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Abstract

This paper presents a bivariate distribution that improves the Marshall-Olkin
exponential shock model. The new construction method enhances the model’s capacity
to include a common joint shock across components, making it especially suitable for
reliability and credit risk assessments. The model features a single component and
supports negative dependence structures. We investigate the key dependence properties
and conduct a stress-strength analysis. After evaluating the performance of the parameter
estimator, chemical engineering data is analyzed.
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Introduction

The univariate exponential distribution is known for
its applications in different fields such as reliability,
telecommunication, hydrology, medical sciences and
environmental science; see, e.g., Balakrishnan (1).
Several bivariate and multivariate extensions have been
proposed in the literature (Lai and Balakrishnan (2),
Chapter 10), with a significant multivariate extension
introduced Marshall and Olkin (3) through a shock
model. For three independent exponential random
variables T; ~ E(0,), T, ~ E(6,), and Ty, ~ E(6,,),
the Marshall-Olkin (MO) shock model is derived from
the stochastic representation

(X,Y) = (min{T}, T12}, min{Ty, T15}), ey
with the joint survival function given by
S(x,y) = exp{—01x — 0,y — 6max(x, y)}. 2

Due to the common shock identified by Ty, in (1), we
have P(X = Y) = —22__ ifg,, > 0, the distribution

01+60,+617’
(1), has a singular component along the line {x = y}.

Therefore, the MO exponential distribution has both
singular and continuous parts in its density and covers a
positive dependence structure.

Numerous studies have examined models and
modifications based on the foundational work of
Marshall and Olkin (3), particularly in reliability,
finance, actuarial science, and credit risk (e.g., Cherubini
et al. (4), Lindskog and McNeil (5)). Recently, Cherubini
and Mulinacci (6) emphasized the MO model’s
importance and adaptability for analyzing systemic crises
in credit risk and financial contexts. They noted that the
MO model captures unobserved shocks affecting
individuals either independently or collectively, using
common shocks to explain simultaneous defaults within
clusters influenced by the same factor. The model also
maintains the marginal exponential distribution for
observed default times.

Several bivariate and multivariate extensions of the
exponential distribution have been developed for
reliability applications. For instance, Esary and Marshall
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(7) characterized a multivariate exponential distribution
and established conditions for positive dependence
among distributions with exponential minima. Raftery
(8) introduced a continuous multivariate exponential
distribution that accommodates various correlation
structures while achieving Fréchet bounds in the
bivariate case. A multivariate exponential distribution
based on the limiting behavior of normalized maxima or
minima was introduced by Tawn (9). Lin et al. (10)
examined a shared-load model of the multivariate
exponential distribution for dependent redundancies.
Constant  failure rate multivariate  exponential
distributions were defined by Basu and Sun (11), while
Gomez et al. (12) introduced the multivariate power
exponential distribution. An analytical method for
assessing the reliability of coherent systems with
dependent components based on the MO model was
proposed by Cui and Li (13). Additionally, Fan et al. (14)
developed a multivariate exponential survival tree
procedure utilizing a score test statistic from a parametric
exponential frailty model, and Kundu and Gupta (15)
presented parameter estimation for a new bivariate
exponential distribution using an EM algorithm.
Generalized bivariate MO distributions, with the
common MO model as a special case, were investigated
by Li and Pellerey (16). Bayesian estimation for the MO
bivariate Weibull distribution was conducted by Kundu
and Gupta (17), and Bayramoglu and Ozkut (18) applied
the MO model considering system structure. A
multivariate proportional reversed hazard model derived
from the MO copula was discussed by Kundu et al. (19),
while Cha and Badia (20) proposed a multivariate
exponential distribution model based on dependent
dynamic shock models. A multivariate weighted
exponential distribution for failure time data analysis was
developed by Al-Mutairi et al. (21). Recently,
Mohtashami-Borzadaran et al. (22) enhanced the MO
shock model by incorporating a distortion function,
broadening its applicability. Additionally, E1 Ktaibi et al.
(23) introduced a bivariate copula based on a bivariate
exponential distribution with negative dependence,
Bentoumi et al. (24) developed by using the counter-
monotonic shock model. Lee and Cha (25) developed a
new class of continuous bivariate distributions based on
a shock model. Agrawal et al. (26) proposed a bivariate
distribution for modelling competing risks data with
singularity originating from a shock model. A variant of
the bivariate Poisson common shock model was
presented in Genest et al. (27).

