a discrete source of information with three
symbols and also define past varentropy for discrete RVs
and obtain it by past entropy of order { for the discrete
case. In Section 2, we get an upper and lower bound for
the varentropy of the binomial, Poisson, negative
binomial, and hypergeometric distribution. An upper
bound for the variance of a function of the discrete
reversed residual life RV is obtained in Section 3.
Furthermore, we characterize some distributions through
functions that ensure reliability for discrete RVs.

Coefficient of Variation and Past Varentropy

The significance of entropy is widely recognized in
information theory and various other fields. However,
varentropy has received comparatively less attention.
Notably, the discrete entropy (3) quantifies the average
number of symbols needed to code an event generated by
an information source governed by the PMF of X.
Varentropy, on the other hand, quantifies the variability
associated with this coding. If the entropy of two sources
of information is identical, then, during coding, the
number of digits needed for the codeword of a symbol is
closer to the expected value for the source with the lower
varentropy.

Example 1.1. Suppose that X has the PMF p(0) = %

and p(1) =p(2) = ;.
distribution with parameter A, then, it is easily calculated
that A = 0.620675, we have H(Y) = 1.039721 and
V(Y) = 0.515302. Moreover, H(X) = 1.039721 and

Also, let Y have Poisson
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V(X) = 0.120112; hence, the coding process is better
suited for sequences produced by X.

In the process of coding a discrete source of
information with three symbols with probabilities p, g,
and 1 — p — ¢, the quantifiers entropy and varentropy,
respectively, are stated as:

H(p,q) =H(X) = —plogp—qlogq—(1—-p—
qlog(1—p —q), )

V(p,q) =VX) = —p*)(logp)* + (q -
)(og)*+(1-p—q—(A—-p—*(og(1—p -
9))? — 2pqlogplogq — 2p(1 — p — q)logplog(1 —p —
q) —2q(1 —p — q)logglog(1 —p — q). (10)

We sketch H(X) and SD(X) = ,/V(X) defined over
p and q in Figure 1. Regarding p and ¢, seven limit cases
have no varentropy. These points are (0,0), (0,0.5),
(1/3,1/3), (0.5,0), (0.5,0.5), (0,1), and (1,0). Notice
that varentropy would be zero in case (1/3,1/3), with
equiprobable sequences and maximum entropy.

Now, we want to check the maximum variability in
the information content. For this purpose, we are looking

into the behavior of dsz(;o'q) and dsz;(:,q). By setting these

terms equal to zero, we have
(logp)? + 2log p — (log(1 —p — q))* — 2log(1 —p
-q)
+(2(plogp+qlogqg+ (1 —p—qlog(l—p-—

q)))(lgg(l —p—q)—logp) =0, (11)
an

(logq)? + 2logq — (log(1 — p — q))* — 2log(1 —
P—q)

+(2(plogp + qlogq + (1 —p — q)log(1 —p —
@)))(og(1 —p —q) —logq) = 0. (12)

Note that the seven points mentioned earlier have
infinite derivative values (singular points). Thus, we

apply the Newton-Raphson algorithm to obtain
approximate roots of derivatives given in (11) and (12)

(see (18)). The values p = 0.0616518191 and q =
0.0616518191 were obtained with an initial

value (0.06,0.06) to start the algorithm. It is clear
that the points (0.0616518191,0.8766963618) and

(0.8766963618,0.0616518191) also maximize
SD(p, q) and their values is 0.8728128309.

Additionally, we consider the intersection curves of
the two surfaces of Figure 1, where H(p, q) = SD(p, q).
The intersection areas can be shown in Figure 2 using the
implicit plot function in Maple. For example, if p = 0.2,
then entropy and the standard deviation of the entropy are
equal for values of q equal to 0.06929839562 and
0.7307016044. The range between the curves in Figure
2,5D(p,q) is less than H(p, q), whereas, in the points
outside of this region, for example, (p,q) = (0.1,0.1),
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Figure 1. Plots of H(X) and SD(X) on p and g.
N —— )

0.6

044

034

0.14

— H(p ¢=5D(p. 9

Figure 2. The curve of intersection of the two surfaces.

the entropy smaller than the standard deviation of the
information content of RV. Now, considering the
coefticient of variation of —logp(X), such that described

SD(X
as CV(X) = H((X)),

generated by X and Y , a sequence with less coefficient
of variation is more suitable for coding.
R ényi entropy of order { for a discrete RV is

expressed as He (x) = ilogzx p(x) for ¢ # 1.

if two sequences of symbols are

H¢(X) is additionally named the spectrum of Rényi
information. Rényi information and the loglikelihood are
related via the gradient, H( (X), of the spectrum at { = 1.
A straightforward computation demonstrates, assuming
that the differentiation operations are legitimate, that

H 1(X) =
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lim (=9 pS ()71 Tx (@ () logp () +log £ v () o
{-1 (1-9)2
1. (Tepl@log?p(x) 07
=—-] {x— —
2 (112 Txpé(x)
Tl (logp(x) } 0e
Xt oo ——V X 13
) 0. (13)

Therefore, the varentropy is obtained as V(X) =
—2H, (X). In addition, the discrete past entropy is defined
as

N v P®, (PR
HX:J) = = o 1108 (55)-
The past entropy of order { for a discrete case is
expressed by
p(x) f]
F(j)) ’

Ho (X)) = 2 log S
for { # 1 and { > 0. It is well known that when {
tends to 1, Hy(X; j) tends to H(X; j). Similarly, also, we

(14

(15)

can show that V(X;j) = —2H,(X;j), in which we
call V(X; ),

ENE o7 A 1€))] p(x)
VX)) = Ex=0 55 (log FU))
as the past varentropy.

—HX; )% (16)

Example 1.2. If X is distributed geometrically with
parameter p, then

= psa* 1 _
He (X)) = —log [Z" =0 (1- q1+1)(]
1 q(l+1)f
{log1 < T los (1—q1'+1)<}’ 17)
where q = 1 — p and therefore,
i Ty ; (Ing)>  ((j+1)Ing)?q/**
VX)) = —2lmA (X ) = (o — e (18)

It is observed that, for j = 0, the past varentropy is
zero and increases for j, as shown in Figure 3.

To estimate V(X;j), we generate a sample of size
n =100 from a geometric distribution with 1000
replicates. For this sample, we set p, = 0.6. Then, the
Maximum Likelihood Estimator (MLE) for p is
calculated to be 0.5978. For example by plugging p into
(18) for j=1, the MLE of V(X; ) is 0.1697.

Like the discrete case, (19) has previously obtained a
relationship between varentropy and Rényi information
for continuous RV. He expressed that varentropy can
identify a distribution’s shape, while the kurtosis measure
is not applicable.

Bounds for Varentropy
Obtaining expressions for the entropy and varentropy
of well-known distributions is significant in information
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V(X)) 0.4+

s

Figure 3. The curve of intersection of the two surfaces.

and communication theory, physics, probability and
statistics, and economics. An exact expression and closed
form for the varentropy were obtained for most
distributions. Among these distributions, we can mention
the uniform, Bernoulli, geometric, exponential, Beta,
Cauchy, Cramér, F, gamma, Gumbel, Laplace, Lévy,
logistic, log-logistic, lognormal, normal, parabolic,
Pareto, power exponential, t-distribution, triangular, von
Mises and Weibull distribution. However, for many
distributions, there is no closed form and an explicit
expression for the varentropy using elementary functions.
In such cases, we can obtain an upper and lower bound
for varentropy via the expectation of a function of a
logarithmic function.

In this section, we find bounds for the varentropy of
some nonnegative RVs. If X follows a discrete
nonnegative RV, with variance ¢°, then by utilizing
Lemma 2, we have

a2E?[w(X)Alogp(X)] < Var[—logp(X)] <
o2 E[w(X)(Alogp(X))2]. (19)

Example 2.1. Suppose X has a binomial distribution
distribution Bin(n, p) then, since w(x) =

V(X)<np(1l-—
(n—x)p —x _
P) X0 neis p)( —log o p)) (Dp*@-p)*= =

X
(L~ P)En-y (o8 5" (20)

hence

n—x
n(1-p)

where E,_; denotes expected value under the
binomial distribution Bin(n — 1, p).

Likewise, we can derive a lower bound for
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Var[—logp(X)] as follows
_ 2 (n-X)p
V(X) = np(1 — p)E2_, [log(x+1)(1_p) . 1)
If n = 1, then, since —log p(x) has a linear relation
with x, hence the upper and lower bounds are equal to

varentropy p(1—p)(—1og(1%p))2 in the Bernoulli

distribution.

Example 2.2. Assume X is distributed according to a
Poisson distribution with parameter A = 1, then since
w(x) = 1, the upper bound for varentropy is given as

2
V(X) < AE [1og% . 22)
When n — o and p — 0 so that np = 4, the upper
bound (21) and (22) are approximately equal. Also,
since logx < x — 1, we can obtain the upper bound
1+ % for varentropy of Poisson distribution

Conversely, the lower bound for V (X) is computed as
follows

V(X) = 22 [log |

- (23)
In this section, we compute the equivalent
expressions for the upper and lower bounds of varentropy
according to series and integral expressions. To achieve
a general expression for expectation of squared
logarithmic  function, that is, expressions like
E[log?(X + w)], we recall the ith forward difference of
a function g(w) is defined as
A'[g](w):= Zh=o ()—D*g(k + w), 24
where A°[g](w) = g(w). Moreover, Newton series
expansion of a function g around point w is
gk + w) = £ (})A[g](@)- (25)
By considering g(x) = (log x)? in equation (24), as
(20) stated for log x, we have

A'flog]? (@) = Th=o (1)~ Flog?(k + w) =
(=D, (i + 1),
where

(26)

' i-1 -1
du® == (—1)k( . )logz(k + o),
k=0
so that, by using (26), we can obtain

X )
(log(x +@))? = > () (~1)!*1dy (i + 1).
i=0
Now, to find the generating function for the
coefficient d,,, we use of Lerch transcendent such that it

was recalled by (20), as follows:
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k s—1,-wt
L v zk 1 4o t57le
CD(Z, S, a)). = Zk:o ety = T(s) 70

dt. (27)

1-ze~t
By evaluating the second derivative of (27) for s, we
have
2
S ®(z,5,0) = Xio 2°(k + ©) S (log(k + w))? (28)
and thus
12 dz [o0]
P (2):= 5 (2,5, 0)|5=0 = Xit=o log? (k + w)z". (29)
Next, putting w =1 and using polylogarithm
function Lig(2): = Y, z¥k™5, (29) can be written as
2

d
" (2):= DY (2) = WUS(Z)/Zh:o-

In fact, we have

2
S Li(2)/z = Ty 257 (~logh)?k~>. (30)
At the same,
D" (2): = DY (2) = Z Z*(log(k + 1))?
k;O
= 2 og(k))?,

k=1
which is the equation of (30) for s = 0.
Using (27) and generating the function of the
binomial transform, we get
D,(z) =
— 321 2 B (“DF(log? (k + w)

Yo Ti2ker (1R 12 (5 Dlog? (k + w)
= Ykeo logz(k +
Zh+1
(1—Z)k+1

w)(—l)k“

-z

e
1-z q)w (E)

Consider now the coefficient sequence (—d,,(i +
1))i2,, that is, the binomial transform of the sequence
(log?(k + a))i—o- Let

D, (2): = XiZo duw(D)z",

be the generating function for (d,(j))jZ,, Where
d(0) is defined as 0.

Elog?(X + w) = Z E[%](—niﬂdw(i +1)

i=0
= Y21 (=D'q( = Dd, (.
The moment generating function M (t) of the Poisson
distribution is exp(A(et — 1)), so as given in Theorem 1
in (20), we have

Q(2) = M(log(z + 1)) = e = Z o
i=0

AR
i

and hence q(i) =':—IL. Furthermore, by using the
equation
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Elog(X +w) = ¥, (=D'q(i = Deo @) =
f0+oo e t—e M(-t) dt,

X+1]

— 2logAlog(k + 1))

in (20), where ¢, (i) = — Xk (=D*(",)log(k +
), the lower bound
of varentropy of Poisson distribution is given as
follows
AE? [log
) 2
( )k Z -1 k+1
(7 )oe (57)
— e 1_ /1( —t-1) -
—/I{fo ) C(1— M Dygy loga}.
Moreover, the upper bound for the varentropy of
Poisson distribution is
AE (1 X+t A (l)ll log?(k +1
[ng]_, 1)12( (et 1)
=2
+ logz(/l)}
. -1 . i k+1
= {zt 5 [2E DR (D eeh 2}
Example 2.3. Let X follow a negative binomial
distribution with a PMF p(x) = (x+r Dpq* " for x =
0,1, .... Then, sincew(x) = p(1+ ;), the upper bound
for varentropy is computed by
V(X)

r(l P) Z (

(r+x)(1 p),(x+r—1
) og DA (KT
+r)( x+1 2r—1 Pr=p
@a-p) aA-p)(r+x)
=52, [log I 31)
where E,. is the expected value of negative binomial

distribution with parameters parameters r + 1 and p.
The lower bound for the distribution is determined as

V(X) =
(1-p) A-p)r+x7\?
2., og 2] @)

It is trivial that if X has a geometric distribution with
parameter p, then varentropy is equal to the upper and
lower bounds given in(3 1) and (32) for r =1 and hence

Var[—logp(

Now, by us1ng equatlon (44) in (20), we can obtain
an equivalent expression for the lower bound (32). We
first have
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(1 -p)(r +X)
Brflog™— 37—
i-1

St (1 (e
i=1 i—1 k=0
+7) +log (I;T-I—;)}l

and therefore
Var[—logp(X)]

ri-p e 1-p [i+r-1\[< -1 ( (A-p)k+r)
= <Z(_ ) 1< i1 );(_1)k( k ){log k+1 }

Also
Var[—logp(X)]

r-p) e 1-p,  [i+r—1\[c i—1\( (A-p)k+m)’
=T (;(_T) <i_1 )LZ_(}‘”"(H{bg K+l }

Example 24. Let X have a hypergeometric

distribution with PMF p(x) = GG )((n) , max(0,r —
n+m)<x<min(r,m) . Then, since w(x) =

n(n—-1)(m-x)(r-x)
(n-m)(n-r)mr

computed by

, the upper bound for varentropy is

Var[—logp(X)] <
GG G PP i) ) )(’3?)(’}:2"

(m-m)(n-r)mr (x+1)(n—-m-r+x+1) @)

o? Xx=o0

2 (m=-X)(r-X)
0 Em-1n-2-1 [log((x+1)(n m— r+X+1))]

where Ey,_1 52,1 denotes expected value under
the hypergeometric distribution with parameters m — 1,
n—2,and 62 =—(1 _I)ﬁ
Characterization by Cauchy-Schwarz Inequality

(13) attained an upper bound for the variance of a
function of the residual lifetime RV and characterized the
type IIT and type I discrete Weibull distributions and the
geometric distribution with the help of C-S inequality.
Here, we derive a bound for the variance of a function of
RV X,=(x—X|X<x) and characterize some
distributions using inequalities involving the expectation
of functions of reversed hazard rate.

The subsequent theorem gives an upper bound for
Var[g(X,)] and characterizes the right-truncated
geometric distribution.

