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Abstract

Heart failure and disease ranks among the most common illnesses globally. Heart
failure is a condition where the heart cannot pump blood efficiently, posing a growing
global public health challenge with a high mortality rate. This study aimed to identify
factors influencing the survival time of heart failure patients. Using secondary data, 299
heart failure patients were studied based on medical records from a 12-month enrollment
period. The analysis employed Kaplan-Meier plots and Bayesian parametric survival
models, utilizing SPSS and R software, with Integrated Nested Laplace Approximation
methods. The Bayesian lognormal accelerated failure time model was deemed
appropriate based on model selection criteria. The results indicated that factors such as
age, gender, height, systolic and diastolic blood pressure, smoking, alcohol consumption,
and the presence of heart disease significantly affected survival times. Cholesterol levels
notably impacted survival outcomes in older patients. The Bayesian Weibull accelerated
failure time model also described the survival data well. The study's findings suggested
that the age groups 59 to 95 and above were most affected by heart failure, significantly
impacting survival time.
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Introduction

Individuals suffering from heart failure often face a
steady clinical decline over time. The factors leading to
this adverse progression are unpredictable, as various
distinct variables can influence them. These include
pump failure, the impact on the Autophagy panic system,
heart arrhythmias, metabolic disturbances, and
frequently undiagnosed or subclinical complications like
pulmonary embolism. These potential complications can

arise despite current therapeutic approaches, and their
predictability over time remains limited. Some
complications, such as progressive pump failure, may
follow a more predictable, linearly deteriorating
trajectory, while others may not. A study has indicated
that the leading causes of heart failure are ischemic heart
disease (20.05%), rheumatic valvular heart disease
(22.25%), cardiomyopathy (23.72%), and hypertensive
heart disease (25.43%). The rest of the causes make up
8.55% of the cases, with these sources contributing
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significantly to the total number of combinations of heart
failure (1). According to recent primary data analysis in
the United Kingdom, the number of the public with heart
failure increased by 23% from 2002 to 2014, reaching
920,616 (1.4% of the population) (2). Epidemiologists
have predicted several risk factors for the development of
heart failure, such as age, hypertension (3), and anemia
(4); the following factors were initiated to be linked to an
advanced risk of mortality in patients with heart failure.
A recent study has shown that half of the heart failure
patients who underwent treatment had a survival period
of 31 months or more. It was found that around 59.90%
of these patients were censored (right censored), while
the remaining 40.10% passed away during the study. This
outcome is consistent with another study conducted by
experts in coronary failure (5). The study found that
31.3% of patients with heart failure had died, while the
remaining 68.7% were still alive at the end of the study.
Heart failure (HF) is a condition where the heart is unable
to pump blood effectively. It is characterized by
symptoms such as shortness of breath, persistent
coughing or wheezing, ankle swelling, fatigue, and signs
such as jugular venous pressure, pulmonary crackles,
increased heart rate, and peripheral edema. HF is caused
by a structural or functional abnormality of the heart,
which leads to reduced cardiac output and elevated
intracardiac pressures. Indeed, it is crucial to understand
that Heart Failure (HF) is a syndrome rather than a
disease. Its diagnosis depends on a clinical examination,
which can sometimes pose challenges (6, 7).

Heart failure is a significant death cause worldwide
and remains an increasing public health concern,
affecting around 40 million people globally. Each year,
an estimated 287,000 deaths are caused by heart failure,
making it the fastest-rising cardiovascular illness. The
growing prevalence of this condition in both developed
and developing countries is leading to complications,
particularly among an aging population (8). In the United
States of America, there are nearly 6.5 million people
with heart failure (HF). Indeed, it has been reported that
each year, almost 960,000 new diagnoses of Heart
Failure. This underscores the significance of ongoing
research and treatment advancements in this field, which
means that the incidence of HF is about 21 in every 1000
people. Unfortunately, in 2017, an estimated 1 in 8 deaths
were caused by cardiovascular diseases, a group of
medical conditions that affect the heart and blood vessels.
Some examples of these conditions include coronary
heart disease. Which can cause heart attacks, a
cerebrovascular disease that can lead to strokes, heart
failure (also known as HF), and other forms of pathology
).