From a shock model perspective, the MO model (1)
has limitations due to the assumption of shock equality in
the common shock T;,, suggesting that Ty, is likely
equal for components X; and X, . Our new model
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addresses this limitation by allowing for a random
percentage of common stock on each component. Most
existing bivariate and multivariate exponential
distribution extensions exhibit positive dependence
structures, with negative dependence structures being
rare.

In this paper, which was first posted at arXiv
Mohtashami-Borzadaran et al. (28), we propose a new
bivariate exponential shock model that accommodates
negative dependence structures as well. Section 2
presents the new shock model and its flexibility
compared to the MO model. Section 3 outlines the
model’s main properties, including dependence structure,
association measures, tail dependence measures, and
stress-strength index. Section 4 focuses on parameter
estimation for the new model, which poses challenges
due to its singular component, followed by a performance
analysis of the estimators. Section 5 applies the model to
real data, demonstrating its superior fit.

Materials and Methods

Consider three independent exponential random
variables T; ~ E(08,), T, ~ E(6,), and Ty, ~ E(6,5),
along with an independent uniform random variable U ~
U(0,1), which is independent of Ty, T,, and T} ,. Let a4,
(taking values +1) be the dependence structure of the
model where @y, = +1 concludes positive and a;, =
—1 gives negative dependence structure. When a;, =
+1, set Tip(ar2) = Tr1(ar) = FT_é(U) or Tiy(ay,) =
T3, (ay,) = Fr_é 1-0). If ay; = -1, put Tj3(ayz) =
F’Fé ), T31(a12) = Fr_é 1-u) or T () =
Frl(1 = U),T;;(ay;) = Fr,l(U) where Fr, is the
corresponding distribution function of T;,. Then, the
bivariate MO random vector (R, S) covering all degree
of dependence is
(R,S) = (min{Ty, Ti5(a12)}, min{T,, T51 (@12)}). (3)

Clearly, when a;, = +1, the vector (R, S) reduces to

(R,S) = (min{Ty, Ty}, min{T,, T1,}),

which is the well-known MO model given in
Marshall and Olkin (3) that has positive dependence
structure. When @,, = —1, the random vector (R,S)
gives a new MO model with negative dependence
structure (see Proposition 2.2) which is called the
bivariate negative MO  model, denoted by
BNMO(6,,6,,6,,). This model is obtained by
(R,S) = (min{Ty, F5. (1)}, min{T,, F;1 (1 — U)}), (4)

or
(R,S) = (min{Ty, F5.2 (1 — U)}, min{T,, F5.2 (1)}). (5)

Throughout this paper, we focus on the (R, S) given
in (4).
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Figure 1. Shock models based on the construction in (4)

A similar construction for a bivariate Poisson model
has been given by Genest et al. (27).

The interpretation for this construction is different
from the well-known MO model. Consider Figure 1
given based on the relation (4). If U > ;, then the
dependent shock is more likely to be powerful on the first
component R (Figure 1 (A)) and, if U < ;, the dependent

shock is more likely to be powerful on S (Figure 1 (B)).
The survival function of both vectors (4) and (5) for
0,,0,,6,, >0is

FR,S(rr s)

(0)
This model has a singular part at e 912" + ¢ =0125 =
1. The probability density function of (4) when e 0127 4
e %125 > 1is
frs(r,s) = e_glr_gzs(Hz (01 + 01)e %2 +
01(6; + 0;2)e~%12° — 6,06,).
@)

The following statement gives the probability of the
singular part.

Proposition 2.1. Suppose (R,S) ~

=Pz —_ b2

BNMO0(6,,6,,6,,) and let a:= oon P = o000
Then

11
P(e—912R + 6_8125 = 1) = Beta (E;E)l

where Beta(a, b) = folxa—l (1 — x)b~Ldx.
Proof. Based on (Joe (29), Theorem 1.1, p. 15), for
6—9127’ + e—9125 - 1’ we have
g(r) 6y,
fsir (s|r)ds = ———(1
0 SI® 91 + 912

where g(r) = 9_—11n(1 —exp{—0,,7}). Let h(r) =
12

1-—

1—{ Og . fsir (s|r)ds. By using the construction in (4)
and Theorem 1.1 in Joe (27), we get

P(T1 >7,T, > s, Fp,, (N <U<1 —FTu(s)),

e 017 e~ %25 max{e 012" 4 ¢ %125 — 1,0},

P(e—euR + e 0125 = 1) =

— exp{—0;,7}%/%22,
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c(u,v) =

IR @ fa(rydr

I~ 62
fg+ 0,5 [1 — exp(—01,7)]%12exp(—(6; + 6,2)r)dr

- Beta (%,i) .