Theorem 3.1. Let X be a discrete and nonnegative
RV with PMF p(x) and distribution function F(x).
Suppose g is a function such that its forward difference
is Ag(x) then

Varlg(X)] < B (Ao (XD o) (r e -

P(x=X(x))
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Xoo + 1) = 7() + Xy — 1)]. (33)
Proof. We know
P(X =)= PE=XT0
( x) — )— P(X<x) ) =1..,,X

By applying Lemma 2 and noting that E[X(,] =
r(x), it follows that
X

P(X =
Z (k=N —prr< x)
k=t

-k _

P(X< )[Z kP(X

=x—k)—r() P{X=x—k
kz { ]
_PX<x—-t+1}
P{X < x}
+t—-1-r)]
1
—(p(x_t)[r(x—t+1)+t—1—
)]~ (34)

P{X x—t}
P{x<x}’

and again using Lemma 2 and replacing the right-

hand side of (34) in inequality (7), we obtain

X

1
Varlg(ko) < ) 18g(OF s [rr =t +1)
io1- r(x)]P{X(x) -
= E{ag (el [r(x -

X(x) + 1) + X(x) —-1- r(x)]},

[rx=t+1)

o(x— X( ))

-t
Let = g(t) = ~log ;)Ezq)) , then Ag(t) =
logpg;x—tl) log(l nx—t—1), hence

Var[—logp(X(x))] <E {[log(l .
nx—X(x)—l)] [r(x X(x) + 1) + X(x) -1-

r(x)]}

o (x— X( ))
(335)

Under Lemma 2, the above equality holds iff g(t) =
—logp(x —t) +logF(x — 1) is linear in t, which is

equivalent to logp(x —t) being linear in t .
Consequently, logp(x —t) =a;t+b; for some
constants a; and b; , and therefore p(y) =

e~MYeXtht = de=4Y fory = 0, ...,
eM**h1 jg 3 constant.

We thus conclude that the equality holds in (35), iff
p(x) = %C",x =0,..,y—1, ¢>0, which is the
right truncated geometric distribution.

Remark 3.2. In Theorem 3.1, if X is a nonnegative
RV and F is DRHR, then since the DRHR property
implies the /EIT property (21), then

x — 1, whered =
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Varlg(Xe)] < E[(8g(0))* (= D& = ] (6)

Next, we aim to characterize certain distributions.
Throughout the theorems presented below, we assume
that Z is a discrete RV with a finite support S= {0,1,...,b}.

Given that E (ﬁ) =b+1—E(Z),wecanderivea

useful lower bound for E[¢p(Z)], as presented in the next

theorem.

Theorem 3.3. For any nonnegative discrete RV Z,

1 1
1> .
E[w(Z)] T E(e(2) 37
The equality satisfies iff for constant 8
F(z) =
(1-6)Y>7% z=01,..,b, 0<6<1, b<omo,
38

{1, x = b. (38)

Proof. To achieve (37), we make use of C-S
inequality. The equality in (37) satisfies iff there’s a
positive constant 4 so that, for all z € {0,1,...,b},

=2 = Ae(PZ = 2),

which is equivalent to ¢ (z) = 6 = constant. Now, using (5), we have a
(38).
Theorem 3.4. Let Z be a nonnegative discrete RV. Then
A S
Ef z 12 b(b+1)-E(Z(z-1))’
with equality iff Z distributed as,

Fz2) = {m;m (1-61), z=01,..,
1, z2=b.

b-1, 0<6<3,

(39)

where 6 is a constant.

Proof. By the C-S inequality, we have
1= (oo PZ =2} [Z5)7 <

zF(z)
P2{z=z7} 0@
Y2=0 ZF()ZZZ 0 2F(2) = Y2, ZZ P{Z =
23Xl z — Y2 zP{Z > z}).
Now, since
b

z zP{Z >z} =E (@),

z=0

(40)

(40) reduces to
o(Z)_ b(b+1 Z(Z-1
1< p@EPOED (2o,
and the desned result is obtained. The equality is
gotten iff there’s some positive constant 8 so that

P(Z=2z)

JZF(2) B HWI

It follows that ¢ (z) = 6z, which, using equation (5),
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again satisfies iff Z has distribution given in equation
39).

The following two theorems derive lower bounds for

E(Z(Z)).
Theorem 3.5.

E(Zp(Z)) < o0 and E(

1 1
- >
E[Zw(Z)] T EZe©2))
and equality holds iff Z is distributed as
F(z) =
{(b“’)”!, =6,...b—1, 6=12,...,b—1
b!(z—6)!

1, z=b.

Let Z be a discrete RV with

1
Z(p(Z)) < oo. Then

(41)

Proof. As in the proof of Theorem 3.4, the result is stablished.

Theorem 3.6. For any nonnegative discrete RV Z,

2E2(Z)
The equality satisfies iff Z has the distribution
function (38).

Proof. By the C-S inequality, we find that

Z
2
E@) < BGpEEe)

=) ZF@IEEP2)

z=0

b(b+1)—E(Z(Z—1))]E[Z(p(Z)]

= [ >
and thus (42) is obtained.
The equality satisfies iff there exists some
nonnegative constant A so that, for all z € {0, ..., b},

z
j¢(z) = A\ zp(2).

This implies that ¢(z) = 8 = constant, and therefore the
result is obtained.

Now, we proceed to compare the bounds utilized for
E(Zp(Z)) in inequalities (41) and (42).

Assume Z follows a discrete uniform distribution

with support on {1,...,b}. In this case, ¢(z) = i,and

consequently, the lower bound in (41) becomes

— = 1.
E(——
Zo@y
Besides that, the lower bound (42) is
2(E(Z))? _3(b+1)

b(b+1)—E(Z(Z-1)) 2@b+1)

Accordingly, for the distribution, we deduce that the
bound (41) is superior to the bound (42) for b > 1.

F. Goodarzi.

240

J. Sci. . R. Iran

Theorem 3.7. Let Z be a nonnegative discrete RV.
Then
(Elc™*D*(c—1)
cE(c™%)—cb”’
for constant ¢ # 1, where equality satisfies iff Z has
the distribution function given in equation (38).
Proof. By utilizing the C-S inequality, we have

(ELc) < Bl o @)

Besides that, since
b b b
cZ
E =ZC_ZFZ=ZZC_ZPZ=
LD(Z)] ) E@ =) ), PE=)
z=0 y=0 z=y
b

cY —c7b1
Z 1—ct { v}
y=0
_CE[c*]—c?
- c—1
Thus, the result is obtained. The equality holds iff
there exists some nonnegative constant A so that, for all
z €{0,..., b},

E[c™?9p(2)] 2

C_Z

@ =A\/c?p(2).

This concludes that ¢ (z) is a constant, and the result
is obtained.

Results

In this work, we first introduced the past varentropy
for discrete RVs. Then, we obtained bounds for the
varentropy of some discrete distributions. In the
following, by considering the resulting upper

bounds, the squared logarithmic expectation, we
obtained an expression for the bounds in terms of the
squared logarithmic difference coefficients d,(j). In
future work, we propose obtaining similar results for
continuous distributions using logarithmic and log-
gamma expectations. Moreover, we evaluated an upper
bound for Var[g(X,)] and derived bounds for the
expected values of specific functions in reliability theory.
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Abstract

This research examines different feature selection methods to enhance the predictive
accuracy of macroeconomic forecasting models, focusing on Iran’s economic indicators
derived from World Bank data. Fourteen feature selection techniques were thoroughly
compared, classified into Filter, Wrapper, Embedded, and Similarity-based categories.
The evaluation utilized Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) metrics under a 10-fold cross-validation scheme. The findings highlight that
Stepwise Selection, Tree-based approaches, and Similarity-based methods, especially
those employing Hausdorff and Euclidean distances, consistently outperformed others
with average MAE values of 32.03 for Stepwise Selection and 62.69 for Hausdorff
Distance. Conversely, Recursive Feature Elimination and Variance Thresholding
exhibited weaker results, yielding significantly higher average MAE scores. Similarity-
based approaches achieved an average rank of 9.125 across datasets, demonstrating their
robustness in managing high-dimensional macroeconomic data. These outcomes
underscore the value of integrating similarity measures with traditional feature selection
techniques to improve the efficiency and reliability of predictive models, offering
meaningful insights for researchers and policymakers in economic forecasting.

Keywords: Feature Selection; Predictive Accuracy; World Bank Indicators; Macroeconomic Analysis;
Similarity Methods.

. regularization = methods, and meticulous
Introduction

http://jsciences.ut.ac.ir

The primary challenge of working with high-
dimensional data lies in the exponential growth in
complexity and sparsity that such data introduces.
Additionally, the costs associated with storage and
transmission increase, visualization becomes more
challenging, and redundant or irrelevant features often
complicate analysis (1). To address these challenges,
dimensionality reduction techniques, feature selection,

preprocessing are essential. These approaches help to
extract valuable insights while mitigating the negative
impacts of high dimensionality on data analysis and
machine learning tasks. Feature selection is a key
technique in dimensionality reduction, focusing on
carefully identifying a relevant subset of features
(variables or predictors) for model development. It plays
a critical role in the data preprocessing workflow. Among
various dimensionality reduction strategies, feature
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Table 1.
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Summary of the specific objectives of the research

Objective

Details

Exploring Similarity-Based Feature
Selection

Benchmarking Against Conventional
Methods

Assessing Practical Implications

Demonstrating Relevance with Case Studies

Investigate using distance measures (e.g., Hausdorff, Euclidean, Dynamic

Time Warping) as feature selection tools.

Compare similarity-based methods with Filter, Wrapper, and Embedded

approaches using RMSE and MAE.

Evaluate computational simplicity, robustness, and real-world applicability

in economic forecasting.

Use Iran’s macroeconomic indicators (1990-2022) to validate findings and

provide actionable insights.

selection stands out as a significant approach that retains
only relevant features and eliminates redundant or
irrelevant ones (2). Feature selection is vital in machine
learning and data analysis, particularly when handling
high-dimensional datasets. Identifying and selecting the
most important features enhances model performance by
improving predictive accuracy, reducing overfitting, and
lowering computational costs. In the context of target
variables, the feature selection process significantly
contributes to achieving more accurate predictions.

Through systematically identifying and preserving
relevant features while removing irrelevant or redundant
ones, feature selection boosts a model's ability to capture
underlying patterns and relationships within the data.
This results in improved predictive accuracy, typically
reflected in lower RMSE and MAE values. For instance,
accurately forecasting GDP growth or inflation rates
requires isolating key economic indicators such as broad
money supply, government expenditure, and foreign
direct investment. Similarly, understanding the drivers of
unemployment or manufacturing growth necessitates
focusing on the most impactful predictors. Effective
feature selection not only enhances accuracy but also
improves model interpretability and computational
efficiency, aiding in better economic analysis and
policymaking. Reducing model complexity also helps
prevent overfitting, ensuring forecasts remain robust and
reliable when applied to new data.

Feature selection (FS) is the process of identifying the
most relevant and effective subsets of features to enhance
the robustness of predictive models. This step is
performed during the preprocessing phase of machine
learning workflows. Before any training or testing,
choosingthe most pertinent features based on the target
variable is essential. While many FS techniques have
been proposed in the literature, some methods, such as
time series similarity methods, can also identify the most
relevant features. A review of existing literature reveals
that no studies have yet applied time series similarity
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methods specifically for feature selection. However,
there are similarities between these two approaches that
make time series similarity a promising alternative. Time
series similarity measures the distance between two time
series, which forms the foundation for clustering and
classification tasks. A smaller distance between a feature
and the target variable indicates that the feature is more
relevant and should be included in the model. Thus, the
goal of this research is to explore whether time series
similarity methods can be as effective as traditional
feature selection methods for identifying relevant feature
subsets. The significance of this inquiry lies in the
simplicity of the preprocessing step is just as important
as the effectiveness of the methods employed, potentially
saving both time and resources.

The overarching goal of this study is to evaluate the
effectiveness of similarity-based methods as feature
selection tools for high-dimensional macroeconomic
forecasting. Table 1 summarizes the specific objectives
of the research:

By addressing these objectives, the study contributes
to advancing feature selection methodologies and
provides practical recommendations for integrating
similarity-based  approaches in  macroeconomic
forecasting and other domains.

In the following sections, the methodology for
integrating time series similarity measures into the
feature selection framework is discussed (Section 2), the
empirical results of the study are presented (Section 3),
and the implications of the findings are analyzed in the
discussion and conclusion (Section 4).

Literature review

Feature selection is essential for improving machine
learning models accuracy, interpretability, and
computational performance. By isolating the most
significant features and eliminating those that are
redundant or irrelevant, it addresses many of the
challenges associated with high-dimensional datasets.
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While feature selection has been extensively studied, the
direct use of similarity measures as an independent
method has not received much attention. Nevertheless,
various studies have leveraged similarity measures
indirectly to enhance feature selection techniques, as
outlined below.

Similarity-based methods have shown potential,
particularly in unsupervised feature selection. For
example, Zhu et al. (3) proposed the Feature Selection-
based Feature Clustering (FSFC) algorithm, which
employs clustering driven by similarity measures to
group and select features effectively. Similarly, Mitra (4)
introduced an algorithm for unsupervised feature
selection in large, high-dimensional datasets. This
method evaluates features redundancy using similarity
metrics, achieving greater efficiency and scalability.

Building on these ideas, Shi et al. (5) developed the
Adaptive-Similarity-based =~ Multi-modality =~ Feature
Selection (ASMFS) approach. This technique constructs
a similarity matrix to capture inherent relationships
across different modalities in high-dimensional data. The
method demonstrated superior performance in tasks such
as Alzheimer’s disease classification, showcasing the
value of similarity-based strategies in feature selection.

Recent research has refined similarity-based
approaches to make them more robust and adaptable.
Mehri et al. (6) employed similarity measures to identify
and eliminate redundant features by examining their
resemblance to others. Shen, Chen, and Garibaldi (7)
proposed a meta-learning framework that integrates
fuzzy similarity measures for recommending optimal
feature selection techniques tailored to diverse datasets.
Their approach automates feature selection, enhancing
adaptability across dataset characteristics.

Goldani and Asadi (8) explored the application of
similarity measures in financial forecasting, utilizing
methods such as Haus Dorff distance and variance
thresholds. These measures effectively selected
predictive features, particularly in scenarios involving
fluctuating data volumes. Similarly, Mathisen et al. (9)
enhanced automated similarity measures for clustering,
case-based reasoning, and one-shot learning,
demonstrating their adaptability and utility in diverse
applications.

Matrix factorization techniques have also leveraged
similarity measures for feature selection. QI et al. (10)
introduced the Regularized Matrix Factorization Feature
Selection (RMFFS) method, which employs matrix
factorization to capture feature correlations and applies a
combination of 11 and 12 norms to ensure sparsity in the
feature weight matrix. Du et al. (11) proposed the Robust
Unsupervised Feature Selection via Matrix Factorization
(RUFSM) method, which decomposes the data matrix
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into latent cluster centers and sparse representations. This
approach achieves high-accuracy feature selection by
identifying orthogonal cluster centers.

Hu et al. (12) extended this line of research with the
Graph Self-Representation Sparse Feature Selection
(GSR-SFS) method. Integrating a subspace-learning
model into a sparse feature-level self-representation
approach, improves both the interpretability and stability
of the selected features.

