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Abstract

This study examined n-Rickart modules, a module-theoretic analog of n-Rickart rings, from
the perspective of their endomorphism rings. It is shown that n-Rickart conditions are located
between m-e. Baer and p.q.-Baer conditions, and it is established that the corresponding
endomorphism ring possesses the appropriate m-Rickart property. Besides, the notion of m-¢. AIP
modules is presented. Furthermore, connections to the aforementioned concepts of m-Rickart,
endo-AlIP, and n-e. AIP modules are examined.
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Introduction

This study operated within the ring and module
theory framework, where R represents a ring with a non-
zero identity, and M is a unitary right R-module. The
notation S signifies the ring of R-endomorphisms of M.
We further define, [5(X) and 1y, (X) as the left and right
annihilators of a X within S and M, respectively, and I (R)
as the subring of R generated by its idempotent elements.

Based on (1) and (2), a ring R is referred to as (quasi-
)Baer if, for any nonempty subset (or ideal) Y of R, it
holds that 7z (Y) <g Rg. Furthermore, R is designated
right Rickart (3) if, given each x € R, rz(x) <g Rz.
These classes of modules have applications in functional
analysis. The concept of Rickart rings was initially
introduced in (3) and has since been extensively studied
by various researchers, including (4-9).

The aforementioned ring-theoretic concepts are
naturally generalized to the module setting. Specifically,
as delineated in (10), My is defined as (quasi-)Baer if, for
every (fully invariant) submodule K of My ,
Is(K) <g sS. The notion of p.q.-Baer modules, as

introduced in (11), pertains to My where 7 (YS) <q Mg
for every Y € S. Moreover, based on (12), a module My
is classified as Rickart if, for each Y € S, Kery =
ry (YY) <g Mg. The absence of symmetry in the Rickart
ring property, unlike in the Baer and quasi-Baer
conditions, motivates the introduction of £ -Rickart
modules. A module My, is referred to as -Rickart (13) if,
foreveryy € M, I5(y) <g sS.

A right (or left) ideal 4 inaring R is called projection
invariant if, for every element e in R such that e? = e,
ideal 4 remains unchanged when multiplied by e, i.e.,
eA € A. The concept of m-Baer rings is introduced in
(14), is based on these kinds of ideals. A ring R is termed
n-Baer if, for any projection-invariant left ideal X of R,
rr(X) <g Rg. Moreover, this idea extends to modules,
where a submodule P of My, is projection invariant if, for
all idempotent elements g € S, submodule satisfies
g(P) € P,meaning it is preserved under multiplication
by g. A module My, is defined as m-e.Baer (15) if every
projection-invariant submodule P of My satisfies
Is(P) <@ sS.. Inrecent studies, a more generalized form
of n-Baer rings, called n-Rickart rings, was introduced.
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As described in (16), a ring R is defined as left n-Rickart
if, for any element x € R, [x(I(R)x) <g rR. As with
the Rickart ring condition, n-Rickart ring condition does
not generally possess symmetry between the left and
right aspects. For more results related to this concept, see
(17-20).

Motivated by these studies, we aimed to explore the
concepts of m-Rickart from rings to modules. We define
My as m-Rickart if 1, (PI(S)) <q Mg forallyp € S. Itis
apparent that R being a right n-Rickart ring is equivalent
to Ry being a m-Rickart module. This new module
classification is situated between p.q.-Baer modules and
n-e.Baer modules. In our most recent study (21), we
investigated m-endo.Rickart modules, which are an
extension of the concept of left m-Rickart rings. The
introduction of the concept of m-Rickart modules was
motivated by the fact that the left and right n-Rickart
properties are not necessarily symmetric, as previously
mentioned. Thus, we found an interesting result stating
that the endomorphism ring of a n-Rickart module is a
right n-Rickart ring. However, this property does not
generally hold for m-endo. Rickart modules.

In Section 1, we introduced m-Rickart modules and
explored their fundamental properties. We established
that a module M is m-Rickart if and only if, for every
finitely generated left ideal Y of S, 1, (YI(S)) <g Mg
holds (Proposition 2.8). We showed that m -e.Baer
modules are equivalent to m-Rickart modules satisfying
FI-SSIP condition (Proposition 2.21). We investigate
when the direct summand of a m-Rickart module retains
this property (Theorem 2.10). Moreover, we established
that the ring of endomorphisms of a m-Rickart module
forms a right m -Rickart ring (Theorem 2.11). An
analogous version of Chatters and Khuri’s Theorem is
derived for m -Rickart modules (Corollary 2.17).
Therefore, for a right hereditary, right noetherian ring R,
every injective right R-module M is m-¢.Baer if and only
if M is m -Rickart (Corollary 2.22). For an
indecomposable artinian -Rickart module M, the ring of
endomorphisms of M is a division ring (Corollary 2.7).
Furthermore, M is m-¢.Baer if and only if M is m-Rickart
and the set {Sele € S,.(S)} is a complete lattice
(Theorem 2.25).