®)
Remark 2.1. If 6, = 8, = 6;, or equivalently a =

= 1, then
2

B
1

P(e012k 4 &0 = 1) =
The survival copula associated with (6) is achieved
by
C(u,v) = u v Pmax{u® + vf —
1,0}, «,B,u,veE(0,1),
and the corresponding copula density is given as

)

11
+ Beta (;E) lyaiwp =0y v), @ B,u,v € (0,1),

(10)
where I;(u, v) is an indicator function getting 1 if
(u,v) € A and zero elsewhere.

Remark 2.2. El Ktaibi et al. (23) introduced only the
survival copula (9) in parallel with this paper in an almost
similar way to the present study by defining 8 : = a = f5.
They wused four independent exponential random
variables that have a common parameter, which is the
factor that creates the dependency. One part of this
parameter ultimately appears as the dependence
parameter of the survival copula. Instead, this paper uses
three independent exponential random variables with
different parameters, and one of them is included as a
factor for establishing dependence in the model (1).
Therefore, unlike, El Ktaibi et al. (23) the present study
uses a common random variable instead of a parameter
to develop the dependency. So, the results of El Ktaibi et
al. (23) are a special case of the present study with only
one dependence parameter.

A-au*+A-prvFf-1-a)1- ﬁ)u‘“v'ﬁl(ua+v371>o)(u, v)
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1. Some distributional properties

In this section, we present some properties of BNMO
model such as dependence structure, association
measures, tail dependence measures and stress-strength
index.

1.1. Dependence structure

Let (X,Y) be a random vector with a survival
function F. The pair (X,Y) is said to be the right corner
set decreasing, denoted by RCSD(X,Y), whenever for
any x; < x, and y; <y, we have

F(x1,y1)F(x2,y2) — F(x1,¥2)F(x2, 1) <0,
that is equivalent to

e ;S In (ﬁ(r, s)) <0.

RCSD(X,Y) implies negative dependence structures
like RTD(X|Y), RTD(Y|X) and NQD(X,Y) (for more
information see Nelsen (30)). The following statement
specifies the dependence structure of the proposed
model.

Proposition 2.2. If (R,S) ~ BNMO0(6,,0,,6:,) ,
then we have RCSD(R, S).

Proof. For all 84, 0,,60,, € R, we obtain
2 _glzze—elzr—ﬂlzs

5] .
dr ds In (FR'S(r‘ S)) = (1 — g~ 012r — 3—9125)2 <0,

which implies RCSD (R, S) and the proof'is complete.
The random vectors (X;,Y;) and (X,,Y,) can be
compared in terms of their dependence structure via the
upper orthant (UO) order. For any two vectors such as
(X, Y1), (X5, Y5), we say (X,Y;) is less than (X,,Y;) in
UO order and write (Xy,Y;) <yo (X3,Y,) whenever

Kendall’s tau
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Fy v, (x,¥) < Fy, v, (x,y) forall x, y.

Proposition 2.3. Let (R,S) ~ BNMO(6,,0,,6:,)
and (R',S") ~BNMO(0,,6,,0;;) . If 6,, < 6], then
(R',S") <yo (R,S).

Proof. For every r,s,60,,0, > 0 and 6, < 6;,, we
have

ﬁR,s(T. 5) = e‘glre‘925(e—91zr + 0125 _ 1)

e—Blre—st(e—G{Zr + e~ 0125 — 1)

ﬁR’,S' (r, S).
completes the

v

\

Hence, (R',S") <yo (R,S) and this
proof.

1.2. Association measures and tail dependence

Two common measures of concordance between
continuous random variables X and Y are Kendall’s tau
() and Spearman’s rho (p;). In the following, after some
elementary (but tedious) algebra, we provide explicit
expressions for these measures based on the survival
function (6).