Feature selection methods have found significant
applications in medical and dynamic datasets. Remeseiro
and Bolon-Canedo (2) reviewed feature selection
techniques in medical imaging, biomedical signal
processing, and DNA microarray data, highlighting their
utility in solving domain-specific challenges. Venkatesh
and Anuradha (13) addressed the limitations of
traditional feature selection methods for dynamic, noisy
datasets generated in IoT and web-based applications.
Their work emphasized the need for scalable and robust
methods to handle the evolving nature of such data.

The consensus among researchers, as highlighted by
Guyon and Elisseeff (14), is that feature selection is
crucial for improving the performance and
interpretability of machine learning models. The choice
of the feature selection method should be tailored to the
specific problem and dataset, as there is no universal
solution. Proper evaluation and validation are necessary
to ensure the effectiveness of any feature selection
technique. Jovi¢ et al. (15) investigated the calculation
methods of standard filter, wrapper, and embedded
methods. The result revealed that filters based on
information theory and wrappers based on greedy
stepwise approaches offer the best results.

The existing body of work highlights the potential of
similarity-based methods to address challenges such as
feature redundancy and relevance in high-dimensional
data. While traditional feature selection methods such as
Filter, Wrapper, and Embedded approaches have
succeeded, integrating similarity measures directly into
feature selection frameworks offers a promising
alternative. However, their application remains
underexplored in macroeconomic forecasting, which has
motivated the current study to evaluate their feasibility
and effectiveness in this context. This study bridges this
gap by investigating the feasibility and effectiveness of
using time series similarity methods as feature selection
techniques. By systematically comparing these methods
with established feature selection techniques, the
research aims to evaluate their performance in
identifying relevant subsets of features while ensuring
computational simplicity and robustness. The findings
have implications not only for improving the
preprocessing of high-dimensional datasets but also for
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advancing methodologies in domains such as economic
forecasting, healthcare, and beyond.

Materials and Methods
This section outlines the methodology employed in
this research, consisting of four key steps as depicted in
Figure 1.

Dataset

This paper aims to compare the predictive
performance of datasets selected using feature selection
techniques and time series similarity methods. The data
set employed for this purpose is derived from the World
Bank Development Indicators. To validate and assess the
effectiveness of the dataset chosen through these
methods, various target variables were selected, as
summarized in the Table 2. These variables represent

M. Goldani.
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"Macroeconomic Indicators" for Iran, with data sourced
from the World Bank website for 1990-2022.

Preprocessing data

As an initial step in the data preprocessing process,
variables with a high proportion of missing data—
specifically, those with more than 80% of their values
absent—are systematically removed from the dataset to
ensure the reliability and integrity of subsequent
analyses. This step helps eliminate variables that
otherwise provide insufficient information for
meaningful insights. For the remaining variables, which
have a missing data rate of less than 80%, the gaps in the
dataset are addressed through the application of the K-
Nearest Neighbors (KNN) imputation method. This
technique leverages the patterns and relationships
between existing data points to estimate and fill in

Start: Define Research Objective
(Evaluate Feature Selection Methods)

l

Dataset Preparation
(World Bank Indicators, 1990-2022)

i

Preprocessing Data
(Missing Value Handling - KNN Imputation)

i

Feature Selection Categories

Filter Methods Wrapper Methods Embedded Methods Similarity-Based Methods
(e.g., Chi-Square, Information Gain, (e.g., Stepwise Selection, Recursive Elimination, .0, LASSO, Decision Trees) (e.g., Hausdorff Distance, Euclidean Distance,
Comelation-based, Markov Blanket) |mulatedAnnBaJ| 0. DynamncT\me ‘Warping)

\\//

Evaluation Metrics
RMSE, MAE)

i

Validation
(104old Cross-Validation)

i

Results Analysis
(Average Ranking, Predictive Performance)

Insights and Conclusions
(Similarity Methods and Stepwise Selection
Show Superior Performance)

i

End: Apply Selected Features
(Train Final Model)

Figure 1. The complete methodology
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Table 2. The list of target variables

Variable Description
Adjusted Savings: Consumption of Fixed Capital Annual adjusted savings considering fixed capital
usage.

Broad Money

Food Production Index (2014-2016 = 100)

Foreign Direct Investment (Net Inflows as % of GDP)
GDP Growth

General Government Final Consumption Expenditure (% of

GDP)

GNI

Gross Domestic Income

Gross Domestic Saving

Gross National Expenditure (% of GDP)
Gross Value Added at Basic Prices

Households and NPISHs Final Consumption Expenditure Per

Capita (Constant 2015 USS)

Imports of Goods and Services (Constant 2015 USS$)
Manufacturing Value Added (Annual % Growth)
Official Exchange Rate (LCU per USS$, Period Average)
Stocks Traded (Total Value as % of GDP)

Total Debt Service (% of Exports of Goods, Services, and
Primary Income)

Unemployment (Total % of the Labor Force, Modeled ILO

Estimate)
‘Wholesale Price Index (2010 = 100)
Consumer Price Inflation

Total money supply in the economy.
Measure of food production, base year 2014-2016.
Net inflows of FDI as a percentage of GDP.
Annual growth rate of GDP.
Government consumption as a percentage of GDP.

Gross National Income.
Total income generated domestically.
National saving as a percentage of GDP.
Total expenditure as a percentage of GDP.
Value addition by all sectors at basic prices.
Per capita household expenditure in constant dollars.

Value of imports adjusted to constant 2015 USS.
Annual growth in manufacturing output.
Average local currency exchange rate per US dollar.
Value of traded stocks as a percentage of GDP.
Debt repayment as a percentage of exports.

Total unemployment rate as estimated by ILO.

Index measuring wholesale price levels (base 2010).
Annual inflation based on consumer prices.

missing values, thereby preserving the completeness of
the dataset while maintaining its statistical validity (16).
This approach ensures that the data set is robust and
suitable for further analysis.

Conventional feature selection methods

Feature selection (FS) techniques are employed to
determine and preserve the most significant and
insightful features of the data, ensuring the construction
of precise predictive models. The dataset includes many
features, leading to the presence of noise, irrelevant
details, and redundant information. Hence, this increases
the computational time and error rate of the learning
algorithm (17). Three main categories of feature selection
methods exist: filter, wrapper, and embedded. A brief
description of each selection method is given in Table 3.

They become particularly valuable in complex
scenarios where neither filter, wrapper, nor can
embedded methods alone achieve the desired outcomes.

The proposed approach

The proposed method falls under Filter techniques,
which evaluate feature importance based on their
correlation with the target variable. Figure 2 illustrates
the framework of the suggested methodology,
emphasizing its four main stages.

At the heart of this approach lies the application of
similarity measures. This study examines feature
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selection (FS) by utilizing various distance metrics,
including Euclidean Distance, Dynamic Time Warping
(DTW), Edit Distance on Real Sequences (EDR),
Longest Common Subsequence (LCSS), and Edit
Distance with Real Penalty (ERP). These metrics are
crucial for assessing the similarity between time series, a
fundamental task in the clustering and classifying of
temporal data. The primary goal is to determine the
distance between two time series, which is vital for
analyzing temporal patterns and trends.

In earlier applications, time series similarity was a
direct statistical inference tool to uncover relationships
between time series originating from different datasets
(19). However, with the exponential growth of data
collection in recent years, time series data has become
increasingly prevalent, leading to a surge in analytical
tasks such as regression, classification, clustering, and
segmentation. These tasks often hinge on selecting a
suitable distance metric to effectively quantify the degree
of similarity between time series.

Given the importance of similarity measures, this
study explores various methods to determine the distance
between time series. These methods are broadly
classified into three main categories: stepwise measures,
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Table 3. Conventional feature selection methods
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Univariate

FS space
- Fast

- Scalable

G

- Independent of the
classifier

Filter
Multivariate

- Models feature
dependencies

- Independent of the
classifier
- Better computational
complexity than wrapper
methods
Deterministic
- Simple

- Interacts with the
classifier
- Models feature
dependencies
- Less computationally
intensive than randomized

methods

Randomized

Wrapper

- Less prone to local optima

- Interacts with the
classifier
- Models feature
dependencies

- Interacts with the
classifier
- Better computational
complexity than wrapper

FS U hypothesis space

- Ignores feature dependencies
- Ignores interaction with the
classifier

- Slower than univariate
techniques

- Less scalable than univariate
techniques

- Ignores interaction with the
classifier

- Risk of overfitting

- More prone than randomized
algorithms to
getting stuck in a local optimum
(greedy search)
- Classifier dependent selection

- Computationally intensive
- Classifier dependent selection

- Higher risk of overfitting than
deterministic methods

- Classifier dependent selection

%* (Chi-square test)
Euclidean distance

i-test

Information gain
Gain ratio

Correlation-based
feature selection
(CFS)
Markov blanket filter
(MBF)

Fast correlation-based
feature selection
(FCBF)

Sequential forward
selection (SFS)
Sequential backward
elimination (SBE)
Recursive Feature
Elimination

Simulated annealing
Randomized hill
climbing
Genetic algorithms

Estimation of
distribution
algorithms

Decision trees

LASSO

methods
Embedded - Models feature Feature selection
dependencies using the weight
vector of SVM
which align time series elements sequentially; limitation of these methods is the requirement for

distribution-based measures, which focus on statistical
properties; and geometric methods, which emphasize
spatial relationships and patterns. Understanding and
leveraging these approaches is essential for advancing
time series analysis and enhancing its applications across
diverse fields.

Stepwise Metrics

These metrics compare time-series samples one by
one based on their time indices (20). A significant
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identical sample sizes in the time series. The most notable
stepwise metrics are Euclidean Distance and Correlation
Coefficient, which are detailed below.

o The Euclidean Distance is the simplest measure
for comparing time series. It calculates the shortest
distance between two points in Euclidean space using the
Pythagorean theorem. The Euclidean Distance between
two time series x and y of length n is defined as:

1
Deuc = (X (x; —y) /2 (1
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calculate the
simulation
between Target

Dataset with all
feature variable and
Independent

variables

Selection of
similar
variables based
on the defined
threshold

reduced
dataset

Figure 2. The framework of the proposed feature selection

This distance is widely used due to its simplicity and
ease of understanding. However, a key limitation of
Euclidean Distance is its sensitivity to time-axis
transformations, such as scaling and shifting (21).
Moreover, it cannot compare time series with different
sample sizes. As it relies on point-to-point mapping, it is
highly sensitive to noise and temporal misalignments,
thus making it unsuitable for handling local shifts in time.

A straightforward extension of Euclidean Distance is
to calculate the similarity using extracted features rather
than raw time-series data.

o Pearson Correlation Coefficient is a widely used
metric for assessing the linear relationship between two
time series. It is defined as:
E(XY)-E(X)E(Y) @)

std(X)std(Y)

The Pearson Correlation Coefficient ranges between
-1 and 1, where 1 indicates a perfect positive correlation,
and -1 reveals a perfect negative correlation. However, it
cannot distinguish between dependent and independent
variables or capture non-linear relationships.

corr(x,y) =

Elastic metrics

These metrics adjust the time axis by stretching or
compressing it to minimize the effect of local variations.
These methods are particularly effective for handling
non-linear distortions on time. The most notable elastic
methods include Dynamic Time Warping (DTW),
Longest Common Subsequence (LCSS), and others.

o Dynamic Time Warping (DTW) is an algorithm
for measuring similarity between time series that may
vary in speed or timing. Unlike Euclidean Distance,
DTW aligns sequences non-linearly by stretching or
compressing the time axis to find the optimal alignment.
The cumulative distance is calculated as:

DISTMATRIX =

d(x1,y1) d(’ﬁ,)’z) d(’ﬁ,)’m)
d(xz,Y1) d(xz,YZ) d(xz,Ym) (3)
d(xny1) d(xny2) d(%n,Ym)

r(,j)) =d@,j) +min{r(i—1,j),r(,j—-1),r@—-1,j—-1)}
{ DTW (x,y) = min{r(n,m)}
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“4)

DTW allows comparisons between time series of
different lengths and identifies similar shapes, even if
they are out of phase. However, it is computationally
intensive, making it less practical for large datasets.

o Longest Common Subsequence (LCSS) focuses
on the longest matching subsequences between two time
series while ignoring noise and distortions. For two
sequences S, and S,, of lengths n and m, the similarity is
defined as:

M@, j) =
( 0 ;i=00rj=0

14M@i-1j-1); 5=y, i=lorj>1 )
M {M(i_l’j) x 2y, izlorj=1
k ax M(i,j — 1) 3 Xp FYyj,t=21lorj =

Where M (n,m) is calculated recursively:

M@, j) =
( 0 ;i=00rj=0
1+M@I-1,j-1; (x;—y)<e,i=lorj=1

M(@i - 1,j) ©)

tMax{M(i,j—l) s (xi—y)>e, i=1orj=1

LCSS is robust to noise and suitable for comparing
time series with different lengths. However, it heavily
depends on the similarity threshold, which impacts its
accuracy.

o The edit distance algorithm counts the number of
insertion, deletion, and substitution operations required
to transform one string into another. It can be applied to
time series, where points X and Y match if their absolute
distance is less than € (22). Given two sequences Y, and
X, of lengths n and mmm, respectively, the Edit Distance
on Real sequence (EDR) between X and Y refers to the
number of insertions, deletions, or substitutions required
to transform X into Y. It is defined as follows:

EDR(X,Y) =

I( n if m=0

! m if n=0

L min { EDR(Rest(X), Rest(Y)) + subcost,

\ EDR(Rest(X),Y) +1,EDR(X, Rest(y)) + 1

} (N
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o ERP, as with the EDR method, is based on Edit
Distance (ED) for measuring the similarity of time-series
data (23). ERP, accompanied by the L1-norm and Edit
Distance, supports local time shifts and is a metric,
meaning it satisfies the triangular inequality. Non-metric
distance functions complicate problems as violating the
triangular inequality renders most indexing structures
infeasible. The primary reason why EDR does not satisfy
the triangular inequality is that when a gap needs to be
added, it repeats the previous element. In contrast, ERP
does not face this issue since it uses the L1-norm between
two non-gap elements and is designed in such a way that
it applies an actual penalty between two non-gap
elements. However, it employs a fixed value for
calculating the distance for gaps (23). When calculating
ERP for two time series S, and S, with lengths n and
mmm, they are aligned to the same length by adding
certain symbols (referred to as gaps). Then, each element
in one time series is matched with a gap or an element in
another. Finally, the ERP distance between the two-time
series S, and Sy, is defined recursively.

derp =
( Yitalxi — gl ifn=0
| Yialy—gl  ifm=0
| (derp(RestG,Resty) + 1 D) (®)
| min derp(Rest(x),y + |x; — gl)

l dorp(x, Rest(y) + 1y — g)

o Time Warped Edit Distance (TWED) combines
the strengths of DTW and edit distance algorithms by
allowing elastic matching with additional constraints.
The similarity is measured as the minimum sequence of
edit operations required to align two time series.