In Section 2, we explore the concept of m-c.AIP
modules, which encapsulated the definitions of m-Rickart
and m-e.Baer modules, extending their applicability to a
broader class of modules. The interconnections between
m-Rickart, endo-AlIP, and -e.AIP modules are explored
(Theorem 3.2). We investigated the conditions in which
the characteristics of m-e.AIP, Rickart, and n-Rickart
modules coincide (Proposition 3.4). Furthermore, we
examine the theoretical characteristics of m-e.AIP
modules. The characteristic of n-e.AIP is not preserved
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by direct summands or direct sums, as seen in Example
3.8. We therefore investigated the circumstances under
which the aforementioned property was inherited by
direct summands and direct sums (Theorems 3.6 and
3.9). We also show that the ring of endomorphisms of a
m-¢.AIP module is left m-AIP (Theorem 3.11).

The notations NS M, N<M,N2M,N3, M,
N <g M, and N <®° M signify that N is a subset, a
right R -submodule, a fully invariant R -submodule, a
projection invariant right R -submodule, a direct
summand of M, and an essential submodule of M,
respectively. Recall that an idempotent element g € R is
termed left (right) semicentral if tg = gtg (gt = gtg)
for all ¢t € R. The sets of left and right semicentral
idempotents are denoted as S;(R) and S,.(R) ,
respectively. A ring R is abelian if its idempotents
commute with all elements of R, and a module is abelian
if the ring of its endomorphisms is abelian.

Results and Discussion
1 m- Rickart modules

The discussion on n-Rickart modules was initiated in
this section, with an emphasis on their key attributes.
Given the connections between Baer and Rickart
modules, our objective was to explore the connections
between 1-¢.Baer and m-Rickart modules. Additionally,
we investigate the connections between extending
modules and nonsingular modules by analyzing the
properties of projection-invariant extending modules and
projection-invariant nonsingular modules. Furthermore,
we investigate the endomorphism ring of =m-Rickart
modules. The results that were employed throughout the
investigation are summarized below for the sake of
comprehensiveness.

Lemma 2.1 [ (22), Lemma 1.1] The followings are
equivalent for an idempotent element f € R:

@ f € SiR).

2)1-f€S.(R).

(3) (A= fIRf =0.

(4) fR=2R.

BG)RA-f)=R.

(it) S;(R) n S,-(R) = B(R), where B(R) is the set of
central idempotents.

Lemma 2.2 [ (15), Lemma 3.1](i) Let M =@¢; M;
and N2, M . Then, N=@i NNM; and NN
M; 2, M; foralli € .

(it) Let M be a module. Then, e € S;(S) if and only
ifeM 9, M.

Definition 2.3 We call My, is m-Rickart, if for any
n €S, there exists an idempotent element f € S such
that ryy(n1(8)) = fM.

Note that the idempotent f in Definition 2.3 belongs
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to $;(S) by Lemma 2.2.

Example 2.4(i) Every abelian von Neumann regular
(strongly regular) ring is also m-Rickart.

(it) The module Ry is m-Rickart if and only if the
ring R is a right m-Rickart ring.

(iii) The classes of semisimple modules, Baer
modules, and 7-e.Baer modules are each examples of 7-
Rickart modules.

A H )
0 c/°
where A denotes a Banach subalgebra of the ring of
bounded linear operators acting on a Hilbert space H,
with the additional condition that A contains all rank 1
idempotents. As indicated in [ (16), Example 3.12], R is
a m-Baer ring and thus it is 7-Rickart. Furthermore, by
Theorem 2.10, it follows that eR also is a m-Rickart

(iv) Consider the ring R given by R =(

module, where e = (é g)

(v) Zye is an injective Z-module, but it does not
qualify as m-Rickart.

In the forthcoming theorem, we showed that 7 -
Rickart modules constitute a discrete category situated
between m-¢.Baer and p.q.-Baer modules.

Proposition 2.5 My is m-e.Baer = My, is m-Rickart
= My is p.q.-Baer.

