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Abstract 
This paper presents a bivariate distribution that improves the Marshall-Olkin 

exponential shock model. The new construction method enhances the model’s capacity 
to include a common joint shock across components, making it especially suitable for 
reliability and credit risk assessments. The model features a single component and 
supports negative dependence structures. We investigate the key dependence properties 
and conduct a stress-strength analysis. After evaluating the performance of the parameter 
estimator,  chemical engineering data is analyzed. 
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Introduction 
The univariate exponential distribution is known for 

its applications in different fields such as reliability, 
telecommunication, hydrology, medical sciences and 
environmental science; see, e.g., Balakrishnan (1). 
Several bivariate and multivariate extensions have been 
proposed in the literature (Lai and Balakrishnan (2), 
Chapter 10), with a significant multivariate extension 
introduced Marshall and Olkin (3) through a shock 
model. For three independent exponential random 
variables 𝑇ଵ ∼ 𝐸ሺ𝜃ଵሻ , 𝑇ଶ ∼ 𝐸ሺ𝜃ଶሻ , and 𝑇ଵଶ ∼ 𝐸ሺ𝜃ଵଶሻ , 
the Marshall-Olkin (MO) shock model is derived from 
the stochastic representation ሺ𝑋,𝑌ሻ = ሺmin{𝑇ଵ,𝑇ଵଶ}, min{𝑇ଶ,𝑇ଵଶ}ሻ,                         (1) 

with the joint survival function given by 𝑆ሺ𝑥,𝑦ሻ = exp{−𝜃ଵ𝑥 − 𝜃ଶ𝑦 − 𝜃ଵଶmaxሺ𝑥,𝑦ሻ}.       (2) 
Due to the common shock identified by 𝑇ଵଶ in (1), we 

have 𝑃ሺ𝑋 = 𝑌ሻ = ఏభమఏభାఏమାఏభమ, if 𝜃ଵଶ > 0, the distribution 
(1), has a singular component along the line {𝑥 = 𝑦}. 
                                                        
* Corresponding Author: Tel: +98 9151778318; Email: Jabbarinh@um.ac.ir 

Therefore, the MO exponential distribution has both 
singular and continuous parts in its density and covers a 
positive dependence structure. 

Numerous studies have examined models and 
modifications based on the foundational work of 
Marshall and Olkin (3), particularly in reliability, 
finance, actuarial science, and credit risk (e.g., Cherubini 
et al. (4), Lindskog and McNeil (5)). Recently, Cherubini 
and Mulinacci (6) emphasized the MO model’s 
importance and adaptability for analyzing systemic crises 
in credit risk and financial contexts. They noted that the 
MO model captures unobserved shocks affecting 
individuals either independently or collectively, using 
common shocks to explain simultaneous defaults within 
clusters influenced by the same factor. The model also 
maintains the marginal exponential distribution for 
observed default times. 

Several bivariate and multivariate extensions of the 
exponential distribution have been developed for 
reliability applications. For instance, Esary and Marshall 
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(7) characterized a multivariate exponential distribution 
and established conditions for positive dependence 
among distributions with exponential minima. Raftery 
(8) introduced a continuous multivariate exponential 
distribution that accommodates various correlation 
structures while achieving Fréchet bounds in the 
bivariate case. A multivariate exponential distribution 
based on the limiting behavior of normalized maxima or 
minima was introduced by Tawn (9). Lin et al. (10) 
examined a shared-load model of the multivariate 
exponential distribution for dependent redundancies. 
Constant failure rate multivariate exponential 
distributions were defined by Basu and Sun (11), while 
Gomez et al. (12) introduced the multivariate power 
exponential distribution. An analytical method for 
assessing the reliability of coherent systems with 
dependent components based on the MO model was 
proposed by Cui and Li (13). Additionally, Fan et al. (14) 
developed a multivariate exponential survival tree 
procedure utilizing a score test statistic from a parametric 
exponential frailty model, and Kundu and Gupta (15) 
presented parameter estimation for a new bivariate 
exponential distribution using an EM algorithm. 
Generalized bivariate MO distributions, with the 
common MO model as a special case, were investigated 
by Li and Pellerey (16). Bayesian estimation for the MO 
bivariate Weibull distribution was conducted by Kundu 
and Gupta (17), and Bayramoglu and Ozkut (18) applied 
the MO model considering system structure. A 
multivariate proportional reversed hazard model derived 
from the MO copula was discussed by Kundu et al. (19), 
while Cha and Badia (20) proposed a multivariate 
exponential distribution model based on dependent 
dynamic shock models. A multivariate weighted 
exponential distribution for failure time data analysis was 
developed by Al-Mutairi et al. (21). Recently, 
Mohtashami-Borzadaran et al. (22) enhanced the MO 
shock model by incorporating a distortion function, 
broadening its applicability. Additionally, El Ktaibi et al. 
(23) introduced a bivariate copula based on a bivariate 
exponential distribution with negative dependence, 
Bentoumi et al. (24) developed by using the counter-
monotonic shock model. Lee and Cha (25) developed a 
new class of continuous bivariate distributions based on 
a shock model. Agrawal et al. (26) proposed a bivariate 
distribution for modelling competing risks data with 
singularity originating from a shock model. A variant of 
the bivariate Poisson common shock model was 
presented in Genest et al. (27). 