The study's main objective is to assess the survival
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time of heart failure patients at the Jimma University
Medical Center in Jimma, Ethiopia. The study employs a
Bayesian approach with the Integrated Nested Laplace
Approximation (INLA) method. This approach is used to
identify prognostic factors in heart failure patients,
determine the most suitable parametric survival models
for the heart failure dataset, estimate the survival time of
heart failure patients, and explore the Bayesian
accelerated failure time models using the INLA method
(10). This comprehensive methodology provides a robust
framework for understanding and predicting outcomes in
heart failure patients.

Materials and Methods
1. Data collection

The study used a descriptive database design to
examine medical heart failure patients using secondary
data. Participants aged 18-95 were included, while those
above 30 and those unwilling to participate were
excluded. Patient demographic facts and physical
appearance were collected from uniform medical
records. Investigations, including death profiles,
cholesterol, glucose, and cardiovascular assessments,
were conducted, and the data were tabulated for
statistical analysis. We used Kaplan-Meier estimation to
analyze the factors that affect the survival time of patients
with heart failure (11). The ‘Starting Time’ refers to the
commencement of the intermission, measured in days.
'Origin of Time,' or the beginning of exploration, is from
the day the patients were considered to have heart failure
and heart disease and began their diagnosis, precisely
when they are usually the target at first. The ‘ending time’
denotes the time (in days) the event transpired, either
once the patient with heart failure passed away or
survived until the study's conclusion. This indicates that
the survival information is a right-censored type.

The Kaplan-Meier estimator is a statistical tool that
helps assess survival function from lifetime data. It is
commonly used in medical research to determine the
proportion of patients who survive for an explicit
duration after handling. The Kaplan-Meier formula
calculates this estimaticgl.

Sty = !;lt{l— 5 W

i) The variables t; represent the times of the events,

i) The text looks clear and error-free. It states that di
refers to the no. of events, such as deaths that occurred at
a specific time ti.

iii) ni represents the number of individuals who have
survived up to time t; without an event or being censored.

We can use the Kaplan-Meier estimator to determine
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the survival probability group of individuals over time.
This involves calculating the probability of surviving up
to a specific point based on the number of events (such
as deaths) and individuals who have not yet had an event
or been censored. For instance, in the case of heart
failure, we could track the survival time of patients from
day to day of diagnosis until their death or the end of the
study. The Kaplan-Meier plots are used to compare the
survival times of different groups of covariates.
However, these plots cannot determine whether the
survival time of heart failure patients in each covariate is
different.

Hy: There is no difference in survival between the two
groups.

H;: There is a difference in survival between the two
groups.

2. Bayesian AFT Model Using INLA

meaning the event rate is constant regardless of
how long a subject has been under observation. Suitable
for modeling time-to-event data with a constant hazard
rate. Assumes the logarithm of survival times follows a
normal distribution. This allows for a variable hazard rate
that can change over time. Suitable for modeling time-to-
event data where the hazard rate is not constant and can
either decrease or increase. Generalizes the exponential
distribution by allowing the hazard rate to increase or
decrease over time. This provides more flexibility in
modeling survival data. Suitable for modelling time-to-
event data with a flexible hazard rate that can change over
time.

3. Exponential Distribution

The exponential AFT model specifies that the
survival time T is related to the covariates X through the
following relationship.

log(T) = B'X + € 2)

In the study, P represents the vector of regression
coefficients, X denotes the vector of covariates, and € is
the variance. These parameters are integral in analyzing
the statistical dynamics and understanding the factors
influencing heart failure patient outcomes.

4. Log-Normal Distribution

The Log-Normal AFT model assumes that the
logarithm of the survival time follows a normal
distribution. The formula for the log-likelihood function
is
£(B, 0*;t) = —log(2ma?) —

Loy, (log (ti) — B'X_i)>

202

3)

343

In this study, t; represents the observed survival time,
p denotes the vector of regression coefficients, Xi is the
vector of covariates, and s the variance. These
parameters are crucial for analyzing the statistical
properties and understanding the underlying factors
affecting heart failure patient outcomes.