Proof. Assume My is a m-e.Baer module. For any
Y ES, SYI(S) constitutes a left ideal of S that is
projection invariant. Consequently, we have g> = g € §
for which 1y, (WI(S)) = ry (SYI(S)) = gM. Thus, My is
m-Rickart. Now, suppose My, is m-Rickart. Then, for any
P € S, we have g2 = g € S such that ry,, (YI(S)) = gM.
As YI(S) € S, it follows that 1, (PS) S 1y, (YI(S)) =
gM. Additionally, since g € S;(S), we have (Y S)gM =
¥g)(gSgM) < (YI(S))gM =0 . Hence, ry(9S) =
gM, and thus M is p.q.-Baer.

The subsequent example serves to show that the
implications stated in Proposition 2.5 are not generally
reversible.

Example 2.6 (i) Consider the subring T of [[n-1 4,,
where A, = Z for n = 1,2, -+, defined as T = {(a,) €
[Ty Anlayis eventually constant}. Then Ty is a 7-
Rickart module, which is not -e.Baer [ (16), Example
1.6].

(i) The ring of endomorphisms of a m -e.Baer
module is a -e.Baer ring by [ (15), Theorem 2.5]. Let B
be a m-Rickart ring that is not a m-Baer ring (see, [ (16),
Example Example 1.6]). Consider the ring R = [B B]

0 B
and idempotent g = [(1) 8] € R . Then, based on

Theorem 2.10, Mp = gR is a m -Rickart module.
However, since Endz (M) = B is not a m-Baer ring, My
is not a m-e.Baer module.

(iii) Suppose R is a simple ring that only has trivial
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idempotents {0,1}, and is not a domain (see, (23)). Then,
R is a quasi-Baer ring and therefore p.q-Baer. It can be
casily verified that R does not satisfy the right m-Rickart
property. Consequently, M = Rjy is not m-Rickart.

Proposition 2.7 (i) For an indecomposable module
My, being m-Rickart, Baer, and m-e.Baer are equivalent
properties.

(ii) If My is an indecomposable artinian -Rickart
module, then Endg (M) is a division ring.

Proof. (i) Tt 1is straightforward,
indecomposable.

(i7) It follows from the part (i) and [ (12), Corollary
4.11].

Proposition 2.8 The following conditions are
equivalent for Mp.

1. My is m-Rickart.

2. For every finite subset X = {¢,..
iy (XI(S)) <g M.

3. For each finitely generated left ideal Y of S,
r(Y1(S)) <g M.

Proof. (i) = (ii) It can be verified that 1, (XI(S)) =
T (©11(S)) N...n 1y (9, I1(S)). Since M is m -Rickart,
we can find elements g; € S;(S) such that 1 (@jI(S)) =
giM for each j €{1,2,..}. Therefore, my(XI(S)) =
Nj=1 g;M = gM, where g = g1, gn € Si(S).

(it) = (iii) It is straightforward.
(iii) = (i) It is evident because every principal left
ideal is finitely generated.

The following example shows that a direct summand
of a m-Rickart module may not necessarily be m-Rickart,
in general.

Example 2.9 Consider a prime ring R where Ry is
uniform and Z(Rg) # 0. Now, let’s consider the free
module Ag=@7_, R; where R; = R for each1 < i <n.
Based on [ (15), Example 4.1], we can deduce that Ay is
m-e.Baer. Using Proposition 2.5, we can further deduce
that Ay is m-Rickart. However, since each one sided ideal
of R is projection invariant and R is not Rickart, we can
conclude that Ry is not m-Rickart.

The forthcoming theorem establishes the conditions
under which a direct summand of a -Rickart module is
n-Rickart.

Theorem 2.10 Direct summands that are projection
invariant in T-Rickart modules remain m-Rickart.

Proof. Let M be m-Rickart and N be a projection
invariant direct summand of M. Then, there exist e? =
e €S such that N =eM and E = eSe, where E =
Endg(N). Note that e € 5;(5), as N 2, M. Observe that
@ = epe, so I(E) = el(S)e. For every n € ry(pI(E)),
n=en . So @I(S)n=egpel(S)en = @(el(S)e)n =
@l(E)n =0, and hence ry(@I(E)) € ry(pI(S))NN.
Now let x € ry (pI(S)) N N we have x = ex € N and

as My is

S @p}ofSs,
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@I(E)x = pel(S)ex = @I(S)x = 0. This implies that
rv(@I(E)) = ry(9I(S)) NN . Since M is m -Rickart,
mm(@I(S)) =fM for some f2=f€S . Hence
(@I(S))NN = fMneM = (efe)eM, and efe is an
idempotent of eSe Therefore 1y (@I(E)) =
(efe)eM <g eM = N.