Geometric distances

Geometric  distances focus on the spatial
characteristics of trajectories, particularly their shapes.
Examples include Hausdorff Distance, Discrete Frechet
Distance, and SSPD (Symmetric Segment Path
Distance).

o The Hausdorff Distance measures the maximum
mismatch between two trajectories, defined as:
Haus(X,Y) = Max{sup inf|[xy]||,, sup inf]|xy|l,} (9)

xEXyeY xeXyeY

o Frechet Distance measures the similarity between
curves by calculating the minimal "leash length" required
to connect a dog and its owner walking along two
separate paths. It is mathematically defined as:

Drrechet (T, T?) = min{max||wy ||}

wke(..|w|) (10)

M. Goldani.
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o SSPD shape-based distances such as Hausdorff
and Frechet can align with corresponding paths but can
not be compared as a unified entity. SSPD is a shape-
based distance metric that does not consider the time
index of the path. This metric calculates the point-to-
segment distance for all samples of the reference path and
all segments of the other path then report the average of
the obtained distances for the path sample as the SSPD
distance (24).

SSPD is defined as follows:

1
Dpp (T, T?) = n—lZ’ff:l Dpt(pil' T?)
(pil; TZ) = minize(o....nz—l)Dps (pill, Sizz

min Dps(PZ, S})
ihb€(0...ny—1)

(11)
DPT(Plz!Tl) =

This distance is not symmetric. By considering the
average of these distances, SSPD is defined as follows:
D T1,72)+D, 72,11
Doopp (', 77) = 2522 0sen(I20) 1)

Validation methods

Stationarity is a key principle in time series analysis,
defined as the condition where the statistical attributes of
a time series, such as its mean, variance, and
autocorrelation, remain unchanged over time (25). A
stationary time series is essential for reliable analysis and
modeling. In the subsequent phase of our methodology,
statistical tests were conducted to evaluate significant
variations among the reduced datasets.

To perform predictive analysis, a Linear Regression
model was selected due to its straightforward nature and
case of interpretation. Nevertheless, alternative
regression models may be applied based on the specific
requirements of the study. To enhance the reliability of
the model evaluation and mitigate the risk of overfitting,
a 10-fold cross-validation technique was employed. This
method involves splitting the dataset into ten roughly
equal parts, with each subset alternately used for training
and testing during the evaluation.

Model performance was measured using two key
metrics: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). RMSE captures the deviation
between predicted and observed values, whereas MAE
quantifies the average error magnitude in predictions.
The evaluation was carried out across 10 iterations,
generating unique RMSE and MAE scores for each run.
This iterative approach ensured the robustness and
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consistency of the results, providing a comprehensive
validation of the methodology.

Results and Discussion
In this study, we present the results of predicting
performance across 14 datasets, each selected using a
different feature selection (FS) technique. These
techniques include seven filter methods, five wrapper
methods, three embedded methods, and four similarity-

based methods. The similarity methods as FS techniques
are also evaluated within this framework. The chosen
methods were selected for their widespread recognition
in literature, allowing for a clear comparison. To assess
predictive accuracy, we use two evaluation metrics: Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE), applied to the performance of a Linear
Regression model. To evaluate the efficiency of each
dataset selected by the FS methods, we implemented the
techniques on the World Bank dataset, which includes

stepwise
e —
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Figure 3. The top four feature selection models based on 14 datasets chosen by Feature selection techniques
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Table 4. Average Mean Absolute Error (MAE) of datasets

Category Methods Average
Wrappers stepwise 32/0299

similarity frechet 51/6163

similarity hausdorff 62/68829
similarity sspd 91/70364
similarity epr 91/88632
similarity dtw 91/93176
similarity euc 95/02939
Embedded Tree-based 106/3909
Wrappers recursive 270/5572
similarity Icsso 292/8808
similarity edr 298/4402
Filters MI Score 963/5397
Filters inf 1683/06

similarity Sparse 3/98E+08
Wrappers forward 6/4E+08

Wrappers simulated_annealing 8/13E+08
Filters fisher 1/83E+09
Embedded lasso 3/06E+12
Filters chi 4/83E+13
Filters corrolation 4/83E+13
Filters data_dispersion 8/16E+13
Filters var 6/41E+14
Wrappers backward 6/47E+14

various target variables. In total, 20 different datasets
were used, and FS methods were employed to identify
the best feature subsets from each.

Figure 3 illustrates the results of a 10-fold cross-
validation evaluation for each FS method. The datasets
selected by these four methods consistently exhibited the
lowest RMSE and MAE, indicating superior predictive
accuracy.

Table 4 presents the average MAE values for datasets
processed using various feature selection (FS) methods.
The Mean Absolute Error (MAE) averaged across 20
datasets for each target variable.Those derived using the
stepwise feature selection approach demonstrated
superior predictive accuracy among the subsets
generated. These subsets consistently exhibited the
smallest MAE values compared to others. Following
closely were the subsets identified through similarity-
based techniques, which also achieved notably low
average MAE scores, underscoring their effectiveness in
prediction tasks.

Figure 4 indicates the average ranking of MAE
selected based on FS methods. The ranking of each
feature selection (FS) method was determined based on
its ability to select the best subset of datasets with the
lowest Mean Absolute Error (MAE). To provide a
comprehensive analysis, the rank of each of the 20
datasets across all FS methods was averaged. According
to the results, the best predictive accuracy methods were
Stepwise Selection, Tree-based methods, Hausdorff,
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Euclidean (Euc), and MI_Score. In contrast, Recursive
Feature Elimination with Cross-Validation (RFECV) and
Variance  Thresholding  exhibited the poorest
performance.

The average ranking across the feature selection
categories (Figure 5) indicates that, on average,
similarity-based methods outperformed the other
approaches. Specifically, similarity methods achieved an
average rank of 9.125, highlighting their superior
performance in selecting the most relevant feature
subsets compared to other methods.

The results underscore the potential of similarity-
based methods as viable alternatives to traditional feature
selection techniques, with implications for a wide range
of applications, particularly macroeconomic forecasting.

Effectiveness of Similarity-Based Approaches

The strong performance of similarity-based methods,
particularly ~ Frechet and Hausdorff distances,
demonstrates their ability to identify features that exhibit
high relevance to target variables. These methods
leverage the inherent structure of time series data,
effectively capturing relationships that might be
overlooked by traditional approaches. For instance, the
Frechet Distance, which accounts for the shape and
continuity of data trajectories, excels in handling time
series with local distortions, while the Hausdorff
Distance, which measures the greatest distance between
points of two datasets, is robust against outliers and
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noise. efficiency make similarity-based methods suitable for

This capability aligns with clustering and real-world scenarios where quick and accurate analysis is
classification literature findings, where similarity critical.
measures are frequently employed to quantify

relationships between data points. By applying these
measures to feature selection, this study extends their
utility into a new domain, validating their effectiveness
in identifying subsets of features that enhance model
performance. Further, their simplicity and computational
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Comparison with Traditional Methods

Traditional feature selection methods, such as
Stepwise Selection and Tree-based approaches, remain
benchmarks in the field due to their consistent
performance and well-established methodologies.
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Stepwise Selection, in particular, excels in identifying
key features through iterative inclusion or exclusion,
making it a preferred choice for many predictive
modeling tasks. Similarly, Tree-based methods, such as
Random Forests, offer an embedded mechanism for
ranking features by their importance, balancing accuracy
and interpretability.

However, similarity-based methods emerge as strong
contenders, offering a computationally efficient
alternative especially advantageous in high-dimensional
scenarios. Unlike traditional methods that often rely on
iterative testing or classifier-specific criteria, similarity-
based approaches operate independently of classifiers,
enabling faster preprocessing and reducing the risk of
overfitting. This makes them particularly appealing for
datasets with numerous variables, where computational
resources and time constraints are significant
considerations.

Implications for Macroeconomic Forecasting

Macroeconomic forecasting heavily relies on
accurate predictions of key indicators, such as GDP
growth, inflation rates, and unemployment levels. The
use of similarity-based methods in this context provides
several advantages:

v Simplification of Preprocessing: By directly
measuring the relationship between features and target
variables, similarity-based methods eliminate redundant
preprocessing steps. This simplifies the pipeline and
lowers the risk of introducing errors during data
preparation.

v Enhanced Interpretability: The straightforward
nature of similarity measures, such as distances or
correlations, allows for easier interpretation of results.
Policymakers and economists can gain clearer insights
into which features drive predictions, thus facilitating
more informed decision-making.

v" Robust Forecasting Tools: By focusing on the
most relevant features and minimizing noise, these
methods contribute to developing robust and reliable
forecasting models. This is particularly critical for
policymaking, where accurate predictions can guide
interventions and resource allocation.

Conclusion

In this study, we investigated which feature selection
(FS) and similarity methods most effectively enhance the
predictive performance of models for various
macroeconomic variables. The analyzed indicators
included a diverse range of metrics, such as adjusted
savings (consumption of fixed capital), broad money, the
food production index, imports of goods and services
(constant 2015 USS$), manufacturing value-added

M. Goldani.
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(annual % growth), official exchange rate (LCU per
USS$), stocks traded (total value as a % of GDP), total
debt service (% of exports), unemployment (% of the
total labor force, ILO estimate), the wholesale price index
(2010 = 100), and consumer price inflation. To achieve
this, we evaluated 23 different FS and similarity methods
to identify the most effective techniques for selecting
features that provide accurate predictions of these
macroeconomic indicators.

Time series similarity algorithms, though rarely
utilized as standalone feature selection methods, were a
key focus of this research. By comparing these
algorithms against traditional FS approaches, we aimed
to assess their potential in identifying relevant features.
Each FS and similarity method was applied to the
datasets, and their performance was evaluated using both
MAE and RMSE metrics. The current findings are hence
in agreement with the studies of Zhu et al. and Mitra, who
applied the methods of similarity measures for feature
grouping and selection to increase clustering
performance. Additionally, robustness from similarity
metrics obtained herein further supports conclusions
from Mehri et al. and Goldani and Asadi, demonstrating
their viability in high-dimensional and financial
forecasting setups. This work extends these approaches
toward macroeconomic forecasting, hence addressing an
important lacuna in the related literature. Besides, the
traditional feature selection methods, such as stepwise
selection and tree-based methods, were confirmed to be
reliable benchmarks, which agrees with the results
obtained by Jovi¢ et al. However, the similarity-based
methods were their strong competitors, providing equal
or higher predictive accuracy with computational
simplicity. Unlike other methods, such as Recursive
Feature Elimination and Variance Thresholding, which
did not perform well in our analysis, results consistent
with the critiques of Guyon similarity-based approaches
provided a more robust alternative for high-dimensional
datasets. Findings revealed that methods such as
Stepwise Selection paired with Tree-based techniques,
Hausdorff distance, Euclidean distance, and Mutual
Information Score consistently outperformed other
approaches, demonstrating higher predictive accuracy.
Conversely, methods like Recursive Feature Elimination
with Cross-Validation and Variance Thresholding
showed comparatively weaker results, suggesting limited
utility in this context. These results highlight the potential
of similarity-based algorithms as effective tools for
feature selection in macroeconomic forecasting.

By systematically comparing these methods with
established feature selection techniques across 20
datasets of macroeconomic indicators, the key findings
were obtained as follows:
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Performance of Similarity-Based Methods:

e Similarity-based methods, particularly Frechet
and Hausdorff distances, demonstrated strong
performance in identifying relevant features, with
competitive Mean Absolute Error (MAE) values
compared to traditional techniques.

e The computational efficiency and robustness of
similarity-based methods make them suitable for high-
dimensional datasets, offering an alternative to Filter,
Wrapper, and Embedded methods.

Advancing Feature Selection:

e Traditional approaches such as Stepwise
Selection and Tree-based methods remain benchmarks
thanks to their high accuracy and established
methodologies. However, similarity-based methods
provide a complementary approach, particularly in
applications requiring computational simplicity and
adaptability.

Macroeconomic Implications:

e The adoption of similarity-based feature selection
can improve forecasting accuracy for critical economic
indicators such as GDP growth, inflation, and
unemployment. These tools enhance interpretability and
simplify preprocessing, making them valuable for
policymakers and economic analysts.

Studies could explore hybrid models that integrate
similarity-based techniques with traditional feature
selection frameworks to leverage the strengths of both
approaches. For example, combining similarity measures
with Wrapper methods could further boost accuracy
while maintaining computational efficiency. Since the
performance of similarity-based methods depends on the
choice of distance metrics, research should focus on
developing adaptive or data-driven methods for selecting
optimal metrics based on dataset characteristics.

Adopting similarity-based feature selection methods
significantly advances macroeconomic forecasting and
policy analysis. These methods would improve the
accuracy and efficiency of models while maintaining
transparency and interpretability. By prioritizing
adopting and developing these techniques, policymakers
can make more informed decisions, better allocate
resources, and enhance their ability to respond to
economic challenges. Future efforts should focus on
refining these methods, scaling their use across various
domains, and integrating them into comprehensive, real-
time forecasting systems to support dynamic and
effective policymaking.
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Abstract

The Jakarta Composite Index (JCI) is a pivotal benchmark for evaluating the
performance of all stocks listed on the Indonesia Stock Exchange (IDX). Given the
inherent complexity, nonlinearity, and non-stationarity of stock market data, selecting
robust forecasting methods is essential. This study compares the performance of the
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM)
in forecasting JCI movements. The researcher assessed prediction accuracy using Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The training
phase revealed that the optimal ANFIS model employed the generalized bell membership
function, outperforming trapezoidal and Gaussian alternatives. Concurrently, the best
SVM configuration utilized a linear kernel (cost = 10), demonstrating superior
performance compared to radial basis function (RBF) and sigmoid kernels. In the testing
phase, ANFIS achieved an RMSE of 39.894 and MAPE of 0.4647, while SVM recorded
an RMSE of 38.728 and MAPE of 0.4516. These results underscore the superior
predictive capabilities of SVM, positioning it as a reliable tool for stock market
forecasting. The study’s findings provide valuable insights for investors and
policymakers in navigating market uncertainties and optimizing investment strategies.

Keywords: Forecasting; Support Vector Machine; Jakarta Composite Index; Adaptive Neural-based Fuzzy
Inference System.
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Introduction

The Jakarta Composite Index (JCI) serves as a crucial
benchmark, reflecting the overall performance of all
stocks listed on the Main Board and Development Board
of the Indonesia Stock Exchange (IDX) (1). Stock price
movements within the JCI exhibit diverse patterns
throughout the trading day, with some stocks
experiencing gains, others losses, and a subset remaining

unchanged (2). Figure 1 illustrates the general structure
of a fuzzy inference system, while Figure 3 depicts the
specific ANFIS architecture used in this study. A rising
JCI trend signals an overall increase in stock prices,
whereas a declining trend indicates a general downturn.
For participants in the capital market, are closely
monitoring stock price movements is essential to inform
strategic investment decisions. However, forecasting
stock market behavior poses significant challenges due to
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its inherently complex, nonlinear, and non-stationary
nature.

In addressing these complexities, there have been
various advanced forecasting approaches leveraging
artificial intelligence developed, including the Adaptive
Neuro-Fuzzy Inference System (ANFIS), Support Vector
Machine (SVM), Genetic Programming (GP), and
Artificial Neural Networks (ANN). In a study by When-
Chuan Wang (3), the forecasting performance of these
methods was compared to daily river flow data. The
results demonstrated that ANFIS and SVM surpassed
traditional statistical approaches such as ARMA, as well
as other Al-based methods like GP and ANN, in terms of
Coefficient of Determination (R?), Mean Absolute
Percentage Error (MAPE), and Root Mean Square Error
(RMSE). Notably, the predicted values of ANFIS and
SVM closely aligned with observed data trends,
highlighting their efficacy in handling nonlinear datasets.