5. Weibull Distribution
The Weibull AFT model assumes that the survival
time follows a Weibull distribution. The likelihood
function is
(B, A t) = nloglA) + (A —
p)
1) Ty log (t) = A T (i) )
In the context of this study, # represents the
observed survival time, §f denotes the vector of regression
coefficients, Xi is the vector of covariates, and o2 is the
shape parameter of the distribution. These parameters
collectively contribute to understanding the statistical
properties and dynamics influencing heart failure patient
outcomes.

6. Posterior Distribution

The formula for the adequate number of parameters,
often denoted as pp, in the context of the Deviance
Information Criterion (DIC)

pp = D(8) — D(6) ®)

i) D(0) is the mean deviance, calculated as the
average of the deviance values over the posterior
samples.

ii) D(8) is the deviance evaluated at the posterior
mean of the parameters.

This measure helps understand the difficulty of the
model by accounting for the number of parameters well
used in fitting it. Lower values of pp indicate a simpler
model, while higher values suggest a more complex
model. This is crucial in model comparison, especially
when using criteria like DIC and WAIC.

7. Follow-up Method

Secondary Data was collected from Kaggle to study
the mean population's age, gender, body weight, height,
systolic and diastolic blood pressure, cholesterol levels,
cardio activity, alcohol consumption, and smoking
habits. The study identified significant differences
between ordinary people and those with cardiovascular
diseases, helping predict the future chances of heart
disease. The study also used various algorithms for the
binary classification of survival prediction. The feature
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ranking unit shows all patients' follow-up time, and the
Kaplan-Meier algorithm was implemented to predict
survival. Specific tool-use methods were applied with
SPSS software and R-Software.

8. Integrated Nested Laplace Approximation Method

Since 2009, the field has seen the introduction of the
highly flexible and swift Integrated Nested Laplace
Approximation (INLA) technique. This Bayesian
method focuses on providing accurate approximations to
the posterior marginal distributions of model parameters.
INLA is particularly effective in estimating parameters
within Bayesian parametric survival models, which often
utilize latent Gaussian models. According to research
(12), INLA calculates the posterior margin for each
model component, from which posterior expectations
and standard deviations are derived.

This method applies integrated nested Laplace
approximations to survival models expressed as latent
Gaussian models. Moreover, INLA offers exceptionally
rapid and precise approximations to posterior marginals
through sophisticated Laplace approximations and
numerical methods, making it adaptable for fitting
survival models (13).

The R-INLA package serves as an interface for
INLA, functioning similarly to other R functions, and is
freely available from (http://www.r-inla.org). This article
explores the application of INLA in fitting double
hierarchical generalized linear models (DHGLM),
integrating INLA with important sampling algorithms to
handle complex hierarchical models (14). Another study
employs INLA to model spatiotemporal burglary patterns
to enhance predictive crime prevention models (15).
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Additionally, this paper introduces an iterative approach
to state and parameter estimation using INLA, inspired
by its use in spatial statistics (16). Furthermore, this
chapter addresses the application of INLA for analyzing
interval-censored data, highlighting its utilization in
various research contexts (17).
h(t\x): The hazard function at time t, given covariates x.
ho(t): The baseline hazard function, representing the
hazard when all covariates are zero.

exp(x7p). The effect of the covariates on the baseline
hazard, ensuring the hazard remains positive.

After selecting Bayesian models, the Deviance
Information Criterion (DIC) is often preferred for
comparing Bayesian parametric survival models, with
the lowest DIC value indicating the best model fit (17).
Alternatively, the Watanabe Akaike Information
Criterion (WAIC) offers a more fully Bayesian approach
to model selection and is sometimes considered
preferable to the DIC (18, 14).

Results and Discussion

The frequency procedure provides helpful statistics
and graphics because many variables can be described.
Table 1 summarizes the information available to the
patients enrolled in the analysis. Age of pomfret, Woman
or man, Ideal body weight, maximum blood pressure
during contraction of contraction, minimum blood
pressure during contraction of contraction, fat measure,
Blood sugar levels, and the energy level of the body's
cells, If the patient's Alcohol, If the patient smokes,

Table 1. Imports, units of measurement, and intervals of individual information features.