From a shock model perspective, the MO model (1) 
has limitations due to the assumption of shock equality in 
the common shock 𝑇ଵଶ , suggesting that 𝑇ଵଶ  is likely 
equal for components 𝑋ଵ  and 𝑋ଶ . Our new model 

addresses this limitation by allowing for a random 
percentage of common stock on each component. Most 
existing bivariate and multivariate exponential 
distribution extensions exhibit positive dependence 
structures, with negative dependence structures being 
rare. 

In this paper, which was first posted at arXiv 
Mohtashami-Borzadaran et al. (28), we propose a new 
bivariate exponential shock model that accommodates 
negative dependence structures as well. Section 2 
presents the new shock model and its flexibility 
compared to the MO model. Section 3 outlines the 
model’s main properties, including dependence structure, 
association measures, tail dependence measures, and 
stress-strength index. Section 4 focuses on parameter 
estimation for the new model, which poses challenges 
due to its singular component, followed by a performance 
analysis of the estimators. Section 5 applies the model to 
real data, demonstrating its superior fit. 

 

Materials and Methods 
Consider three independent exponential random 

variables 𝑇ଵ ∼ 𝐸ሺ𝜃ଵሻ , 𝑇ଶ ∼ 𝐸ሺ𝜃ଶሻ , and 𝑇ଵଶ ∼ 𝐸ሺ𝜃ଵଶሻ , 
along with an independent uniform random variable 𝑈 ∼𝑈ሺ0,1ሻ, which is independent of 𝑇ଵ, 𝑇ଶ, and 𝑇ଵଶ. Let 𝛼ଵଶ 
(taking values ±1) be the dependence structure of the 
model where 𝛼ଵଶ = +1  concludes positive and 𝛼ଵଶ =−1  gives negative dependence structure. When 𝛼ଵଶ =+1 , set 𝑇ଵଶ∗ ሺ𝛼ଵଶሻ = 𝑇ଶଵ∗ ሺ𝛼ଵଶሻ = 𝐹 భ்మିଵሺ𝑈ሻ  or 𝑇ଵଶ∗ ሺ𝛼ଵଶሻ =𝑇ଶଵ∗ ሺ𝛼ଵଶሻ = 𝐹 భ்మିଵሺ1 − 𝑈ሻ . If 𝛼ଵଶ = −1 , put 𝑇ଵଶ∗ ሺ𝛼ଵଶሻ =𝐹 భ்మିଵሺ𝑈ሻ,𝑇ଶଵ∗ ሺ𝛼ଵଶሻ = 𝐹 భ்మିଵሺ1 − 𝑈ሻ  or 𝑇ଵଶ∗ ሺ𝛼ଵଶሻ =𝐹 భ்మିଵሺ1 − 𝑈ሻ,𝑇ଶଵ∗ ሺ𝛼ଵଶሻ = 𝐹 భ்మିଵሺ𝑈ሻ  where 𝐹 భ்మ  is the 
corresponding distribution function of 𝑇ଵଶ . Then, the 
bivariate MO random vector ሺ𝑅, 𝑆ሻ covering all degree 
of dependence is ሺ𝑅, 𝑆ሻ = ሺmin{𝑇ଵ,𝑇ଵଶ∗ ሺ𝛼ଵଶሻ}, min{𝑇ଶ,𝑇ଶଵ∗ ሺ𝛼ଵଶሻ}ሻ.        (3) 

Clearly, when 𝛼ଵଶ = +1, the vector ሺ𝑅, 𝑆ሻ reduces to ሺ𝑅, 𝑆ሻ = ሺmin{𝑇ଵ,𝑇ଵଶ}, min{𝑇ଶ,𝑇ଵଶ}ሻ, 
which is the well-known MO model given in 

Marshall and Olkin (3) that has positive dependence 
structure. When 𝛼ଵଶ = −1 , the random vector ሺ𝑅, 𝑆ሻ 
gives a new MO model with negative dependence 
structure (see Proposition 2.2) which is called the 
bivariate negative MO model, denoted by 𝐵𝑁𝑀𝑂ሺ𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ. This model is obtained by ሺ𝑅, 𝑆ሻ = ൫min{𝑇ଵ,𝐹 భ்మିଵሺ𝑈ሻ}, min{𝑇ଶ,𝐹 భ்మିଵሺ1 − 𝑈ሻ}൯, (4) 

or ሺ𝑅, 𝑆ሻ = ൫min{𝑇ଵ,𝐹 భ்మିଵሺ1 − 𝑈ሻ}, min{𝑇ଶ,𝐹 భ்మିଵሺ𝑈ሻ}൯. (5) 
Throughout this paper, we focus on the (𝑅, 𝑆ሻ given 

in (4). 
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A similar construction for a bivariate Poisson model 
has been given by Genest et al. (27). 