The ANFIS model excels at identifying intricate
nonlinear patterns in data, combining the strengths of
fuzzy inference systems and neural network
architectures. While fuzzy inference systems can
translate expert knowledge into rule-based models,
determining optimal membership functions can be
computationally intensive. ANFIS addresses this
limitation by integrating neural network learning
mechanisms, automating the search for optimal
membership functions, and thus expediting the modeling
process. This dual capability makes ANFIS a versatile
tool for applications across various domains. For
example, ANFIS has been successfully utilized to
forecast and analyze air quality in Wuhan City,
particularly in studying the effects of COVID-19 on
environmental parameters (4).

Similarly, the Support Vector Machine (SVM)
method offers a robust alternative for time series
forecasting, including stock price prediction. SVM is
particularly well-suited for complex, nonlinear datasets
and has demonstrated high predictive accuracy when its
hyperparameters are optimally tuned. A comparative
study of SVM and Backpropagation-based ANN for
forecasting foreign tourist arrivals in Bali Province
revealed that SVM, using a radial basis function kernel,
outperformed ANN by achieving the lowest forecasting
errors (5).

The high potential returns offered by the Indonesian
stock market have attracted significant interest from
domestic and international investors, particularly in
comparison to other regional markets. The potential
underscores the importance of accurate stock price
forecasting to maximize investment returns. Previous
studies have consistently shown that ANFIS and SVM
outperform other forecasting methods in terms of
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predictive accuracy. Therefore, this study seeks to apply
ANFIS and SVM methodologies to forecast the Jakarta
Composite Index (JCI) to contribute to more informed
investment strategies.

Materials and Methods

Forecasting

Forecasting involves estimating future values based
on historical data, typically employing statistical and
computational methods. It is an essential tool in decision-
making processes, allowing for predicting future trends
using past observations. Time series analysis is widely
used among the various approaches, relying on historical
values and error patterns to predict future outcomes over
time (6).

Adaptive Neural-Based Fuzzy Inference System
(ANFIS)

ANFIS integrates fuzzy inference systems with
neural network architecture, leveraging the strengths of
both approaches. While fuzzy inference systems excel in
translating expert knowledge into rule-based models,
they often require significant effort to determine optimal
membership functions. Neural networks streamline this
process by automating the search for membership
functions, enhancing the applicability of ANFIS across
diverse fields (7). Assuming a Fuzzy inference system
with two inputs, x; , X, and single output Y., the first-
order Sugeno fuzzy model can be represented as follows:

ifx; =Aj;andx, = By, than f; = pi, + ¢y + 11

ifx; = Ay and x, = By, than f; = pyy + gz + 132

Here A; and B; are linguistic labels (e.g., low,
medium, high) represented by membership functions,
and pi, qi, and ri are consequent parameters.

Member Functions of ANFIS

Fuzzy set theory extends classical set theory by
allowing degrees of membership for elements. The
degree of membership, denoted by LA (x), quantifies how
much an element x belongs to a fuzzy set A (8).
Membership values are defined using functions such as:

1. Trapezoidal Membership Function:

( 0; x<a

11X —a

h—a as<x<b
f(x,a,b,c,d):{ 1, b<x<c

|d—x

d—c’ c<x<d

k 0; x>d

2. Generalized Bell Membership Function:
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3. Gaussian Membership Function:
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A Fuzzy Inference System (FIS) is a computational
framework grounded in Fuzzy set theory, utilizing Fuzzy
rules (in the form of IF-THEN statements) and Fuzzy
reasoning. The system receives a crisp input, which is
then processed by a knowledge base containing Fuzzy
rules in the IF-THEN format. The system evaluates the
"fire strength" for each rule. When multiple rules are
present, the system aggregates the outcomes of all the
rules. Finally, the aggregated results are defuzzified to
produce a crisp output value (9).

B(x,a,b,c,d) =

Architecture of ANFIS

The network architecture of the ANFIS method
consists of five layers, as illustrated in Figure 2 (10). The
ANFIS network comprises five layers, each with distinct
roles:

1. Fuzzification Layer: Calculates the degree of
membership for each input using membership functions.
The premise parameters are adapted in this layer.
Suppose x; = X; and x, = X,, the node function is
described by the following equation:

011 = pa, (X1)

INPUT

IF-THEN AGREGASI

01,2 = Ha, (X1)
01,3 = Up, (X2)
014 = Up, (X2)

2. Fuzzy Logic Operation Layer: Computes the
firing strength of rules using the product of input
memberships. The node function for this layer can be
described by the following equation:

031 =w; = HAi(Xl):uBi(XZ)

3. Normalization Layer: Normalizes the firing

strengths to ensure proportionality.
Wi
Xiw;

4. Defuzzification Layer: Calculates the weighted

output of each rule using consequent parameters.
04 = Wif; = Wi(Cin X1 + CiaXa + Cio)

5. Output Layer: Aggregates the results from all

rules to produce the final model output.
_ Ziwifi
05 Z Wl.fl Zi w;

Parameter estimation is performed using hybrid
learning, combining the Recursive Least Squares
Estimation (RLSE) for linear parameters and
Backpropagation for nonlinear parameters (17).

03 =w; =

Support Vector Machine (SVM)

SVM is a machine learning algorithm grounded in
statistical learning theory, suitable for classification and
regression tasks (11, 12). SVM maps input data into a

IF-THEN

l DEFUZZY

OuUTPUT

Figure 1. Fuzzy Inference System

Figure 2. Architecture of ANFIS
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high-dimensional feature space using kernel functions,
enabling the separation of non-linearly separable data.
The kernel trick transforms data into a higher-
dimensional space, facilitating linear separation (13).
Commonly used kernels include:
1. Linear Kernel:
K(x,z) =xTz
2. Sigmoid Kernel:
K(x,z) = tanh (y .xTz + 1)
3. Radial Basis Function (RBF) Kernel:
K(x,z) = exp {—M
’ 202
The optimal SVM parameters are typically identified
using a grid search algorithm, which systematically
evaluates combinations of parameters.

Performance Metrics for Model Evaluation

The accuracy of forecasting models is assessed using
the following metrics:

Root Mean Square Error (RMSE)

1
RMSE = <Z(yi }’i)>2
n

Lower RMSE values indicate better predictive
accuracy (14).

Mean Absolute Percentage error (MAPE)

e 1520 1 100%
MAPE = -

n
Lower MAPE values denote higher forecasting
precision (15).
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Results

This study utilizes a dataset comprising daily closing
prices of Jakarta Composite Index (JCI) shares over two
years, specifically from January 2, 2020 to December 29,
2023. The movement pattern of stock prices is highly
volatile and exhibits non-linear characteristics. To
address this, the research applies artificial intelligence
methods, including the Adaptive Neuro-Fuzzy Inference
System (ANFIS) and Support Vector Machine (SVM).
Before modeling, the dataset is divided into training and
testing subsets, as detailed in Tables 1 and 2.

Table 3 shows that the dataset consists of 974
observations of JCI stock prices collected during the
study period. The data is split so that 80% is allocated for
training, and 20% is reserved for testing. The training
data is utilized to build prediction models, which are
subsequently validated using the testing data to evaluate
their predictive performance.

ANFIS Training Process

The ANFIS model is implemented using MATLAB
software, with an error tolerance of zero and a maximum
of 20 epochs. Before the training process, the data is
normalized to 0 to 1 to enhance computational efficiency
and meet system requirements. The ANFIS model uses
the JCI stock closing price as the target variable and
includes six input variables derived from the prior six
days. Mathematically, the ANFIS model is expressed as:

Table 1. Training Data and Target Data

Data Training Data Target Data
1 Data from the 1% day to the 6 day Data from the 7" day
2 Data from the 2™ day to the 7™ day Data from the 8™ day
3 Data from the 3" day to the 8 day Data from the 9™ day
774 Data from the 768" day to the 773" day Data from the 774" day
Table 2. Dataset division
No Dataset division Period Number of Data
1. Training Data January 2, 2014 — March 6, 2023 780
2. Testing Data March 7, 2023 — December 29, 2023 194
Table 3. Nonlinear Parameters of Trapezoidal Function
Input a b c d
Input 1 mfl (A1) -0.7000 -0.3000 0.3032 0.6919
Input 1 mf2 (A2) 0.2536 0.6983 1.3000 1.7000
Input 2 mfl (B1) -0.7000 -0.3000 0.2986 0.6892
Input 6 mf2 (F2) 0.2879 0.6988 1.3000 1.7000
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Here X1, X,, X3, X4, Xsand X, represent the six input
variables.wwithh denotes the normalized. firing strength
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for rule,Cij,and i represent the linear parameters for rule
i.

In the ANFIS architecture, the first layer performs
fuzzification, transforming crisp values into Fuzzy
numbers based on membership functions, such as
Trapezoidal, Generalized Bell, and Gaussian. The
nonlinear parameters in the membership functions are
optimized using a backpropagation error method, as
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Table 4. Nonlinear Parameters of Generalized Bell Function

Input a b c

Input 1 mfl (A1) 0.4823 2.0050 -0.0036
Input 1 mf2 (A2) 0.4414 2.0005 1.0465
Input 2 mfl (B1) 0.4246 2.0113 -0.0250
Input 6 mf2 (F2) 0.4260 2.0132 1.0192

Table 5. Nonlinear Parameters of Gaussian Function

Input n o

Input 1 mfl (A1) 0.3614 -0.0213
Input 1 mf2 (A2) 0.3477 1.0324
Input 2 mfl (B1) 0.3641 -0.0187
Input 6 mf2 (F2) 0.3493 1.0255

illustrated in Tables 3-5. The mathematical
representations of the membership functions are as
follows:

a. Trapezoidal Membership Function:
Ba1(X1)

( 0, X, <—=0.7

| Jo 0N 0.7<X, <—-03

| Zo3—ory R
= { 1, —-0.3 <X, £0.3032

| (05505 -X) 5035 < x, < 0.6919

15.6919 —0.3032" ' e

( 0, X,>0.6919

b. Generalized Bell Membership
Function:
141 (X, 0.4823,2.0050, —0.0036)

1
B x = 0.0036y2] ***°
I+ [( 04823 ]
c. Gaussian Membership Function:

tia1(Xy,0.3614, —0.0213)
—(x — 0.3614)2
- exP( 2(0.0213)? )

The second layer computes the firing strength (ao-
predicate) using Zadeh's AND operator, combining the
membership degrees generated in the first layer. The step
produces 64 rules derived from 2°, representing all
possible combinations of inputs and membership
functions.

In the third layer, the firing strengths are normalized
by dividing each by the total sum of all firing strengths.
The normalized values are then defuzzified in the fourth
layer, where fuzzy outputs are converted to crisp values
using linear parameters optimized through the Least
Squares Estimation (LSE) method, Tables 6—8 present
detailed model parameters. The fifth and final layer
aggregates the outputs to generate the final predictions in
Table 9.

A comparison of membership functions is carried out
to find the best model with the following ANFIS best
model criteria comparison. Based on the goodness of
output model criteria in Table 10, the Generalized Bell
function in ANFIS performs best with the lowest MAPE
value of 0.4284. This function shows the highest relative
accuracy in forecasting stock prices compared to the
Gaussian and Trapezoidal functions. Therefore, the
ANFIS model with the Generalized Bell membership
function will be used for testing the Test Data.

SVM Training Process

SVM models are implemented using the el071
package in R Studio. This method transforms input data
into a high-dimensional feature space using kernel
functions, constructing an optimal hyperplane for
classification or regression. Initially, the SVM model
uses default parameters, resulting in predictions that
deviate significantly from the actual data, as shown in
Figure 4.

Parameter optimization is conducted using a grid
search method, testing combinations of parameters: € =
{0,0.1,0.2,...,1} , cost = {272,27%,..,2°} and
gamma = {2°28,..,22} . Cross-validation is
employed to evaluate model performance for each
parameter combination. The tested kernel functions are
the Radial Basis Function (RBF), linear, and sigmoid.
The linear kernel produces predictions closest to actual
data, as illustrated in Figure 5.

The linear kernel achieves the lowest Root Mean
Square Error (RMSE) compared to other kernels, with
optimal parameter values of cost=10cost=10. This kernel
is selected to forecast test data and predict future JCI
stock prices.

Discussion
Following the training data analysis using both
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Table 6. Linear Parameters of Trapezoidal Function

Input C1 Cz C3 C6 CO
Output mfl -0.1262 0.1866 -0.2717 0.8620 0.0656
Output mf2 -3.0476 -4.4460 1.1517 -0.7315 1.6118
Output mf3 0.5082 -10.7592 0.5622 -10.9661 2.7333
Output mf64 0.0305 -0.0868 -0.0596 0.9014 0.0273
Table 7. Linear Parameters of Generalized Bell Function
Input Cl Cz C3 CG Cg
Output mfl 0.4425 -0.0151 -0.9043 -0.4460 0.4707
Output mf2 -0.5735 -12.2232 3.5131 3.0817 1.8571
Output mf3 -7.0566 4.5672 6.7993 0.9636 -5.0750
Output mf64 -1.8858 0.7730 0.4699 0.6007 0.3415
Table 8. Linear Parameters of Gaussian Function
Input Cq C, C3 Ce Co
Output mfl 0.1104 -0.2049 -0.5585 -0.4439 0.4432
Output mf2 -2.7432 -12.6954 5.3103 -3.1770 4.4031
Output mf3 -2.5234 4.1647 2.6423 0.3907 -2.8141
Output mf64 -1.9919 1.2109 0.6571 0.5844 -0.0962
Table 9. Forecasting Result of ANFIS
Date Actual Gaussian Training Trapezoidal Generalized Bell
Data Output Training Output Training Output
1/10/2020 6274.941 6285.760 6282.905 6295.116
1/13/2020 6296.567 6253.760 6280.237 6251.545
1/14/2020 6325.406 6291.051 6299.900 6286.146
1/15/2020 6283.365 6310.446 6292.180 6304.323
12/29/2023 6807.001 6822.114 6819.001 6816.086

Table 10. Comparison of ANFIS Model Goodness Criteria

Member Functions MAPE RMSE
Trapezodial Function 0.6206 50.438
Generalized Bell Function 0.4284 37.637
Gaussian Funcstion 0.6520 52.153

Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Support Vector Machine (SVM) models, forecasting was
performed on the testing data to identify the most
effective approach for predicting JCI stock prices. In the
case of ANFIS, the model employed a Generalized Bell
membership function, which demonstrated strong
performance in the training phase. Conversely, the SVM
model utilized a linear kernel with a cost parameter set to
10, which was optimized during the grid search process.

To evaluate and compare the forecasting performance
of both models on the testing data, accuracy metrics,
including Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE), were calculated and
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are presented in Table 11. ANFIS achieved a MAPE of
0.4647 and an RMSE of 39.894, whereas SVM
outperformed ANFIS with a MAPE of 0.4516 and an
RMSE 0f 36.728. These results clearly indicate that SVM
offers superior accuracy and predictive power for
forecasting JCI stock prices compared to ANFIS.