Theorem 2.11 The endomoprhism ring of a w -
Rickart module is a right m-Rickart ring.

Proof. Consider M as a m-Rickart module. For every
P € S, there is g2 = g € S such that 1y, (YI(S)) = gM.
Consequently, YI(S)g = 0, implying gS € rs(WYI(S)).
Now, let a € rs(YI(S)). Hence, YI(S)a = 0, which
leads to a(M) S ry(YI(S)). This implies & = ga, so
rs(YI(S)) = gS. Therefore, S is right m-Rickart.

Corollary 2.12 Let R be a right m-Rickart ring and
e € 5;(R). Then eRe is also a right T-Rickart ring.

Proof. Since e € S;(R),it follows from Lemma 2.2
that eR =, R. Note that Endg(eR) = eRe. Thus, the
conclusion is derived from Theorem 2.10 and 2.11.

The following example shows that the converse of

Theorem 2.11 does not hold, in general.
Z Z, 1 0

Example 2.13 Let C = [0 Zz] and g = [0 0] €
C. Consider M = gC. Then Ends(M) is a m-Rickart
ring. However M, is not a m-Rickart module.

As defined in [20], My, is called local-retractable if,
for each 2 # A C S and for any 0 #= m € r, (4), there
exists a homomorphism ,,;: M — 1, (4) with m €
Y (M) € 1 (A). Local-retractability paves the way for
the establishment of the converse of Theorem 2.11.

Theorem 2.14 Let My be local-retractable module.
Then, My, is a T-Rickart module if and only if' S is a right
n-Rickart ring.

Proof. Let S be m-Rickart and ¢ € S. Then, there
exists g2 = g € S such that 5 (@I (S)) = gS. By [ (13),
Proposition 2.20], ry (@I(S)) = rs(@l(S))(M) . Thus,
ru(@I(S)) = gS(M) = gM . Therefore, M is a m -
Rickart module. The converse follows from Theorem
2.11.

Corollary 2.15 Consider & as a free R-module.
Then, § is w-Rickart if and only if Endg (%) is a right -
Rickart ring.

Proof. 1t is clear from [ (13),
Theorem 2.14.

Based on (13), My, is identified as m-e.nonsingular if
T (A) <°° gM where g = g € Sand A 9, S, leading
to 1y (A) = gM. Thus, My, is termed K-nonsingular in
(13), if, for any @ € S, Ker¢@ <5 M implies ¢ = 0.

Proposition 2.16 Given a m-Rickart module Mg, we
have the following properties:

1. Mp is m-e.nonsingular.
2. Sis a semiprime ring if and only if every left
semicentral idempotents of S is central.

Lemma 2.9 ] and
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3. My is S-nonsingular, if every essential submodule
of M is an essential extension of a projection invariant
submodule.

Proof. (i) Let My be m -Rickart, and let P be a
projection invariant left ideal in S . Assume
ry(P) <5 gM , with g2=g€S . Since ry(P) =
Nyer Tu(@I(S)), for any ¢ € P, it follows that 1y (P) <
m(@I(S)) N gM <% gM . As M is m-Rickart, there
exists h € §;(S) such that ry,(@I(S)) = hM . Hence
hM N gM = ghM , ghM <°° gM . Since gh is an
idempotent in S, ghM = gM. Thus, gM < 1y (@I (S))
leading to gM < Nye; Ty (@I(S)) = ry(P). Therefore,
gM = 1y (P), so M is m-e.nonsingular.

(ii) Clearly, each left semicentral idempotents of a
semiprime ring is central. Let M be a m-Rickart module
and all left semicentral idempotents in S be central.
Suppose @ €S and @Sp =0 . Then, @I(S)p =0.
Consequently, for every m € M, ¢(m) € ry(pI(S)) =
gM for some g € S;(S). This implies ¢g = 0 and (1 —
g)p(m) = 0 foreach m € M. As g is a central, we have
¢ =gp+ (1—g)e = 0. Hence, S is a semiprime ring.

(iii) suppose Y €S and Keryp <M . By
assumption, there exists N =, M such that
N < Kerp <% M. Consequently, YI(S)N = N =
0. Thus, N € ry(®I(S)) . Since M is m -Rickart,
i (WI(S)) = gM for some g2 =g € S. AsN <°° M,
g = 1. Consequently, ¥ = 0, implying that M is a K-
nonsingular module.