The interpretation for this construction is different 
from the well-known MO model. Consider Figure 1 
given based on the relation (4). If 𝑈 > ଵଶ , then the 
dependent shock is more likely to be powerful on the first 
component 𝑅 (Figure 1 (A)) and, if 𝑈 < ଵଶ, the dependent 
shock is more likely to be powerful on 𝑆 (Figure 1 (B)). 
The survival function of both vectors (4) and (5) for 𝜃ଵ,𝜃ଶ,𝜃ଵଶ > 0 is 𝐹⃐ோ,ௌ(𝑟, 𝑠ሻ = 𝑃 ቀ𝑇ଵ > 𝑟,𝑇ଶ > 𝑠,𝐹 భ்మ(𝑟ሻ < 𝑈 < 1 − 𝐹 భ்మ(𝑠ሻቁ ,= 𝑒ିఏభ௥𝑒ିఏమ௦max{𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ − 1,0}.     
                                         (6)

 

This model has a singular part at 𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ =1. The probability density function of (4) when 𝑒ିఏభమ௥ +𝑒ିఏభమ௦ > 1 is 𝑓ோ,ௌ(𝑟, 𝑠ሻ = 𝑒ିఏభ௥ିఏమ௦൫𝜃ଶ(𝜃ଵ + 𝜃ଵଶሻ𝑒ିఏభమ௥ +𝜃ଵ(𝜃ଶ + 𝜃ଵଶሻ𝑒ିఏభమ௦ − 𝜃ଵ𝜃ଶ൯.
                       (7) 

The following statement gives the probability of the 
singular part. 

 Proposition 2.1. Suppose (𝑅, 𝑆ሻ ∼𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ  and let 𝛼 : = ఏభమఏభାఏభమ , 𝛽 : = ఏభమఏమାఏభమ . 
Then 𝑃൫𝑒ିఏభమோ + 𝑒ିఏభమௌ = 1൯ = 𝐵𝑒𝑡𝑎 ൬1𝛽 , 1𝛼൰, 

where 𝐵𝑒𝑡𝑎(𝑎, 𝑏ሻ = ׬ 𝑥௔ିଵଵ଴ (1 − 𝑥ሻ௕ିଵ𝑑𝑥. 
Proof. Based on (Joe (29), Theorem 1.1, p. 15), for 𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ = 1, we have 1 −න 𝑓ௌ|ோ௚(௥ሻ
଴ (𝑠|𝑟ሻ𝑑𝑠 = 𝜃ଵଶ𝜃ଵ + 𝜃ଵଶ (1 − exp{−𝜃ଵଶ𝑟}ሻఏమ/ఏభమ , 

where 𝑔(𝑟ሻ = ିଵఏభమ ln(1 − exp{−𝜃ଵଶ𝑟}ሻ . Let ℎ(𝑟ሻ =1 − ׬ 𝑓ௌ|ோ௚(௥ሻ଴ (𝑠|𝑟ሻ𝑑𝑠. By using the construction in (4) 
and Theorem 1.1 in Joe (27), we get 

𝑃൫𝑒ିఏభమோ + 𝑒ିఏభమௌ = 1൯ = ׬ ℎାஶ଴ (𝑟ሻ𝑓ோ(𝑟ሻ𝑑𝑟= ׬ 𝜃ଵଶାஶ଴ ሾ1 − 𝑒𝑥𝑝(−𝜃ଵଶ𝑟ሻሿ ഇమഇభమexp(−(𝜃ଵ + 𝜃ଵଶሻ𝑟ሻ𝑑𝑟= 𝐵𝑒𝑡𝑎 ቀଵఉ , ଵఈቁ .
    

                   

                       
(8)                       

Remark 2.1. If 𝜃ଵ = 𝜃ଶ = 𝜃ଵଶ  or equivalently 𝛼 =𝛽 = ଵଶ, then 𝑃൫𝑒ିఏభమோ + 𝑒ିఏభమௌ = 1൯ = 16. 
The survival copula associated with (6) is achieved 

by 𝐶መ(𝑢, 𝑣ሻ = 𝑢ଵିఈ𝑣ଵିఉmax{𝑢ఈ + 𝑣ఉ −1,0}, 𝛼,𝛽,𝑢, 𝑣 ∈ (0,1ሻ,                                                 (9) 
and the corresponding copula density is given as 𝑐(𝑢, 𝑣ሻ = (1− 𝛼ሻ𝑢ିఈ + (1 − 𝛽ሻ𝑣ିఉ − (1 − 𝛼ሻ(1 − 𝛽ሻ𝑢ିఈ𝑣ିఉ𝐼{௨ഀା௩ഁିଵவ଴}(𝑢,𝑣ሻ  + 𝐵𝑒𝑡𝑎 ቀଵఈ , ଵఉቁ 𝐼{௨ഀା௩ഁିଵୀ଴}(𝑢, 𝑣ሻ, 𝛼,𝛽,𝑢, 𝑣 ∈ (0,1ሻ,

     
       (10)

 

where 𝐼஺(𝑢, 𝑣ሻ is an indicator function getting 1 if (𝑢, 𝑣ሻ ∈ 𝐴 and zero elsewhere. 
Remark 2.2. El Ktaibi et al. (23) introduced only the 

survival copula (9) in parallel with this paper in an almost 
similar way to the present study by defining 𝜃 : = 𝛼 = 𝛽. 
They used four independent exponential random 
variables that have a common parameter, which is the 
factor that creates the dependency. One part of this 
parameter ultimately appears as the dependence 
parameter of the survival copula. Instead, this paper uses 
three independent exponential random variables with 
different parameters, and one of them is included as a 
factor for establishing dependence in the model (1). 
Therefore, unlike, El Ktaibi et al. (23) the present study 
uses a common random variable instead of a parameter 
to develop the dependency. So, the results of El Ktaibi et 
al. (23) are a special case of the present study with only 
one dependence parameter. 
 