As shown in Figure 6 and Table 12, the SVM model’s
predictions are noticeably closer to the actual stock prices
than the ANFIS model’s. The graphical representation
further underscores the conclusion that the SVM method
provides more accurate and reliable predictions for the
Jakarta Composite Index (JCI) stock prices than the
ANFIS model.
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Table 11. Comparison of SVM model goodness criteria

Kernel MAPE RMSE
Radial Basic Function 0.7851 64.483
Sigmoid 0.7789 63.893
Linear 0.7787 63.564

Table 12. Comparison of ANFIS and SVM Forecasting Results

Time Actual Data ANFIS SVM

27-Mar-2023 6628.137 6657.343 6667.709
28-Mar-2023 6565.728 6628.467 6658.872
29-Mar-2023 6678.237 6564.476 6574.031
30-Mar-2023 6612.490 6663.021 6675.338
31-Mar-2023 6691.611 6628.246 6607.709
3-Apr-2023 6762.254 6698.378 6696.484
4-Apr-2023 6708.933 6766.400 6727.627
5-Apr-2023 6760.328 6724.016 6719.136
6-Apr-2023 6839.436 6772.216 6759.006
15-Mar-2023 6808.951 6833.755 6811.873
16-Mar-2023 6805.277 6818.610 6812.346
17-Mar-2023 6827.175 6819.812 6814.796
20-Mar-2023 6833.178 6826.516 6820.83
29-Dec-2023 7272.797 7288.872 7302.981

Actual ANFIS == SVM

Figure 6. Anfis And Svm Forecasting Result Graphs

This outcome suggests that SVM can effectively
optimize hyperparameters using kernel methods and is
better suited for capturing the non-linear patterns
inherent in stock price data. Meanwhile, although ANFIS
showed reasonable performance, SVM outperformed it
in terms of both MAPE and RMSE, highlighting the
advantage of SVM in this particular forecasting context.
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Abstract

This survey investigates some developments in the second-order characterization of
generalized convex functions using the coderivative of subdifferential mapping. More
precisely, it presents the second-order characterization for quasiconvex, pseudoconvex
and invex functions. Furthermore, it gives some applications of the second-order
subdifferentials in optimization problems such as constrained and unconstrained

nonlinear programming.
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Introduction

Second-order subdifferentials and their application in
the optimization and characterization of various kinds of
convexity have attracted the attention of the literature. It
is well known that the second-order differential of a twice
continuously differentiable function g:R"™ - R is
convex if and only if V2g (its Hessian matrix) is positive
semidefinite and g is strictly convex when Vg is
positive definite everywhere.

This result is true even in normed spaces:

Theorem 1.1 (Flett, 1980) Let X be a real normed
space and let g: X — R be a twice Fréchet differentiable
function, then g is convex if and only if d?g(x)(y)? = 0
forall x,y € X.

Convex functions and their generalizations have
many applications in optimization, economy, control
theory and several other sciences; thus the

Regular second-order

characterization of convex functions is fundamental and
useful. We know that when a C? function g: R® -» R
attains its minimum at X, its Hessian is positive
semidefinite and conversely, the positive definiteness of
its Hessian is sufficient for g to reach its minimum at x
when (Vg)(x) = 0. Indeed the strict local convexity of g
guaranteed by positive definiteness of V2g(x). Some
authors have studied the characterization of convex
functions and their generalizations by their
subdifferentials. Also, the second-order optimality
conditions have received much attention in optimization
theory, in recent years; see (1,2,3) for example.

Theorem 1.2 (4, Rockafellar 1970) The maximal
monotonicity of Fréchet subdifferential of a lower
semicontinuous function is a necessary and sufficient
condition for its convexity.

Characterization of generalized convex functions by
second-order subdifferentials can be more useful,
especially in optimization.

* Corresponding Author: Tel: +989394520191; Email: mt nadi@yahoo.com
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Second-order characterization of convex functions by
generalized second-order directional derivatives have
studied by some authors.

The upper Dini-directional derivative of g at x € X
in direction v € X is defined as an element of R by

gi(xv) = limsup 1 (g(x + tv) — g(x)). (1

The second-order upper Dini-directional derivative
of g at x € X in direction v € X for which g', (x; v) is
defined by

g, (x;v) = limlsup 2t72(g(x+ tv) —g(x) —

tlo
tg'+ (% V). 2

In the case of an infinite g', (x; v), the derivative

4. (x; v) will not be considered.

Theorem 1.3 (5, Ginchev and Ivanov 2003) Let
g:X - Rbe u.s.c. Then gis convex on X if and only if
the following Conditions (C;) and (C,) hold for each
X, u € X:

C)g+(xv)+g(x—v) =0,

if the expression on the left-hand side has the
sense
(€85 +EL (61 =0,
g,(x;u) = 0.

implies  that

Example 1.1 The function g(x) = —|x|,x € R,
satisfies the equality g, (x;v) = 0 for all x,v € R. It is
continuous, but not convex. Obviously, g',(x;v) +

g —v) =-2.

Example 1.2 The function g: R — R defined as
g(x) = {XZ, if x is rational ;
0, otherwise

satisfies conditions (C;) and (C,), but g is not
convex. This function is not u.s.c.

Some other authors used the second-order Fréchet
(Second-order regular subdifferentials) and
Mordukhovich (limiting) subdifferentials defined by the
coderivative of the subdifferential mappings. See (6,7)
for the following definitions and more details.

Let X be a Banach space endowed with a norm ||. ||
, X ™ its dual space, X** its second dual space and (., .) be
the dual pairing between X and X*. For a set-valued
mapping T: X 3 Y between Banach spaces, we define
the effective domain and the graph of T by

domT = {x € X:T(x) # 0}, gphT ={(xy)
eEXXY:yeTx)}

The sequential Painlevé-Kuratowski upper limit of T
at x in the topology of Y is defined by

limsup,_T(x) = {y € Y:3 sequences x;, —

X,y =y withy, € T(xy), Vk =
1,2,...}

M. T. Nadi and J. Zafarani.
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Given € 2 0 and Q S X, the € — normals to Q at
X € cl(Q) is defined by
(x*

Ne(xQ):={x"€X .llr)r{lgs;p TEE

where the symbol x 2 X means that x - X with x €
Q. When ¢ = 0, the set Ny (%, ) = N(%, Q) is named the
prenormal cone or Fréchet normal to () at X.

The limiting or Mordukhovich normal cone to () at X
is

N(X; Q): = limsupN,(x; ),
x-X,el0

where the sequential Painlevé-Kuratowski upper
limit is taking in the weak™ topology of X*. When X is
an Asplund Banach space and Q is closed, we can put
e=0.

Definition 1.1 (6) The Fréchet or regular coderivative
of T at (X,¥) is
D'TE NG = {x" eX: (X", —y")
€N((%¥),gph T)} vy* € Y".
The limiting or Mordukhovich coderivative of T at
& y)is
D'TE PG = X" €X": (x',—y")
. EN(®¥),gphT)} Vy* €Y".
ie.,
D'TE (") = {x" € X": g 1 0, (xi, y10)
with (X, —yi) € Ne, (X yi), gph T) as k — oo}

Definition 1.2 (6) The mixed coderivative of T at
&y is
DMTE P = {x* € X" 3 4 0, (X Yio Vid)
> &7,y).x - X’
with (xj, —y7) € N, (0710, gph T) as k — o).

Definition 1.3 (6) A single-valued mapping g: X - Y
is said to be strictly differentiable at X if there is a linear
continuous operator Vg(x): X — Y such that

i 8% 8w — (Ve®),u = x) _

U,x-% Ix—ull

0.

When g is single-valued and strictly differentiable at
X or continuously differentiable around x, with the
adjoint operator Vg(x)*:Y* — X*, we have
D*g®)(y") = D'g®)(y") = {Vg(X)'y"} forally” €
Y™
Let g X > R =[—o0,+] be an extended real-
valued function. We define
domg = {x € X: [§()]| < o0} and epi(g) = {(x, W)
€EXXR):p=gx)}
The Fréchet subdifferential or presubdifferential of g
at X € dom g is defined by



Second-ordered Characterization of Generalized Convex Functions and Their Applications in ...

dg(®) = {x X" (x',~1) € N((%, g(®)), epi £)}

and the basic or Mordukhovich limiting
subdifferential is defined by

0g(%) = {x" € X": (", ~1) € N((% (X)), epi £)}.

For X ¢ dom f, we put dg(x) = dg(x) = @. Also,
g is said to be lower regular at ¥ if dg (%) = dg(%).

Definition 1.4 (6) Let g: X — R be a function and its
value at X is finite,
(i) For any y € dg(X), the mapping 8%g(%,): X** =3
X* with the values
9’gXY)(v) = (D" 9g) (X, F)(V), (v € X™),
is called the limiting or Mordukhovich second-order
subdifferential of g at X relative to y.
(i) For any § € 0g(X), the mapping 9%g(X, §): X** =
X* with the values
0%g(x,y)(v) = (D" 9g) (X, 9)(v), (v € X™),
is called the Fréchet second-order subdifferential of g
at X relative to y.
(iii) For any ¥E€dg®),
0%g(x,¥): X** = X* with the values
0’gXY)(v) = (D" 9g) X, F)(V), (v EX™),
is called the Combined second-order subdifferential
of g at X relative to y.
(iv) For any yedgx) ,
0%8(X, ¥): X** 3 X* with the values
8% 7)(V) = (Di 09X T)(V), (v E X™),
is called the mixed second-order subdifferential of g
at X relative to y. When the function g is C? around X and
v € X**, we have
82g(0)(v) = 028D (v) = Bg®(V) = IR ()
= {(V’g(®)'v},
where (V2g(X))* is the adjoint operator of the
Hessian V2g(X).

the  mapping

the  mapping

Definition 1.5 (PSD) holds for g:X — R, in the
Fréchet sense, when (z,v) = 0 forevery v € X* and z €
9%g(x,y)(v) with (x,y) € gph dg.

When (z,v) > 0 whenever v # 0, (PD) holds in the
Fréchet sense for g.

Also, (PSD) holds in the limiting sense, when (z, v) >
0 for every v € X** and z € 9%g(x,y)(v) with (x,y) €
gphog.

When (z, v) > 0 whenever v # 0, (PD) holds in the
limiting sense for g.

Chieu and Huy considered these cases and extended
those results for the class of C! functions g: X - R,
where X is a Hilbert space or an Asplund space.

Theorem 1.4 (8, Chieu, Huy 2011) Let g: X - Rbe a
C! function and X be an Asplund space. Then g is convex
if the following condition holds:
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(z,v) = 0 forall v € X**,z € 9%g(x,y) (v)with (x,y)
€ gph dg.

Results

Definition 2.1 A proper subdifferentials and their
application in the optimization and characterization of
various kinds of convexity have attracted the attention of
the literature. It is well known that the second-order
differential of a twice continuously differentiable
function g: R™ - R is convex if and only if V2g (its
Hessian matrix) is positive semidefinite and g is strictly
convex when V2g is positive definite everywhere.

This result is true even in normed spaces:

Theorem 1.1 (Flett, 1980) Let X be a real normed
space and let g: X — R be a twice Fréchet differentiable
function, then g is convex if and only if d?g(x)(y)? = 0
forall x,y € X.

Convex functions and their generalizations have
many applications in optimization, economy, control
theory and several other sciences; thus the
characterization of convex functions is fundamental and
useful. We know that when a C? function g: R" » R
attains its minimum at x, its Hessian is positive
semidefinite and conversely, the positive definiteness of
its Hessian is sufficient for g to reach its minimum at x
when (Vg)(x) = 0. Indeed the strict local convexity of g
guaranteed by positive definiteness of V2g(x). Some
authors have studied the characterization of convex
functions and their generalizations by their
subdifferentials. Also, the second-order optimality
conditions have received much attention in optimization
theory, in recent years; see (1,2,3) for example.

Theorem 1.2 (4, Rockafellar 1970) The maximal
monotonicity of Fréchet subdifferential of a lower
semicontinuous function is a necessary and sufficient
condition for its convexity.

Characterization of generalized convex functions by
second-order subdifferentials can be more useful,
especially in optimization.

Second-order characterization of convex functions by
generalized second-order directional derivatives have
studied by some authors.

The upper Dini-directional derivative of g at x € X
in direction v € X is defined as an element of R by

g.(xv) = limsup t (g(x + tv) — g(x)). (1

The second-order upper Dini-directional derivative
of g at x € X in direction v € X for which g', (x; v) is
defined by

g (xv) = limlsup 2t2(g(x + tv) — g(x) —

tlo
tg'+ (x; V). 2
In the case of an infinite g', (x;v), the derivative
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g (x; v) will not be considered.

Theorem 1.3 (5, Ginchev and Ivanov 2003) Let
g:X = Rbe us.c. Then gis convex on X if and only if
the following Conditions (C;) and (C;) hold for each
X,u € X:

Cg+xv) +g+(x-v) =0,

if the expression on the left-hand side has the
sense
(€8 V) +EL () =0,
g.(x;u) = 0.

implies  that

Example 1.1 The function g(x) = —|x|,x € R,
satisfies the equality g (x;v) = 0 for all x,v € R. It is
continuous, but not convex. Obviously, g’ (x;v) +

g+(x—v) = -2

Example 1.2 The function g: R — R defined as
g(x) = {xz, if x is rational ;
0, otherwise
satisfies conditions (C;) and (C,), but g is not
convex. This function is not u.s.c.

Some other authors used the second-order Fréchet
(Second-order regular subdifferentials) and
Mordukhovich (limiting) subdifferentials defined by the
coderivative of the subdifferential mappings. See (6,7)
for the following definitions and more details.

Let X be a Banach space endowed with a norm ||. ||
,X* its dual space, X** its second dual space and (., .) be
the dual pairing between X and X*. For a set-valued
mapping T: X 3 Y between Banach spaces, we define
the effective domain and the graph of T by

domT ={x € X:T(x) # @}, gphT ={(x,y)

EXXY:yeT()}

The sequential Painlevé-Kuratowski upper limit of T
at x in the topology of Y is defined by

limsup,_zT (x) = {y € Y:3 sequences x;, —

X,y —y withy, € T(xy), Vk =
12,...}

Given € > 0 and Q € X, the € —normals to Q at

X € cl(Q) is defined by
(x*,x — X)

N.(%; Q): = {x* € X*:1i —<
X Q)= {x msup S

&},
o X—X
where the symbol x — X means that x — X with x €
Q. When ¢ = 0, the set Ny (%, Q) = N(%, Q) is named the
prenormal cone or Fréchet normal to () at X.
The limiting or Mordukhovich normal cone to ) at X
is
N(X; Q): = limsupN,(x; ),
x-X,el0
where the sequential Painlevé-Kuratowski upper
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limit is taking in the weak™ topology of X*. When X is
an Asplund Banach space and Q is closed, we can put
e=0.