Proposition 2.4.If (R,S) ~ BNM0(6,, 6, 6,,) with
the survival function F, r.s in (6), then we have

T = 4E (ﬁR,S(R,S)) -1
= —2ab,
and
by = 12 f( NEECORACIIOIACIAOLEE
0,00)2
= _3ab,
where @ = =22 and b = —212
201+61, 202+612
The plots of 7 and pg; with respect to a and b are
Kendall’s tau
‘?' -
-
- CIJ _
‘?' —
Cli o
,T' —

Figure 2. Kendall’s T plots against a and b
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Figure 3. Spearman’s py plots against a and b

shown in Figures 2 and 3, respectively. Based on Figure
2, as the value of a and b tend to 1, the value of
dependence measure 7 decreases to —1 and the
dependency becomes stronger. Also, Figure 3 illustrates
that the strength of dependence increases to ps = —1 as
a and b become large.

The lower and upper tail dependence coefficients 4,
and Ay are another dependence measures that are defined
by 4, = lim,_o+P(R < Fz1(t)|S < F1(t)) and 4y =
lim,,-P(R > FR1(£)|S > Fs*(t)) , respectively (see
Nelsen (28)). The following proposition presents the tail
dependence coefficients for F r.s in (6).

Proposition 2.5. If (R,S) ~ BNMO0(6,,0,,6:,) ,
then 1, = A1, = 0.

Proof. Let a = PR and g = 92(11;12

Proposition 2.1. For every a, 8 € (0,1), we have
Frs (FH (0. F5*(®))
=1-0*F(A-0*+1-0f -1).

012

as defined in

So,
A = Jim P (R < FFio)|s < Fs"l(t))
.1 o -1 -1
= lim, ?(Zt — 14 Fg (FR (), F; (t)))
= lim L(1 -2y +yT By  +yF - 1)) =0.
y-1" 1- y
Also,
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Ay

; —1 -1
tlLI}‘l_P(R > FRL(0)]S > Fs'()

o1 _

- lim — (FR‘S(FR 1(b), F; 1(t))
o1,

- Ao ) o

So, the proof is complete.

1.3. Stress-strength index

In reliability analysis, the stress-strength model
evaluates a system’s reliability using random variables R
for stress (supply) and S for strength (demand). The
system fails when stress exceeds strength, leading to the
reliability expression P(R < S) . The stress-strength
index can be calculated using competing risk models,
where failure times R and S are considered latent. We
define the failure time as T = min(R, S) and the failure
cause C=1, f R<S and C=2, if R>S. The
corresponding sub-distribution functions are given by:

t
F*(,t)=P(C=1T<t)= f f*(1,2z)dz,
0
and

Fr2,t)=P(C=2T<t)= ftf* (2,2)dz,

where f*(,t) =—- aﬁ(x, V)] 0x|ymy=t and
fr@2,t)=- aF (x, ¥)/ 0Ylx=y=¢  are  sub-density
functions. Consequently, the stress-strength index is
defined as P(R<S)=F*(1,0) and P(R>S) =
F*(2,0). According to the competing risk model, the
stress-strength index for the proposed model is expressed
as follows.

Proposition 2.6. Let (R,S) ~ BNMO0(60,,6,,6,,),
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then
20, +6 0
PR<S) =—"——2 ——1—
6,+6,+6, 06,+6,
or equivalently
2B —ap B—ap

P(R<S) = - .
( ) B+a—af [ +a-—2af
Proof. Based on (6), we have

F = — 0Fgs(1,5)

r=s=t
- 916—(01+92)t(2€—012t _ 1)
+ 9126_(91+92+912)t.

Thus,
t
Frt) = ff*(l,u)du
0
o 20 H0n o rerenny_ 01 _ et
= i ey, (e ) g, (1m0,
Therefore,
PR<S) = Jim F*(1,6)
20,46y, o,
T 0,+0,+60,, 6,46,
Using a = %12 and B = %12 e obtain the
01+612 024612 °

second statement.

As aresult, the obtained stress-strength parameter can
be estimated as follows:

20, +0,, 6,

0,+0,+8,, 6,+0,

Remark 2.3. If 8, = 8, or equivalently @ = 8, then
P(R<S) ==

Figure 4 illustrates the stress-strength index for
different values of @ and 8. According to this figure, we
conclude that as « increases, the estimated stress-
strength index decreases approximately. Also, if
increases, then P(R < S) increases approximately.