 
 

Figure 1. Shock models based on the construction in (4) 
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1. Some distributional properties 
In this section, we present some properties of BNMO 

model such as dependence structure, association 
measures, tail dependence measures and stress-strength 
index. 

1.1. Dependence structure 
Let (𝑋,𝑌ሻ  be a random vector with a survival 

function 𝐹⃐. The pair (𝑋,𝑌ሻ is said to be the right corner 
set decreasing, denoted by 𝑅𝐶𝑆𝐷(𝑋,𝑌ሻ , whenever for 
any 𝑥ଵ < 𝑥ଶ and 𝑦ଵ < 𝑦ଶ we have 𝐹⃐(𝑥ଵ,𝑦ଵሻ𝐹⃐(𝑥ଶ,𝑦ଶሻ − 𝐹⃐(𝑥ଵ,𝑦ଶሻ𝐹⃐(𝑥ଶ,𝑦ଵሻ ≤ 0, 

that is equivalent to ∂ଶ∂𝑟 ∂𝑠 ln ቀ𝐹⃐(𝑟, 𝑠ሻቁ ≤ 0. 𝑅𝐶𝑆𝐷(𝑋,𝑌ሻ implies negative dependence structures 
like 𝑅𝑇𝐷(𝑋|𝑌ሻ , 𝑅𝑇𝐷(𝑌|𝑋ሻ  and 𝑁𝑄𝐷(𝑋,𝑌ሻ  (for more 
information see Nelsen (30)). The following statement 
specifies the dependence structure of the proposed 
model. 

Proposition 2.2. If (𝑅, 𝑆ሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ , 
then we have 𝑅𝐶𝑆𝐷(𝑅, 𝑆ሻ.  

Proof. For all 𝜃ଵ,𝜃ଶ,𝜃ଵଶ ∈ 𝑅, we obtain ∂ଶ∂𝑟 ∂𝑠 ln ቀ𝐹⃐ோ,ௌ(𝑟, 𝑠ሻቁ = −𝜃ଵଶଶ 𝑒ିఏభమ௥ିఏభమ௦(1 − 𝑒ିఏభమ௥ − 𝑒ିఏభమ௦ሻଶ ≤ 0, 
which implies 𝑅𝐶𝑆𝐷(𝑅, 𝑆ሻ and the proof is complete. 
The random vectors (𝑋ଵ,𝑌ଵሻ  and (𝑋ଶ,𝑌ଶሻ  can be 

compared in terms of their dependence structure via the 
upper orthant (UO) order. For any two vectors such as (𝑋ଵ,𝑌ଵሻ, (𝑋ଶ,𝑌ଶሻ, we say (𝑋ଵ,𝑌ଵሻ is less than (𝑋ଶ,𝑌ଶሻ in 
UO order and write (𝑋ଵ,𝑌ଵሻ ≺௎ை (𝑋ଶ,𝑌ଶሻ  whenever 

𝐹⃐௑భ,௒భ(𝑥, 𝑦ሻ ≤ 𝐹⃐௑మ,௒మ(𝑥, 𝑦ሻ for all 𝑥,𝑦. 
Proposition 2.3. Let (𝑅, 𝑆ሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ, 𝜃ଶ,𝜃ଵଶሻ 

and (𝑅ᇱ, 𝑆ᇱሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ, 𝜃ଶ,𝜃ଵଶᇱ ሻ . If 𝜃ଵଶ ≤ 𝜃ଵଶᇱ  then (𝑅ᇱ, 𝑆ᇱሻ ≺௎ை (𝑅, 𝑆ሻ. 
Proof. For every 𝑟, 𝑠,𝜃ଵ,𝜃ଶ > 0  and 𝜃ଵଶ ≤ 𝜃ଵଶᇱ , we 

have 𝐹⃐ோ,ௌ(𝑟, 𝑠ሻ = 𝑒ିఏభ௥𝑒ିఏమ௦൫𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ − 1൯≥ 𝑒ିఏభ௥𝑒ିఏమ௦൫𝑒ିఏభమᇲ ௥ + 𝑒ିఏభమᇲ ௦ − 1൯≥ 𝐹⃐ோᇲ,ௌᇲ(𝑟, 𝑠ሻ. 
Hence, (𝑅ᇱ,𝑆ᇱሻ ≺௎ை (𝑅, 𝑆ሻ  and this completes the 

proof.                                                           
1.2. Association measures and tail dependence 
Two common measures of concordance between 

continuous random variables 𝑋 and 𝑌 are Kendall’s tau 
(𝜏) and Spearman’s rho (𝜌௦). In the following, after some 
elementary (but tedious) algebra, we provide explicit 
expressions for these measures based on the survival 
function (6). 