Definition 1.1 (6) The Fréchet or regular coderivative
of T at (X,y) is
DTENEY) = {x" € X (x',—y")
€ N((X¥),gph T)} Vy* € Y™
The limiting or Mordukhovich coderivative of T at
&) is
D'TE YY) = {x" € X" (x",—y")
4 € N((X,¥),gph T)} Vy* € Y™
ie.,
DTE YY) = {x" € X3 4 0, (X Y1)
w
2 ED ey = &y
with (X, —yi) € Ne, (X, yi), gph T) as k — oo}

Definition 1.2 (6) The mixed coderivative of T at
&y is
DHTE ") = (x° € X 3y L 0, (540 o i)
> (& T,y X o X
with (xj, =) € Ney ((xio 10, gph T) as k — oo},

Definition 1.3 (6) A single-valued mapping g: X —» Y
is said to be strictly differentiable at ¥ if there is a linear
continuous operator Vg (x): X = Y such that

90— 9w — (Vg u—x) _

) 0.
ux—- X Fx—ull

When g is single-valued and strictly differentiable at
X or continuously differentiable around Xx , with the
adjoint operator Vg(x)*:Y* — X*, we have
D*g(®)(y") = D*"g(x)(y") = {Vg(x)"y"} forall y*
EY™
Let g:X > R =[—o,+m] be an extended real-
valued function. We define
domg = {x € X:|g(x)| < %} and epi(g) = {(x, 1)
EAXxR):u=gx)}
The Fréchet subdifferential or presubdifferential of g
at X € dom g is defined by
dg(x) = {x" € X": (x*,—1) € N((%, g(%)), epi 9)}
and the basic or Mordukhovich limiting
subdifferential is defined by
dg(x) = {x" € X: (x",—1) € N((%, f (X)), epi g)}-
For X € dom f, we put dg(x) = dg(x) = @. Also,
g is said to be lower regular at ¥ if dg (%) = dg(%).

Definition 1.4 (6) Let g: X — R be a function and its
value at X is finite,

(i) For any ¥y €adg(x)
0%g(x,y): X™* = X* with the values

, the mapping
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029 (%, y)(v) = (D"3g) (%, ) (v), (v € X™),
is called the limiting or Mordukhovich second-order
subdifferential of g at x relative to y.
(ii) For any y€dg(®) ,
0%2g(%,7): X** = X* with the values
929, y)(v) = (D"0g) (%, y)(v), (v € X™),
is called the Fréchet second-order subdifferential of g
at X relative to y.
(iti) For any ye€adg(x) ,
02g(%,7): X** 3 X* with the values
329(%, 7)) = (D*09) (% ) (v), (v € X™),
is called the Combined second-order subdifferential
of g at x relative to y.

(iv) For any yedg(x) ,
049(x,%): X** 3 X* with the values
07,9, 7)(v) = (Dydg) (% M), (v € X*),

is called the mixed second-order subdifferential of g
at x relative to y. When the function g is C? around X
and v € X™*, we have
829(2)(v) = 02g(DH(V) = A g(B) (V) = F2g(D) (W)
= {(V2g(x))"v},
where (V2g(%))* is the adjoint operator of the
Hessian V2g(X).

the mapping

the  mapping

the mapping

Definition 1.5 (PSD) holds for g:X — R, in the
Fréchet sense, when (z,v) = 0 forevery v € X** and z €
9%g(x,y)(v) with (x,y) € gph dg.

When (z,v) > 0 whenever v # 0, (PD) holds in the
Fréchet sense for g.

Also, (PSD) holds in the limiting sense, when (z, v) >
0 for every v € X** and z € 9%g(x,y)(v) with (x,y) €
gphog.

When (z, v) > 0 whenever v # 0, (PD) holds in the
limiting sense for g.

Chieu and Huy considered these cases and extended
those results for the class of C! functions g: X - R,
where X is a Hilbert space or an Asplund space.

Theorem 1.4 (8, Chieu, Huy 2011) Let g: X - Rbe a
C! function and X be an Asplund space. Then g is convex
if the following condition holds:
(z,v) = 0 forall v € X**,z € 9%g(x,y) (v)with (x,y)
€ gph dg.

Convex case

The following questions were raised (8, Chieu, Huy
2011):

1. Is it true that, for any Fréchet differentiable

function g: X — R, PSD implies convexity?

2. Which class of locally Lipschitz functions does
PSD, imply the convexity of the corresponding function?

3. How to extend the characterizations to a general
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Banach setting?

We proved in (11), that (PSD) holds for any function
g:X — R, defined on an arbitrary Banach space, where
g is a lower semicontinuous strongly convex.

Theorem 2 .1 (11, Nadi, Yao, Zafarani) Let X be a
Banach space and g: X — R be a lower semicontinuous
strongly convex function. Then (PSD) holds.

The foregoing result also holds when we replace
second-order Fréchet coderivative with mixed second-
order coderivative:

Corollary 2.1 (11, Nadi, Yao, Zafarani) Let X be a
Banach space and g:X — R be a lower semicontinuous
strongly convex function. Then (PSD) holds in the mixed
second-order sense, that is

(z,v) 2 0 foranyv € X and z € Dy; 0g(X, ¥) (V) =
g& (V).

Also, (PSD) guarantees the convexity of g:X - R
for some classes of functions. For example, (PSD)
guarantees convexity for the class of continuously
differentiable functions ( C! functions) defined on
Asplund spaces. Theorem 2.1 of (8, Chieu, Huy, 2011)
and (PSD) imply convexity of lower-C? functions on R™
(12, Theorem 4.1). In the following, we illustrate that
(PSD) is not a sufficient condition for convexity, when
the function is differentiable at a point.

Example 2.1 (11, Nadi, Yao, Zafarani) Consider the
function g: R — R as follows:

x €101 —<x<-,neN

nz’ n+
gx) =40, x<0
2, x>1,

It is clear that g is differentiable at zero, but is not
convex. Also, by an easy calculation, we can show that
(PSD) holds for g.

In the following theorem, we showed that (PD)
guarantees the convexity of g:X - R when g is
differentiable on X and g is non-empty on X.

We proved it for X = R and afterwards for Banach
spaces.

Theorem 2.2 (11, Nadi, Yao, Zafarani) Let g: R - R
be a differentiable function and (PSD) holds in the
Fréchet sense and dg’ be nonempty on R. Then g is
convex.

We concluded the following corollary for g on
Banach spaces by using the above argument. For
arbitrary a,v€X, g:X—>R and s€R, define
9av(s) = g(a + sv). We know that g is convex on X if
and only if g,, is convex on R for any a,v € X; See,
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(13) for more details.

Corollary 2.2 Let g:X—> R be a differentiable
function on X, (D*Vg)(x) (V) be non empty for any X,v €
X and (zv)=0 for every x,vEX and zE€
(D*Vg)(x) (V). Then g is convex.

Corollary 2.3 Let g:X—> R be a differentiable
function on X, (D*Vg)(x)(v) be non empty for any x,v €
X and (zv)=0 for every x,vEX and zE€
(D*Vg)(x)(v) or z € (D} Vg) (x)(v). Then g is convex.

We concluded that (PSD) and differentiability, imply
the continuity of differential mapping.

Corollary 2.4 Let g: X — R be differentiable on X
and D*(Vg)(x)(v) be non-empty for any x,v € X. If
(PSD) holds in the Fréchet sense, then g is of class C1.

Theorem 2.3 (14, Nadi, Zafarani) Let g: X - Rbe a
locally Lipschitz approximately convex function and X
be an Asplund Banach space. Then g is convex, if (PSD)
holds in the regular sense:

(z,v) = 0,vv € X and z € 9%g(x,y)(v) with (x,y)
€ gph dg

Theorem 2.4 (15, Nadi, Zafarani) Let g: X - Rbe a
lower semicontinuous approximately convex function, X
be an Asplund space and (PSD) holds. Then g is convex.

For X = R", two classes of lower-C* functions and
lower semicontinuous approximately convex functions
are the same (16, Daniilidis, Georgiev, 2004). The class
of lower- C! functions was initially introduced by
Spingarn (1981) and afterwards, the smaller class of
lower- C¥ functions was introduced in 1982 by
Rockafellar. The function g: R™ — R is said to be lower-
C* for (k € N) if, for each x € R", there exists a
neighbourhood of X as V such that g has the
representation

g(x) = maxg(x),

where the index set S is compact, the functions g
are of class C¥ on V, and g,(x) and all of the partial
derivatives of the functions g, of order k are jointly
continuous on (s, x).

Definition 2.4 We say that a locally Lipschitz
function g:X — R is directionally Clarke regular (d-
regular) at z if, for every v € X, the Clarke directional
derivative of g at z in the direction v coincides with
d~g(z,v), where

d7g(z,v): = liminf—g(Z ) g(z).
t—-0% t

Remark 2.1 The above Theorem is the lower-C*!
version of Theorem 4.1 (12, Chieu, Lee, Mordukhovich,
Nghia, 2016). We know that in finite dimensional spaces,
a lower- C' function g is approximately convex and
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locally Lipschitz (16, Daniilidis, Georgiev, 2004). Also,
we answer question 2 posed in (8, Chieu, Huy, 2011) by
this result. By a similar proof, we concluded that (PSD)
holds for d-regular and semismooth functions defined on
X =R"

We show by the following example that in the
foregoing theorem, approximate convexity is essential. It
means that, the class which was asked in question 2 of (8,
Chieu, Huy, 2011) is approximately convex functions
(the class of lower-C* functions when the space is finite-
dimensional). We show that the following function which
is Lipschitz and was given in (8, Chieu, Huy, 2011),
theorem 4.2, is not approximately convex (lower-C1).

Example 2.2 (15, Nadi, Zafarani) For all x € R;
define

gx) =/ OX Xg(t)dt, where E is a subset of R which is
measurable and the intersection of both E and its
complement with each nonempty open interval of R has
positive Lebesgue measure. The function g is Lipschitz,
and (PSD) holds but it is not convex.

Corollary 2.5 (15, Nadi, Zafarani) Let g: X - Rbe a
lower semicontinuous approximately convex function
and X be a Hilbert space. Then the function g is strongly
convex (with modulus x > 0) if and only if

(z,v)y=xllvi?VveXandz€E

9%g(x,y)(v) with (x,y) € gph dg. 3)

Convex mappings

We assume that the spaces X and Y are Banach
spaces and X is reflexive, K C Y is a closed convex and
pointed cone (K N —K = 0) and K™ is the positive dual
cone of K; that is K* = {y* € Y*:y*(k) = 0,forall k €
K}.

Definition 2.5 Let g:X — Y be a vector valued
function. g is K-convex on X if for any x4,x, € X and
A€[0,1],

g8(Ax; + (1 = M)xz) =k Ag(x1) + (1 = D)g(x2).

Theorem 2.5 (15, Nadi, Zafarani) Let g:X — Y be a
C* mapping. If (PSD) holds in the limiting sense, then g
is K-convex.

Also, the converse holds for twice continuously
differentiable case:

Theorem 2.6 (15, Nadi, Zafarani) Let Y and X be
Banach spaces and g: X - Y be a C? mapping. Then
(PSD) holds if and only if g is K-convex.

The following example illustrates the foregoing
theorem.
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Example 2.3 (15, Nadi, Zafarani) Consider g: R? —
R? with g(z) = g(z1,2,) = (2% + 22,22 + z;) and C =
{(z1,2,) € R*: 2,2z, > 0and z, < z,}. Then g is a C-
convex mapping, twice continuously differentiable and
(PSD) holds because for every z = (z;,z,) and v =
(v1,v,) € R? we have:

Vig(2)(v) = 21, ((1) 8) + 20, (8 é) + 20, ((1) 8)

= ")

But this means that

2v2 + 203
v12+ 1JZ)EC.
2vg

V9@ =

Quasi convex functions

Characterization ~ of  pseudoconvexity = and
quasiconvexity by their second-order subdifferentials
and their applications are studied in the literature. For
twice differentiable pseudoconvex and quasiconvex
functions g:C S R" >R , where Vg is locally
Lipschitz, the second-order characterization has been
extended by (13, Crouziex and Ferland, 1996).

Given a normed linear space X and a convex subset
K of X, a function g: K — R is called

(1) quasiconvex on K, where for every x,y € K and
t €]0,1],

g(x + t(y — X)) < max{g(x), 8(y)},

or equivalently where its level sets (Lev,g) are
convex, i.e.,

for every a ER, Leveg=:{x €Kig(x) < a} is
convex,

(i1) pseudoconvex on K if for every x,y € K, x # y
and x* € dg(x),

Xy —x) = 0= g(y) = gX.

Definition 2.6 [(14), Nadi, Zafarani] Let X be a
Banach space and F:X 3 X* be a set-valued mapping
and, for every X € X and v € X**, define:

D,F(X v): = sup{(z,v):z € D'F(x,y)(V),x > X,y
_ >3,y € FGO}.

D_FX v):=inf{(z,v):z € D'FX,y)(V),x 2> Xy =V, ¥
€ F®)}

Here we mention a result for the quasiconvex case:

Theorem 2.7 (14, Nadi, Zafarani) Let g: X — Rbe a
locally Lipschitz function. If the following assertions
hold for every X,u € X:

(1) @uX) = inf{{y,v):y € 0.g(X)} = 0 implies that
D, 9:8(% V) > 0;

(i) @u(®) =0, D;d.g(%v)=0,D_0.gXVv)<0

273

and (yg v) > 0 (for some t < 0 and y; € d.g(X+ tv)),
implies that there exists £ > 0 such that (y,,v) > 0 for
every t € [0,] and y, € 3.g(X + tv).

(iii) g is approximately convex.

Then g is quasiconvex.

Example 2.4 (14, Nadi, Zafarani) Consider the
function g: S = {z: 1 z lI< %} C R? > R defined as
8(z1,2;) =f(z) = =l z I> +ll z II.
It is easy to see that g is continuously differentiable
on S\{(0,0)}. Also, the Clarke subdifferential at (0,0) is

For every 0# v € R?, we have inf{{y,v):y €
0.2((0,0))} <0, because the closed unit ball is a
balanced subset of R2. Therefore, clearly (i) holds.

For (ii), assume that v # (0,0) is arbitrary. Now, an
easy calculation shows that

(Vg(tv),v) = (v§ + v5) (-2t + ) >0,

vZ + v2
1
for every t € [0,f] with &= 2(v# +v3)72, which
means that (ii) holds.

Pseudo convex functions

A similar result holds for the pseudoconvex case:

Theorem 2.8 (14, Nadi, Zafarani) Let g: X - Rbe a
locally Lipschitz function. Suppose that the following
conditions hold for every X,v € X:

(1) @yX) = inf{{y,v):y € 0.g(X)} = 0 implies that
D, 9:8(% V) > 0;

(i) @y (X) = 0, D, d.g(X,v) = 0and D_d.g(%,v) <
0, implies that: there exists t > 0 such that (y,, u) > 0
for every t € [0,f] and y, € 9.f(X + tu).

(iii) g is approximately convex.

Then g is pseudoconvex.

For the case of strictly pseudoconvex functions, the
following result is interesting:

Theorem 2.9 (17, Khanh Phat 2020) Let g: R" - R
be a C1*-smooth function satisfying

x € R, v € R"\{0},(Vg(x),v) = 0,= (z,v)
> 0, for all z € 02g(x)(v).

Then g is a strictly pseudoconvex function.

Also, for the case of strictly quasiconvex functions,
the following result is interesting:

Theorem 2.10 (17, Khanh Phat 2020) Let g: R" —
R be a C11-smooth function satisfying

x € R", v € R"\{0},(Vg(x),v) = 0,= (z,V)

> 0,for all z
€ 0%g() (V) U — 0*g(x) (V).

Then g is a strictly quasicoconvex function.