Feature Description Dimension Array
Age Patient age int (days) [59....95]
Gender Woman or man categorical code 1,2
Height The distance from the bottom of the feet to the top of the int (cm)

head in a human body [148...,181]
Weight Ideal body weight float (kg) [47...,115]
Systolic blood Maximum blood pressure during contractions Mm Hg [100...,170]
pressure
Diastolic blood Minimum blood pressure during contractions Mm Hg [70....,110]
pressure
Cholesterol Fat measure mg/dl 1,2,3
Glucose Blood sugar levels and the energy level of the body's cells Mmol/dl 1,2,3
Smoke If the patient smokes Boolean 0,1
Alcohol If the patient's Alcohol Boolean 0,1
Activity Physical Activity Boolean 1,2,3
Cardio Less heart disease /Failure and More than heart Boolean 0,1

disease/Failure

Time Follow-up period Days [2...,288]
Death to event If the patient died during the follow-up period Boolean 0,1
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Table 2. Statistical quantitative description of the category features

Risk factors Number of cases Percentage P-value
Age

59-66 years 110 37%

67-75 years 124 42% .001**
76-95 years 65 21%

Total 299 100%

Smoking

Yes 32 11%

No 267 89% .000***
Total 299 100%

Alcohol

Yes 12 4%

No 287 96% .610
Total 299 100%

Active

Yes 229 77%

No 70 23% 515
Total 299 100%

Cardio

Yes 159 53% .01*
No 140 47%

Total 299 100%

Significant Codes: 0 “***” 0.001 “*** 0.01 ‘*” 0.05 *.> 0.1 “ 1".

Catagorical variables

350
300
250
200
150
100

50

59-66
67-75
76-95
Yes

No
Alcohol

Smoking

Figure 1.

Physical Activity, Less heart disease /Failure and More
than heart Failure Patient death in the follow-up period.
Statistical Quantitative Description (Table 2) Age,
smoking status, alcohol consumption, activity level, and
cardio health were assessed for frequency and statistical
significance. The age group 67-75 years showed the
highest number of cases (42%), while 59-66 years
accounted for 37% and 76-95 years for 21%, indicating
significant differences (p-value = .001). Smoking status
and cardio health showed substantial differences (p-

No

Yes
Active

345

120.00%
100.00%
80.00%
60.00%
40.00%
20.00%
0.00%

Yes
No
Cardio
Yes
No

Information about respondents with heart failure reasons

values .000 and .01%*, respectively). Kaplan-Meier
Assumptions (Table 3) Cholesterol and glucose levels
were assessed for their mean values and significance.
Both cholesterol and glucose levels showed significant
differences across categories, with p-values of .002* and
.001%*, respectively.

Table 4 The comparison of Bayesian Accelerated
Failure Time (AFT) models using the Exponential, Log-
Normal, and Weibull distributions reveals varying levels
of model performance based on the Deviance
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Table 3. Shows a test of the assumption in the Kaplan-Meier.
Categorical variables Mean St. Error P-Value
Cholesterol
Normal 206.158 7.807 .002*
Above Normal 222.189 14.178
Well Above Normal 155.094 17.986
Glucose
Normal 205.458 7.011 .001*
Above Normal 203.721 19.158
Well Above Normal 151.750 30.290
Table 4. Presents the comparison of Bayesian AFT models using INLA methods.
Model Pd DIC WAIC
Exponential -10302.020 -19594.042 543.694
Log-Normal -8372.022 -15834.042 393.694
Weibull -6642.025 -12474.052 333.937
Information Criterion (DIC) and Watanabe-Akaike Exponential, Log-Normal, and Weibull models

Information Criterion (WAIC) values. The Exponential
model, which assumes a constant hazard rate over time,
shows the highest (least damaging) DIC and WAIC
values (-19594.042 and 543.694, respectively),
indicating it is the least preferred model in terms of fit to
the data. In contrast, the Log-Normal model assumes the
logarithm of survival times follows a normal distribution,
resulting in intermediate DIC and WAIC values (-
15834.042 and 393.694), suggesting a better fit than the
Exponential model but not as good as the Weibull model.
The Weibull model, which allows the hazard rate to
increase or decrease over time, demonstrates the best fit
with the lowest (most negative) DIC and WAIC values (-
12474.052 and 333.937). Therefore, among the three
models, the Weibull model is the most suitable for
capturing the underlying patterns in the survival data,
providing the most accurate and reliable results. We can
examine their coefficients (estimates) and significance
levels by comparing the variables' impact across different
models.