Proposition 2.4. If (𝑅, 𝑆ሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ, 𝜃ଶ,𝜃ଵଶሻ with 
the survival function 𝐹⃐ோ,ௌ in (6), then we have 𝜏 = 4𝐸 ቀ𝐹⃐ோ,ௌ(𝑅, 𝑆ሻቁ − 1= −2𝑎𝑏, 

and 𝜌௦ = 12න ൣ𝐹⃐ோ,ௌ(𝑟, 𝑠ሻ − 𝐹⃐ோ(𝑟ሻ𝐹⃐ௌ(𝑠ሻ൧(଴,ஶሻమ 𝑓ோ(𝑟ሻ𝑓ௌ(𝑠ሻ𝑑𝑟𝑑𝑠= −3𝑎𝑏, 
where 𝑎 = ఏభమଶఏభାఏభమ and 𝑏 = ఏభమଶఏమାఏభమ. 
The plots of 𝜏  and 𝜌௦  with respect to 𝑎  and 𝑏  are 

 
 
 

Figure 2. Kendall’s 𝜏 plots against 𝑎 and 𝑏 
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shown in Figures 2 and 3, respectively. Based on Figure 
2, as the value of 𝑎  and 𝑏  tend to 1 , the value of 
dependence measure 𝜏  decreases to −1  and the 
dependency becomes stronger. Also, Figure 3 illustrates 
that the strength of dependence increases to 𝜌௦ = −1 as 𝑎 and 𝑏 become large. 

The lower and upper tail dependence coefficients 𝜆௅ 
and 𝜆௎ are another dependence measures that are defined 
by 𝜆௅ = lim௧→଴శ𝑃൫𝑅 ≤ 𝐹ோି ଵ(𝑡ሻ|𝑆 ≤ 𝐹ௌି ଵ(𝑡ሻ൯  and 𝜆௎ =lim௧→ଵష𝑃൫𝑅 > 𝐹ோି ଵ(𝑡ሻ|𝑆 > 𝐹ௌି ଵ(𝑡ሻ൯ , respectively (see 
Nelsen (28)). The following proposition presents the tail 
dependence coefficients for 𝐹⃐ோ,ௌ in (6). 

Proposition 2.5. If (𝑅, 𝑆ሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ , 
then 𝜆௅ = 𝜆௎ = 0. 

Proof. Let 𝛼 = ఏభమఏభାఏభమ  and 𝛽 = ఏభమఏమାఏభమ  as defined in 
Proposition 2.1. For every 𝛼,𝛽 ∈ (0,1ሻ, we have 𝐹⃐ோ,ௌ ቀ𝐹ோି ଵ(𝑡ሻ,𝐹ௌି ଵ(𝑡ሻቁ= (1 − 𝑡ሻଶିఈିఉ൫(1 − 𝑡ሻఈ + (1 − 𝑡ሻఉ − 1൯. 

So, 
 𝜆௅ = lim௧→଴శ𝑃 ቀ𝑅 ≤ 𝐹ோି ଵ(𝑡ሻ|𝑆 ≤ 𝐹ௌି ଵ(𝑡ሻቁ= lim௧→଴శ 1𝑡 ൬2𝑡 − 1 + 𝐹⃐ோ,ௌ ቀ𝐹ோି ଵ(𝑡ሻ,𝐹ௌି ଵ(𝑡ሻቁ൰= lim௬→ଵష 11 − 𝑦 ቀ1 − 2𝑦 + 𝑦ଶିఈିఉ൫𝑦ఈ + 𝑦ఉ − 1൯ቁ = 0. 
Also, 

𝜆௎ = lim௧→ଵష𝑃൫𝑅 > 𝐹ோି ଵ(𝑡ሻ|𝑆 > 𝐹ௌି ଵ(𝑡ሻ൯= lim௧→ଵష 11 − 𝑡 ቀ𝐹⃐ோ,ௌ(𝐹ோି ଵ(𝑡ሻ,𝐹ௌି ଵ(𝑡ሻቁ= lim௬→଴శ 1𝑦 ቀ𝑦ଶିఈିఉ൫𝑦ఈ + 𝑦ఉ − 1൯ቁ = 0. 
So, the proof is complete. 
1.3. Stress-strength index 
In reliability analysis, the stress-strength model 

evaluates a system’s reliability using random variables 𝑅 
for stress (supply) and 𝑆  for strength (demand). The 
system fails when stress exceeds strength, leading to the 
reliability expression 𝑃(𝑅 < 𝑆ሻ . The stress-strength 
index can be calculated using competing risk models, 
where failure times 𝑅  and 𝑆  are considered latent. We 
define the failure time as 𝑇 = min(𝑅, 𝑆ሻ and the failure 
cause 𝐶 = 1 , if 𝑅 < 𝑆  and 𝐶 = 2 , if 𝑅 > 𝑆 . The 
corresponding sub-distribution functions are given by: 𝐹∗(1, 𝑡ሻ = 𝑃(𝐶 = 1,𝑇 ≤ 𝑡ሻ = න 𝑓∗௧

଴ (1, 𝑧ሻ𝑑𝑧, 
and 𝐹∗(2, 𝑡ሻ = 𝑃(𝐶 = 2,𝑇 ≤ 𝑡ሻ = න 𝑓∗௧

଴ (2, 𝑧ሻ𝑑𝑧, 
 
where 𝑓∗(1, 𝑡ሻ = −∂𝐹⃐(𝑥,𝑦ሻ/ ∂𝑥|௫ୀ௬ୀ௧  and 𝑓∗(2, 𝑡ሻ = −∂𝐹⃐(𝑥,𝑦ሻ/ ∂𝑦|௫ୀ௬ୀ௧  are sub-density 

functions. Consequently, the stress-strength index is 
defined as 𝑃(𝑅 < 𝑆ሻ = 𝐹∗(1,∞ሻ  and 𝑃(𝑅 > 𝑆ሻ =𝐹∗(2,∞ሻ. According to the competing risk model, the 
stress-strength index for the proposed model is expressed 
as follows. 