Invex function

In recent years, the mathematical landscape has
witnessed numerous extensions and generalizations of
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classical convexity, particularly through the invex
functions by Hanson in 1981(18). This pivotal
advancement sparked a wave that has substantially
enriched the applications of invexity within nonlinear
optimization and related fields. Notably, Hanson
demonstrated that the Kuhn-Tucker conditions, which
are fundamental in optimization theory, serve as
sufficient criteria for optimality when dealing with invex
functions. This revelation has prompted further
exploration into the properties and applications of
generalized convexity.

Definition 2.7 A set C is said to be invex with respect
ton: X X X —» X, when forany x,y € Cand 0 <A <1,

y+M(xy) €C.

Definition 2.8 A vector valued function n: X X X — X
is said to be skew, if
nxy) +n(y,x) =0, forany x,y € X.
The following assumptions are frequently used in the
literature:
ASSUMPTION A: Let C be an invex set with respect
ton, and g: C = R. Then

g(y +n(x,y)) < g(x) forany x,y € C.

ASSUMPTION C: Letn: X X X — X. Then, for any
x,y € X and for any § € [0,1],
N,y + amxy)) = —énxy),
ne,y +amCxy)) =1 - Inlxy)

Definition 2.9 A differentiable function g: X — R is
said to be invex with respect to 1, if for any x,y € C, one
has

(Ve nxy)) < g(x) — 8-

Definition 2.10 A locally Lipschitz function g: C S
X — R s called invex with respect to 1, if for any x,y €
C and any & € dg(x), one has

EnxY)) < g —g).

Remark 2.2 Note that, in the above definitions by
letting N(x,y) = x —y, we reduce to the convex case.
Indeed, invex functions reduce to convex functions, and
invex sets, to convex sets.

Proposition 2.1 (19, Nadi, Zafarani) Let g: R" - R
be an invex function with respect to a skew n: R™ X
R" - R", be twice differentiable at x € R" and n(.,x)
be differentiable at x. Then (n, (%, x)v, D?g(x)v) = 0 for
any v € R".

Theorem 2.11 (19, Nadi, Zafarani) Suppose that
g:R" - R is C1, invex function with respect to a skew
n:R" X R" —» R", where 1 is differentiable in the first
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argument at X and continuous. Then (1, (X, x)v,x*v) = 0,
for any v € R" and x* € dg’(x).

Remark 2.3 The above results are the natural
extensions of the convex case. In fact, by replacing
n(x,y) with x —y, we have the classical form of Hessian.

In the following example, we show that sometimes
characterizing the invexity of a function by the second-
order condition is easier than using the first order
condition.

Example 2.4 (19, Nadi, Zafarani) Consider the
following C*?! function g: R - R,
—x% +x,
g() =1x% +x,

x<0
x> 0.

Consider, also nxy)=x3>—y3 An easy
calculation implies that
-2, x<0
s M{[-22]), x=0
9800 =13 x>0,

which means that (n,(x,x)v,x*v) = 3x2x* < 0, by
letting x = —1 and any arbitrary v € R.

Theorem 2.12 (19, Nadi, Zafarani) Let g: R™ — R be
a twice differentiable function, g and n satisfy
Assumptions A and C, n(.,y) be onto forany y € R" and
skew. If (n(x,x)v,V2g(x)v) = 0, for any x,v € R?,
then g is invex with respect to 1.

Optimization
Consider the nonlinear programming (NLP) as
follows, with C! data (f,gi:X—> R for 1 <i<n are
continuously differentiable):
minimize f(x) subject to
gi(x)=0, fori€E and g;(x) <0 fori €],
Where for the constrains, E:= {1,...,n;} and I: =
{n; +1,...,n; + n,} are finite index sets and n: = n; +
n,. The point x is called a feasible point of the foregoing
(NLP) problem if
x€lN={yeX:gi(y) =0fori€Eandg;(y) <0fori
el}
Also, the classical Lagrange function is:
L(xA): = f(x) + (A, g)(x), for x € X and A € RL

When X is a solution for (NLP), the first order
necessary condition is that there exist A; fori = 1,...n,
which are said to be the Lagrange multipliers, with
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)\lgl(i) =0 (fOI'i
n
=1,...,n) and VER) + Z AVeEi(R)
i=1

=0
and the standard second-order sufficient condition
(SSOSC) is that there exists k > 0 such that
VELED)(v,v) 2kl vI? withA = ,...,A) (4)
for all v € X, with (Vg;(%),v) = 0 fori € EUI*(})
and (Vg;(%),v) < 0 fori € I°(X), where
T ={i€l:;>0} and I°A) = {i € I: ;; = 0}.

Also, when X is finite-dimensional, we can change
the inequality (4) as follows:
VLA (v,v) >0 withA = (A,,..., A). 3)
Indeed, when X is finite-dimensional, the second-
order sufficient condition implies optimality of X (the
critical point) for Lagrange multipliers A, when V2L(X, 1)
is positive definite on the critical cone of (NLP) at (X, 7\) ;
it means that
C® = v (Vgi®,v)
= 0 for I*(A) U E and (Vg;(X), v)
< 0fori€I°Q)}.
We continue with the following second-order
sufficient condition for optimality of a KKT-point of
(NLP). In the following, X is a reflexive Banach space.

Theorem 3.1 (20, Nadi, Zafarani) (Point-based
sufficient condition) Assume the foregoing stated (NLP)
problem with Z € T' a KKT-point of (NLP) and Lagrange
multipliers A. Suppose that the second-order condition
holds:

D_VL(ZA,v) >0 forall v € C(Z)\{0}.

Then Z is a strictly local minimum for (NLP).

In condition (6), we use the coderivative of the
differential mapping and it is more efficient than the other
similar second-order optimality conditions which have
been introduced by the various kinds of generalized
second-order directional derivatives. As illustrated by the
following example, the following theorem due to (21,
Ben-Tal and Zowe) and its constrained version can not
be used for the C? data case.

Let g: R™ — R be differentiable at X. We denote by
g" (X, v), the second-order directional derivative of g at X
in direction v € R™ which is defined as an element of
R = R U {—o0} U {+o0}; that is

2
g'® V)= lim = (g +tv) — g(®) — tVg(Xv).

(6)

Theorem 3.2 (21, Ben-Tal and Zowe) Suppose that
g€ CYY(R™), Vg(X) =0 and g"(X,v) >0 for all vE
R™\{0}. Then X is a strict local minimizer of g.
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Example 3.1 (20, Nadi, Zafarani) Consider the

function g: R? - R defined as
4

8(24,2,): = (max(0,z, — ZZf))% + (max(0,z; — zz))%.

One can show that g"(%,v) > 0 for X = (0,0) and

all nonzero direction v, but X is not a strict local

minimum of g since g(z) = 0 for all z between the
4

Wb

W

;and z, = ZZf.
Letting (z) be an arbitrary sequence which
4

curves z, = z

converges to zero, we have (zy, % ZE) - (0,0). It is trivial
4

that Vg(zk,zzi) = 0 because g is equal to zero in a
4

neighbourhood of (zy, % ZE).

4

Now, it is easy to see that 0 € ﬁ*Vg(Zk,gzi) (v) for
all v € R?, which implies that D_Vg(X,v) < 0. This
means that condition (6) in the above theorem does not
hold.

Pseudoconvexity of the cost function in addition to
the quasiconvexity of constrained functions implies the
optimality of the point that satisfies the Karush Kahn-
Tucker conditions. More precisely, if the cost function or
one of the active constrained functions with positive
Lagrange multipliers is pseudoconvex and the rest are
quasiconvex, then the Lagrange function is
pseudoconvex. Booth of quasiconvexity and
pseudoconvexity of constrained functions imply the
convexity of the feasible set and optimality of a KKT-
point will be obtained. But we know that the convexity
of the feasible set is not necessary in (NLP). As
mentioned below, the pseudoconvexity of the cost
function and quasiconvexity of constraint functions at a
KKT-point is sufficient for its optimality.

Theorem 3.3 (Mangasarian) Let the set constraint be
open. The functions f and g; for i =1,...,n; are the
functions defined on X and X is a feasible point. Assume
that f is pseudoconvex at X, fand g; for i € I(X) are
differentiable at X, and g; for i € I(X) are quasiconvex at
X. If there exist Lagrange nonnegative multipliers
Ao, with A4gi(X) =0 for i=1,...,n; and
VL(X) = 0 where L = f+ Zi; Aig;, then X is a global
minimizer of (NLP).

The following example shows that the
pseudoconvexity at a point for the cost function in the
foregoing Theorem is more than what is required.

Example 3.2 (20, Nadi, Zafarani) Consider the
following (NLP) with C** data:
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1
minimize f(x):= —Ezl|zl| + 2,2, — 2, + 2, for z

= (21,22)
subjectto g,(z):=2z%+2z, — 2, <0,
g,(2):=2,+2,—1<0, g3(z):=-22, +2, < 0.

The Lagrangian function for A = (A4, A,,A3) is
1
L(z,A) = —Ezl|zl| + 292, + M (22 42, — 1) + A(2
+ 2, — 2) — A37;.

Now, we can show that z = (0,0) is a KKT-point for
(NLP) with Lagrange multipliers A = (1,0,0). Also, for
all z € R? we have

VL(z) = (—|zq| + 2, + 224, 24).

Forz,; > 0 andv = (v;,v,) € R?,

vLow=(; o)) = ")

and for z; < 0 and v = (v;,v;) € R? we have

mow=( )=

Thus, for z; >0 and pe€D*(VL)(2)W) =
V2L(z)(v) we derive
(p,v) = vZ + 2v,v,.

Also, for z; <0
V2L(z)(v) we deduce
(p,v) = 3vZ + 2v,v,.

and p€D*(VL)(z)(v) =

On the other hand, the set of active indexes in Z is
IZ)={1,3} and I*QQ)={1} and I1°QQ) = (3}.
Therefore, by an easy calculation, we conclude that the
critical direction cone at X is

C(@) = {v:(Vg1(2),v) = 0 and (Vg;(2),v) < 0}

={(vq,v3):v; =vyand — 2v; + v, < 0}
= {(vy,V2):v; =vyand vy, v, = 0}

This means that (p,v) > 0 for all p € D*(VL)(2)(V)
with z # 0 and v € C(Z)\{0}. It is not difficult to see that
D*(VL)(z)(v) = @ for all z = (0,2,). Therefore, the
second-order sufficient condition D_(VL)(z,v) > 0
holds for all v € C(Z)\{0} by our Theorem. Moreover, it
is easy to see that the cost function f is strictly
pseudoconvex in direction v = (1,1) € C(Z), because for
allt > 0:

_ 1 1 _
f(z + tv) = f(t,t) = _Etz + t2 —t+t=§t2 > f(z) = 0.

But for u = (1,0) ¢ C(z) and all t > 0:
1
f(Z + tu) = f(t,0) = _Etz —t<f(Z) =0

This means that f is not pseudoconvex at Z in the
direction u. Therefore, f is not pseudoconvex at z, but Z
is a minimizer for (NLP).

Instead of pseudoconvexity and quasiconvexity at a
point, we use the pseudoconvexity and quasiconvexity at
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a point in a direction and present the following extension
of Mangasarian’s theorem in the case of local solution.

Theorem 3.4 (20, Nadi, Zafarani) Let the set
constraint be open. The functions f and g; for i =
1,...,n; are defined on X and Z is a feasible point.
Suppose that there exist Lagrange nonnegative
multipliers Ay,...,A;; with A;g;(z) =0 fori=1,...,n4
and VL(Z) = 0 where L = f+ 221:1 Aig;. If f and g; for
i € I(z) are differentiable at z, fis pseudoconvex at Z in
all critical directions v € C(Z) and g; for i € I(Z) are
quasiconvex at X in all critical directions v € C(z), then Z
is a local minimizer of (NLP).

Now, we give some applications in tilt-stability
theory, as an application of our results in classical
optimization.

Proposition 3.1 (14, Nadi, Zafarani) Let (PSD) hold
for g:X > R that is a differentiable function and
D*(Vg)(z)(v) be non-empty for any z,v € X. If Vg(Z) =
0, then Z is a global minimizer of g.

Definition 3.1 (22, Tilt Stability, Poliquin-
Rockafellar 1998) Given g: X — R, a point Z € domfis a
tilt-stable local minimizer of g, if there is y > 0 such that
the mapping

M,:z* — argmin{f(z) — (z*,z): z € B, (2)}

is a single-valued mapping and Lipschitz continuous

on some vicinity of 0 € X* with M, (0) = Z.

Proposition 3.2 (14, Nadi, Zafarani) Letg: X — R
be a strongly convex lower semicontinuous function and
X be a Banach space. Then the following conditions hold:

(i) IfZ is a global minimizer for g, then it is the tilt-
stable local minimum of g.

(i) The point Z is a local minimizer for g when X is
an Asplund space. Also, there exist numbers r € (0, i)
and € > 0 such that

r
gx) =g +(y,z—y) — o lz—7Z 1> whenever z

€ B.(2).

Proposition 3.3 (20, Nadi, Zafarani) Let g: R" - R
be a twice differentiable function which satisfies
Assumption A with respect to some n and Vg(z) = 0.
Moreover, suppose that one of the following holds:

(i) (N,(z 2)v,V?g(z)(z)v) = 0, for any z,v € R®,
where 1) is skew and satisfies Assumption C and n(.,y)
is onto for any y € R".

(i) (n(y,2), V?g(@M(y,2)) = 0, forany y € R".

Then Z is a local minimizer of g.
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Consider the following constrained optimization
problem:

min g,(z) subjectto g;(z) <0 (i=1,...,m),(7)

which gg,81,...,8n are twice differentiable
functions defined on R".

Let g(z) = (g80(2),...,8n(z)) . We know that the
existence of a vector A= (A4,...,A;) € R" which
satisfies the following conditions, (Kuhn-Tucker
conditions) is necessary for Z to solve this problem:

Vg(@) + (A Vg(2) =0

Ag@)=0 (9

Ao Ay = 0.(10)

Hanson 1981 showed that the Kuhn-Tucker
conditions are also sufficient for Z to be a solution of (4),
when each g; is invex with respect to the same 7. Indeed,
only the invexity in a neighbourhood of Z for each g;
guarantees that the foregoing conditions are sufficien
(Craven 1982).

Now, we give some second-order sufficient
conditions for constrained optimization problems, by
using our results.

®)

Proposition 3.4 (20, Nadi, Zafarani) Suppose we
have the constrained optimization problem (4). If the
Kuhn-Tucker conditions hold in Z, each g; satisfies
Assumption A, and one of the following second-order
conditions holds (with respect to the same n):

(i) (y(z2)v,V?gi(z)v) =0, for any zveER",
where 1 is skew and satisfies Assumption C and (., y)
is onto for any y € R",

(i) (n(v,2), V2gi(z)n(y,2)) = 0 forany y € R",

then Z is a solution for the constrained optimization
problem (4).
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between them, and devised a method of measuring the earth’s circumference, and complex problems of trigonometry. In
addition to his native language (Persian) he also mastered Arabic, Sanskrit, Hebrew, Greek, Syriac and Turkish.”

“Ref.: Noori-Daloii, M.R., J. Sci. [.R. Iran, Vol. 1, No. 1, pp. 2-3,. Autumn 1988”

University of Tehran
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