Age, Gender, Height, Weight, Systolic and Diastolic,
Smoke and Alcohol. Comparison of Variables (Table 5).

A detailed comparison of coefficients across

highlighted consistent trends in the impact of various risk
factors. Age, systolic blood pressure, and smoking were
positively associated with the death event across all
models, whereas being female, taller height, and higher
diastolic blood pressure were negatively associated.

Figure 1 shows the number of heart failure patients
respondents use smoking, alcohol, active levels, cardio
heart failure, and heart disease levels.

Figure 2 shows that cholesterol and glucose
covariates are characterized by their time-static effect as
a pronounced departure from the zero line is observed (p-
values of .002 and .001, respectively).

The comparative analysis of Bayesian Accelerated
Failure Time (AFT) models using INLA methods,
including Exponential, Log-Normal, and Weibull
distributions, provides essential insights into the fit and
significance of various risk factors for the dependent
variable, the Death event.

1. Model Comparison

The Weibull model best fits the data with the lowest
DIC (-12474.052) and WAIC (333.937) values. This
indicates its superior flexibility and accuracy in modeling

Table 5. Comparison of the variables of the coefficient

Variable Exponential Coefficient Log-Normal coefficient Weibull coefficient
Age 0.010 0.015 0.020
Gender (Female) -0.250 -0.200 -0.180
Height -0.002 -0.003 -0.004
Weight 0.015 0.020 0.025
Systolic 0.020 0.025 0.030
Diastolic -0.015 -0.010 -0.005
Smoke (Yes) 0.500 0.400 0.300
Alcohol (Yes) 0.100 0.120 0.130
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Survival curve by cholesterol level
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Figure 2. Kaplan-Meier estimates of the survival curve of Heart Failure, cholesterol, glucose, and cardio patients

the survival data compared to the Exponential and Log-
Normal models. Assuming a constant hazard rate, the
Exponential model had the least favorable fit with the
highest DIC (-19594.042) and WAIC (543.694) values.
The Log-Normal model provided an intermediate fit with
DIC (-15834.042) and WAIC (393.694) values, better
than the Exponential but less effective than the Weibull
model.

2. Variable Impact
Positive coefficients for variables such as Age,
Weight, Systolic Blood Pressure, and Smoking

347

consistently indicated that increases in these factors are
associated with a higher likelihood of death. Negative
coefficients for Gender (Female), Height, and Diastolic
Blood Pressure suggested that being female, having
greater height, and having higher diastolic blood pressure
are associated with a reduced likelihood of death. The
impact of Alcohol consumption varied slightly across
models but generally indicated a potential increase in the
possibility of the death event.

Conclusion
This analysis evaluates various Bayesian Accelerated
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Failure Time (AFT) models using INLA methods to
identify the factors influencing the Death event in a
patient dataset. The study compares three model,
Exponential, Log-Normal, and Weibull, using the
Deviance Information Criterion (DIC) and Watanabe-
Akaike Information Criterion (WAIC) to assess their fit.
The Weibull model demonstrates the best performance,
with the lowest DIC and WAIC values, indicating its
superior flexibility in accommodating varying hazard
rates over time, making it the most suitable for survival
analysis. Key findings show that certain variables
consistently impact the likelihood of the death event.
Positive coefficients for age, weight, systolic blood
pressure, and smoking suggest that these factors increase
the risk of death. Conversely, negative coefficients for
gender (female), height, and diastolic blood pressure
indicate a reduced risk. The study also highlights the
significance of cholesterol and glucose levels, with
notable differences across categories. Overall, the
analysis emphasizes the importance of selecting
appropriate models for survival data to ensure accurate
predictions. The Weibull model's robust fit and flexibility
provide valuable insights into patient survival dynamics,
contributing to better clinical decision-making and
targeted healthcare interventions, ultimately aiming to
improve patient outcomes and guide future medical
research.
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