Proposition 2.6. Let (𝑅, 𝑆ሻ ∼ 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ , 

 
 

Figure 3. Spearman’s 𝜌௦ plots against 𝑎 and 𝑏 
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then 𝑃(𝑅 < 𝑆ሻ = 2𝜃ଵ + 𝜃ଵଶ𝜃ଵ + 𝜃ଶ + 𝜃ଵଶ − 𝜃ଵ𝜃ଵ + 𝜃ଶ, 
or equivalently 𝑃(𝑅 < 𝑆ሻ = 2𝛽 − 𝛼𝛽𝛽 + 𝛼 − 𝛼𝛽 − 𝛽 − 𝛼𝛽𝛽 + 𝛼 − 2𝛼𝛽. 
Proof. Based on (6), we have 𝑓∗(1, 𝑡ሻ = −∂𝐹⃐ோ,ௌ(𝑟, 𝑠ሻ∂𝑟 |௥ୀ௦ୀ௧= 𝜃ଵ𝑒ି(ఏభାఏమሻ௧൫2𝑒ିఏభమ௧ − 1൯+ 𝜃ଵଶ𝑒ି(ఏభାఏమାఏభమሻ௧. 
Thus, 𝐹∗(1, 𝑡ሻ = න 𝑓∗௧

଴ (1,𝑢ሻ𝑑𝑢= 2𝜃ଵ + 𝜃ଵଶ𝜃ଵ + 𝜃ଶ + 𝜃ଵଶ ൫1 − 𝑒ି(ఏభାఏమାఏభమሻ௧൯ − 𝜃ଵ𝜃ଵ + 𝜃ଶ ൫1 − 𝑒ି(ఏభାఏమሻ௧൯. 
Therefore, 𝑃(𝑅 < 𝑆ሻ = lim௧→ାஶ𝐹∗(1, 𝑡ሻ= 2𝜃ଵ + 𝜃ଵଶ𝜃ଵ + 𝜃ଶ + 𝜃ଵଶ − 𝜃ଵ𝜃ଵ + 𝜃ଶ . 
 
Using 𝛼 = ఏభమఏభାఏభమ  and 𝛽 = ఏభమఏమାఏభమ , we obtain the 

second statement. 
As a result, the obtained stress-strength parameter can 

be estimated as follows: 𝑃෠(𝑅 < 𝑆ሻ = 2𝜃෠ଵ + 𝜃෠ଵଶ𝜃෠ଵ + 𝜃෠ଶ + 𝜃෠ଵଶ − 𝜃෠ଵ𝜃෠ଵ + 𝜃෠ଶ . 
Remark 2.3. If 𝜃ଵ = 𝜃ଶ or equivalently 𝛼 = 𝛽, then 𝑃(𝑅 < 𝑆ሻ = ଵଶ. 
Figure 4 illustrates the stress-strength index for 

different values of 𝛼 and 𝛽. According to this figure, we 
conclude that as 𝛼  increases, the estimated stress-
strength index decreases approximately. Also, if 𝛽 
increases, then 𝑃෠(𝑅 < 𝑆ሻ increases approximately. 

Results and Discussion 
In this section, we introduce the generation of random 

data from the proposed model 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ  and 
estimate of its parameters. 
 
1. Random number generation 

Simulating random numbers is essential for 
understanding the behavior of a model. To generate the 
random numbers from 𝐵𝑁𝑀𝑂(𝜃ଵ, 𝜃ଶ,𝜃ଵଶሻ, the following 
algorithm is introduced. 

Algorithm 3.1. Random number generation from 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ 
The algorithm is carried out in the following three 

steps: 
• Step 1: Generate three independent random 

variables 𝑇௜ ∼ 𝐸(𝜃௜ሻ for 𝑖 = 1,2 and 𝑈 ∼ 𝑈(0,1ሻ. 
• Step 2: Set 𝑅 = min{𝑇ଵ,𝐹 భ்మିଵ(𝑈ሻ}  and 𝑆 =min{𝑇ଶ,𝐹 భ்మିଵ(1 − 𝑈ሻ} , where 𝐹 భ்మିଵ(. ሻ  is the quantile 

function of 𝑇ଵଶ ∼ 𝐸(𝜃ଵଶሻ. 
• Step 3: The desired pair is (𝑅, 𝑆ሻ. 
 
Figure 5 shows scatterplots of 750 generated data 

from Algorithm 3.1. As the dependence parameter 𝜃ଵଶ 
increases, the dependence increases. 
 