P(R<S) =
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Results and Discussion
In this section, we introduce the generation of random
data from the proposed model BNMO(6,,6,,6;,) and
estimate of its parameters.

1. Random number generation

Simulating random numbers is essential for
understanding the behavior of a model. To generate the
random numbers from BNMO (6, 6,, 6,,), the following
algorithm is introduced.

Algorithm 3.1. Random number generation from
BNMO(64,65,6,,)

The algorithm is carried out in the following three
steps:

e Step 1: Generate three independent random
variables T; ~ E(0;) fori = 1,2and U ~ U(0,1).

« Step 2: Set R =min{T},F; (U)} and S =
min{T,, Fr,2(1 = U)}, where Fzl(.) is the quantile
function of T, ~ E(0,,).

 Step 3: The desired pair is (R, S).

Figure 5 shows scatterplots of 750 generated data
from Algorithm 3.1. As the dependence parameter 6,
increases, the dependence increases.

2. Estimation method

Here, we estimate the parameters using the maximum
likelihood (ML) method. Consider the random sample of
size m, namely {(ry,5;), ..., (i, Sp)} distributed from
BNMO(64,6,,6,,). Let m; and m, be the number of
observations for which e~%12" +e70125 > 1 and
e~0127 4 70125 = 1, respectively, such that m; + m, =
m. Then, the log-likelihood function for a given sample
of observations is obtained by

Stress-Strength

Prob{R<8)
0.8
1

+ p=0.75 == = p=0.95

Figure 4. Stress-strength index for varying dependence parameters, a and
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8,=8,-1, 8,,-1.5
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B =8,=1, 8,,=7
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as
N
m @ om® 00 @

Figure 5. Scatterplot of 750 generated data using Algorithm 3.1 for different values of dependence parameter 8,, = 1.5,3,7 (from

left to right) and fixed marginal parameters 6; = 6, = 1

—0: T 1~ 0. X
+ 72 In (6,61 + B12)e %27 + 0,(6, + 61,)e %125 — 6,6,)
)+ S (1 700),
QY
where the observations are classified such that
{(r1,51)s s (T, Sy )} E A and
{(Tmy+1: Smy41)s oor (T Sm)} € A€ and A
{(r;,s)]e 012" + e~0125 > 1} .
Based on the normal equations (given in the Appendix),
if either my or m, are zero, then the ML estimator may
lack uniqueness. However, this will not pose a problem
since

+ mzln(

Py =0) = [Ple%:R +e 0 > 1)]" 50 as m e,
and
Pny = 0) = [P(e® 4 e08 = 1" =0 a5 m - o

For moderate sample size m, the events [m; = 0]
and [m, = 0] are rare. When m,, m, > 0, the normal
equations (detailed in the Appendix) cannot be solved
analytically, necessitating numerical methods. However,
we found these methods to be less efficient than directly
maximizing the log-likelihood function in (11). This
maximization can be executed using the optim function
in R. Initial values for optimization are obtained through
the global non-linear optimization package "Rsolnp" in R
version 3.6.1 (Ghalanos et al. (31)). We consider the
constraints 64, 6,,0,, > 0 and identified local maxima
for various values of 84, 8,, 8;,. The global maximum is
selected using the relation:

(91: 92’912) = argmaxel,ez,elze@l(ep92’912)- (12)

3. Performance analysis
Next, a finite sample performance of the estimators

335

for marginal parameters (6,,8,) and dependence
parameter 6;, is given. The performance is evaluated
according to the bias and mean squared error (MSE) of
the ML estimators introduced in the previous section. A
specific sample size m has been taken from
BNMO0(1,3,0.8) and MSEs have been calculated based
on 10,000 iterations. The results are shown in Figure 6.
The ML estimator performs very well for small sample
sizes. Notably, after some fluctuations, the bias values
stabilize around zero as the sample size increases. It is
important to mention that the MLE consistently found a
unique global maximum that did not lie on the boundary
of the parameter space. The computational time to
determine this global maximum, after testing all initial
value combinations, was under 7 hours.