2. Estimation method 

Here, we estimate the parameters using the maximum 
likelihood (ML) method. Consider the random sample of 
size 𝑚 , namely {(𝑟ଵ, 𝑠ଵሻ, … , (𝑟௠, 𝑠௠ሻ}  distributed from 𝐵𝑁𝑀𝑂(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ . Let 𝑚ଵ  and 𝑚ଶ  be the number of 
observations for which 𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ > 1  and 𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ = 1, respectively, such that 𝑚ଵ + 𝑚ଶ =𝑚. Then, the log-likelihood function for a given sample 
of observations is obtained by 

 
 

Figure 4. Stress-strength index for varying dependence parameters, 𝛼 and 𝛽 
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𝑙(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ = −𝜃ଵ ∑ 𝑟௝௠భ௝ୀଵ − 𝜃ଶ ∑ 𝑠௝௠భ௝ୀଵ  + ∑ ln௠భ௝ୀଵ ൫𝜃ଶ(𝜃ଵ + 𝜃ଵଶሻ𝑒ିఏభమ௥ೕ + 𝜃ଵ(𝜃ଶ + 𝜃ଵଶሻ𝑒ିఏభమ௦ೕ − 𝜃ଵ𝜃ଶ൯  + 𝑚ଶln ቀ ఏభమఏభାఏభమቁ + ఏమఏభమ ∑ ln௠௝ୀ௠భାଵ ൫1 − 𝑒ିఏభమ௥ೕ൯,
     

 

(11) 
where the observations are classified such that {(𝑟ଵ, 𝑠ଵሻ, … , ൫𝑟௠భ , 𝑠௠భ൯} ∈ 𝐴  and {൫𝑟௠భାଵ, 𝑠௠భାଵ൯, … , (𝑟௠, 𝑠௠ሻ} ∈ 𝐴௖  and 𝐴 ={(𝑟௜ , 𝑠௜ሻ|𝑒ିఏభమ௥ + 𝑒ିఏభమ௦ > 1} . 

Based on the normal equations (given in the Appendix), 
if either 𝑚ଵ or 𝑚ଶ are zero, then the ML estimator may 
lack uniqueness. However, this will not pose a problem 
since 𝑃(𝑚ଵ = 0ሻ = ൣ𝑃൫𝑒ିఏభమோ + 𝑒ିఏభమௌ > 1൯൧௠ → 0  𝑎𝑠  𝑚 → ∞, 

and 𝑃(𝑚ଶ = 0ሻ = ൣ𝑃൫𝑒ିఏభమோ + 𝑒ିఏభమௌ = 1൯൧௠ → 0  𝑎𝑠  𝑚 → ∞. 
For moderate sample size 𝑚 , the events ሾ𝑚ଵ = 0ሿ 

and ሾ𝑚ଶ = 0ሿ  are rare. When 𝑚ଵ,𝑚ଶ > 0 , the normal 
equations (detailed in the Appendix) cannot be solved 
analytically, necessitating numerical methods. However, 
we found these methods to be less efficient than directly 
maximizing the log-likelihood function in (11). This 
maximization can be executed using the optim function 
in R. Initial values for optimization are obtained through 
the global non-linear optimization package "Rsolnp" in R 
version 3.6.1 (Ghalanos et al. (31)). We consider the 
constraints 𝜃ଵ,𝜃ଶ, 𝜃ଵଶ > 0  and identified local maxima 
for various values of 𝜃ଵ, 𝜃ଶ,𝜃ଵଶ. The global maximum is 
selected using the relation: ൫𝜃෠ଵ,𝜃෠ଶ,𝜃෠ଵଶ൯ = argmaxఏభ,ఏమ,ఏభమ∈௵𝑙(𝜃ଵ,𝜃ଶ,𝜃ଵଶሻ.    (12) 

 
3. Performance analysis 

Next, a finite sample performance of the estimators 

for marginal parameters (𝜃ଵ,𝜃ଶሻ  and dependence 
parameter 𝜃ଵଶ  is given. The performance is evaluated 
according to the bias and mean squared error (MSE) of 
the ML estimators introduced in the previous section. A 
specific sample size 𝑚  has been taken from 𝐵𝑁𝑀𝑂(1,3,0.8ሻ and MSEs have been calculated based 
on 10,000 iterations. The results are shown in Figure 6. 
The ML estimator performs very well for small sample 
sizes. Notably, after some fluctuations, the bias values 
stabilize around zero as the sample size increases. It is 
important to mention that the MLE consistently found a 
unique global maximum that did not lie on the boundary 
of the parameter space. The computational time to 
determine this global maximum, after testing all initial 
value combinations, was under 7 hours. 

 
4. A real data analysis 
This section illustrates the results of applying the 

BNGM distribution to a dataset on mercury (Hg) 
concentration in large-mouth bass, as explored by 
Mohsin et al. (32). Data were collected from 53 Florida 
lakes to study the factors affecting mercury levels in bass. 
Water samples were collected from the surface middle of 
each lake on specific dates, where measurements of 
alkalinity (mg/l), calcium (mg/l), and chlorophyll (mg/l) 
were taken, using averages from August and March. Fish 
samples, ranging from 4 to 44 individuals per lake, were 
then analyzed for minimum mercury concentration 
( 𝜇 g/g).  Lange et al. (33) noted that mercury 
bioaccumulation in large-mouth bass is significantly 
influenced by the lakes’ chemical characteristics, making 
calcium and minimum mercury concentration key 
variables of interest. We apply the proposed distribution 

 
 

Figure 5. Scatterplot of 750 generated data using Algorithm 3.1 for different values of dependence parameter 𝜃ଵଶ = 1.5,3,7 (from 
left to right) and fixed marginal parameters 𝜃ଵ = 𝜃ଶ = 1 
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to model this data, noting that the 40௧௛ row, considered 
an outlier, was omitted as stated by Mohsin et al. (32). A 
summary of the data is presented in Table 1. The 
dependency values of 𝜌௦  and 𝜏  indicate a moderate 
relationship between the variables. We have fitted an 
exponential distribution to the marginal data, which are 
summarized in Table 2 and illustrated in Figure 7. Clearly 
the marginal distributions are well fitted to the data. With 
the confirmation that the marginal data follows an 
exponential distribution, we will fit the joint model to the 
Mercury and Calcium data and compare it to the results 
in Mohsin et al. (32). These results are shown in Table 3. 
The BNMO model outperforms the BALE model from 
Mohsin et al. (32). Both models fit the data well 
according to the Kolmogorov-Smirnov goodness-of-fit 
criteria. Figure 8 illustrates the scatter plot of actual 
versus simulated Mercury and Calcium data derived from 
the fitted BNMO model. 
 

Conclusion 
In practical applications, systems of components are 

frequently subjected to various shocks, which impact 
their reliability. According to the well-known MO 
bivariate shock model in (1), it is challenging to assign 
the probability of a common shock ( 𝑇ଵଶ ) to each 
component (𝑋ଵ  and 𝑋ଶ). We address this limitation by 
proposing a new MO shock model, which offers 
beneficial properties such as dependency characteristics 
and a closed-form formula for the strength parameter, 
enhancing its applicability. There are few bivariate 
exponential distributions with a negative dependence 
structure, making our model particularly appealing. 
However, the presence of a singular component 
complicates parameter estimation. We have developed an 
estimation method and conducted a performance analysis 
to assess its effectiveness. Applying our model to real 
data demonstrates that it outperforms existing models. 

 

 
 

Figure 6. Performance analysis of ML estimators based on MSE and bias for (𝜃ଵ, 𝜃ଶ,𝜃ଵଶ)=(1,3,0.8) using 10,000 independent 
replications 

 

 
 

Table 1. Descriptive statistics of data vectors Mercury and Calcium 
Statistics Mercury Calcium 
Minimum 0.04 1.1 𝟏𝐬𝐭-Quantile 0.09 3.3 

Median 0.25 12.6 
Mean 0.27 22.2 𝟑𝐫𝐝-Quantile 0.33 35.6 

Maximum 0.92 90.7 
SD 0.22 24.93 

Spearman’s rho -0.536 
Kendall’s tau -0.392 
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Appendix 

Let 𝜃෨ = (𝜃ଵ, 𝜃ଶ, 𝜃ଵଶሻ and for all 𝑗: 𝛥௝ = 𝜃ଶ(𝜃ଵ + 𝜃ଵଶሻ𝑒ିఏభమ௥ೕ + 𝜃ଵ(𝜃ଶ + 𝜃ଵଶሻ𝑒ିఏభమ௦ೕ − 𝜃ଵ𝜃ଶ. 
The normal equations for estimating parameters are as follows: ∂𝑙൫𝜃෨൯∂𝜃ଵ = −෍𝑟௝௠భ

௝ୀଵ + ෍ 1𝛥௝௠భ
௝ୀଵ ൫𝜃ଶ𝑒ିఏభమ௥ೕ + (𝜃ଶ + 𝜃ଵଶሻ𝑒ିఏభమ௦ೕ − 𝜃ଶ൯ − 𝑚ଶ𝜃ଵ + 𝜃ଵଶ ,

∂𝑙൫𝜃෨൯∂𝜃ଶ = −෍𝑠௝௠భ
௝ୀଵ + ෍ 1𝛥௝௠భ

௝ୀଵ ቀ(𝜃ଵ + 𝜃ଵଶሻ𝑒ିఏభమ௥ೕ + 𝜃ଵ𝑒ିఏభమ௦ೕ + 𝜃ଵቁ
+ 1𝜃ଵଶ ෍ log௠

௝ୀ௠భାଵ ൫1 − exp{−𝜃ଵଶ𝑟௝}൯,
and∂𝑙൫𝜃෨൯∂𝜃ଵଶ = ෍−1𝛥௝௠భ

௝ୀଵ ൫𝜃ଶ(𝜃ଵ + 𝜃ଵଶሻ𝑒ିఏభమ௥ೕ𝑟௝ + 𝜃ଵ(𝜃ଶ + 𝜃ଵଶሻ𝑒ିఏభమ௦ೕ𝑠௝൯
+𝑚ଶ𝜃ଵଶ − 𝑚ଶ𝜃ଵ + 𝜃ଵଶ − 𝜃ଶ𝜃ଵଶଶ ෍ log௠

௝ୀ௠భାଵ ൫1 − exp{−𝜃ଵଶ𝑟௝}൯
+ 𝜃ଶ𝜃ଵଶ ෍ 𝑟௝𝑒ିఏభమ௥ೕ1 − exp{−𝜃ଵଶ𝑟௝}௠

௝ୀ௠భାଵ .
 

 