4. A real data analysis

This section illustrates the results of applying the
BNGM distribution to a dataset on mercury (Hg)
concentration in large-mouth bass, as explored by
Mohsin et al. (32). Data were collected from 53 Florida
lakes to study the factors affecting mercury levels in bass.
Water samples were collected from the surface middle of
each lake on specific dates, where measurements of
alkalinity (mg/1), calcium (mg/1), and chlorophyll (mg/1)
were taken, using averages from August and March. Fish
samples, ranging from 4 to 44 individuals per lake, were
then analyzed for minimum mercury concentration
(pg/g). Lange et al. (33) noted that mercury
bioaccumulation in large-mouth bass is significantly
influenced by the lakes’ chemical characteristics, making
calcium and minimum mercury concentration key
variables of interest. We apply the proposed distribution
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Figure 6. Performance analysis of ML estimators based on MSE and bias for (8, 8,, 6;,)=(1,3,0.8) using 10,000 independent

replications

to model this data, noting that the 40" row, considered
an outlier, was omitted as stated by Mohsin et al. (32). A
summary of the data is presented in Table 1. The
dependency values of pg and 7 indicate a moderate
relationship between the variables. We have fitted an
exponential distribution to the marginal data, which are
summarized in Table 2 and illustrated in Figure 7. Clearly
the marginal distributions are well fitted to the data. With
the confirmation that the marginal data follows an
exponential distribution, we will fit the joint model to the
Mercury and Calcium data and compare it to the results
in Mohsin et al. (32). These results are shown in Table 3.
The BNMO model outperforms the BALE model from
Mohsin et al. (32). Both models fit the data well
according to the Kolmogorov-Smirnov goodness-of-fit
criteria. Figure 8 illustrates the scatter plot of actual
versus simulated Mercury and Calcium data derived from
the fitted BNMO model.

Conclusion

In practical applications, systems of components are
frequently subjected to various shocks, which impact
their reliability. According to the well-known MO
bivariate shock model in (1), it is challenging to assign
the probability of a common shock (T;,) to each
component (X; and X,). We address this limitation by
proposing a new MO shock model, which offers
beneficial properties such as dependency characteristics
and a closed-form formula for the strength parameter,
enhancing its applicability. There are few bivariate
exponential distributions with a negative dependence
structure, making our model particularly appealing.
However, the presence of a singular component
complicates parameter estimation. We have developed an
estimation method and conducted a performance analysis
to assess its effectiveness. Applying our model to real
data demonstrates that it outperforms existing models.

Table 1. Descriptive statistics of data vectors Mercury and Calcium

Statistics

Mercury Calcium

Minimum
15t-Quantile
Median
Mean
3rd_Quantile
Maximum
SD
Spearman’s rho
Kendall’s tau

0.04 1.1
0.09 33
0.25 12.6
0.27 222
0.33 35.6
0.92 90.7
0.22 24.93
-0.536
-0.392
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Table 2. Marginal goodness-of-fit for Mercury and Calcium

Variables Distribution MLE Log-likelihood K-S p-value
Mercury  Exponential  3.573 14.502 0.195
Calcium  Exponential  0.045 -217.309 0.232
Exp{0.04504} Q-Q plot for Caleium Exp{3.5738)} Q-Q plot for Mercury
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Figure 7. Q-Q plots of Calcium (left) and Mercury (right) for their fitted distributions
Table 3. Goodness-of-fit for the joint vector (Mercury, Calcium)
Model MLE Log-Likelihood K-S p-value
BNMO 01 = 0.01,02 = 3.67, 612 = 0.038 -194.0028 028
BALE (Mobhsin et al. (32)) & = 3.63. B =0.01,4 =0.25 -3887.665 0.16
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Appendix
Let 8 = (4, 6,,6;,) and for all j:
4j = 05(0; + 015)e™%2i + 0,(8, + 015)e™ %125 — 0,0,.

The normal equations for estimating parameters are as follows:

~ my my
al(d) Z 1 m;
= - r-+Z— 0,607 + (6, + O;,)e 025 — 0,) — —2—,
961 j=1 ! j=1Aj( ’ ? ' 2) 01 + 61,
~ my my
ald) z 1
= =Y si+ Yy —((6, +615)e7%2"i + 97925 + 9,
1 m
+o— z log (1 — exp{—08y,7;}),
j=my+1
and
~ m,
al(e -1
©) = ——(62(01 + 012)e™%2Tim; + 6,(6, + 6;)e”%25;)
6,, 4y
my m; 6, S
+9— .50, 6% Z log (1 — exp{—61,77})
12 it 6 Lo
6, N ne %

012 it 1- eXp{—Hinj}
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