In their important 1980 publication, Chatters and
Khuri demonstrated that a right nonsingular, right
extending ring is accurately defined as a right
cononsingular Baer ring. The objective of the
forthcoming discussion was to further explore analogues
of Chatters—Khuri Theorem, with insights to be drawn
from the results presented in this paper. Based on (24),
Mp, is termed m-extending if for any N <, M, we have
N <g gM where g> = g. As per (15), a module Mg
satisfies the m -e.cononsingular property if, for all
P2, M, the condition 1y(ls(P)) <¢ M leads to
P <% 1y (Is(P)).

Corollary 2.17

(i) Any abelian right m-Rickart ring is a semiprime
ring.

(i) Any m -extending m -Rickart module is m -
e.cononsingular and m-e.Baer.

Proof. Proposition 2.16 and [6, Theorem 4.16] yield
the result.

A module My has IFP (Insertion of Factors Property),
if for any element ¢ € S, we have ry (@) 2 M (25).
Following this idea, we define 7 -IFP module as a
generalization of IFP modules. This new class of
modules strengthen the condition for modules with /FP.
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Definition 2.18 We call a module My, is n-IFP, if for
every ¢ €S, the submodule 1y () is a projection
invariant submodule of M. (or equivalently, for each
m € M, ls(m) is a projection invariant left ideal of'S).

Note that every ring with /FP has m-IFP, but the
converse is not true. For example, every simple abelian
ring which is not a domain (see, (23)) has m-/FP but does
not have /FP. Therefore, every abelian ring has m-IFP,
but it does not have IFP in general [ (26), Example 14].

Example 2.19 Let A be an abelian ring which does

not have IFP. Consider R = ('g j) and My = eR
/1 0 . _ (A 0 .
where e = (0 0) ER. Since S = (0 0) and A is

abelian, M has m-IFP. On the other hand, since A does
not satisfy IFP, there exist x,y € A such that xy = 0 and
xAy # 0. Consequently, there exists a € A such that

xay 0. Set m=(} 3) and ¢ =5 8)e5. It

Sfollows that ¢(m) =0, thus ¢ € lg(m) . However,

¢am + 0 for (g g) €S. Thus lg(m) is not a fully

invariant left ideal of S. Hence, M fails to satisfy the IFP.

An additional example of a 7-IFP module that is not
IFP can be constructed by taking A as a simple abelian
ring that is not a domain, as presented in Example 2.19.

Proposition 2.20 The following statements are
equivalent.

1. Mjy is both Rickart and abelian.
2. My is m-Rickart and fulfills the -/FP.

Proof. (i) = (ii) It is evident that every abelian
module satisfies 7-IFP property. Let ¢ € S. Since My, is
Rickart, there exists f2 = f € S such that ry, (¢) = fM.
For any x € ry(9I(S)), we have @I(S)x = 0. Thus, x €
ker(p) = fM . Since M is abelian, @I(S)fM =
@fI(S)M = 0. Therefore, 1y, (9I(S)) = fM, indicating
that My is m-Rickart.

(ii) > (i) Let ¢ €S and x €ry(p) . Since M
satisfies the m -IFP, we have I(S)x S ry(¢) . This
implied that x € (@I (S)). Therefore, we conclude that
(@) = ry(I(S)). Since My is m-Rickart, one can
find an element f € S satisfying f2 = f and 1y (@) =
fM. Now, we proceed to prove that My is abelian. Since
M has m -IFP, ry(g)=(1—g)M 2, M for any
idempotent g € S . Consequently, g € S;(S) and
similarly g € S,.(S). Therefore S is an abelian ring.

Mg is said to possess the Fl-strong summand
intersection property (FI-SSIP) if every family of
completely invariant direct summands of M_R has an
intersection that is a direct summand of Mgz . The
following conclusion clarifies the conditions under which
the n-e.Baer and n-Rickart modules are interchangeable.

Proposition 2.21 My, is m-e.Baer if and only if My, is
n-Rickart and has the FI-SSIP.
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Proof. Assume M is m-¢.Baer and {N,, }, ¢r is a family
of fully invariant direct summands of M. For every y €
T, there exist an element e, € S5;(S) such that N, = e, M.
Let] = Yyer S(1 —e)). Then ] is a projection invariant
left ideal of S, as 1 — e, € 5,(S) for eachy € I'. Hence
m(J) <@ M. 1t follows that Nyer Ny = Nyer Ty (S(1 —
e,)) = 1y (J). Therefore, M has FI-SSIP. By Proposition
2.5, every m-e.Baer module is m-Rickart. Conversely, let
A be a projection invariant left ideal of S. Then, we have
A= Z(pieA ©d(S) . So my(4) = Ny,ea T (@d(S)) -
Since My, is m-Rickart, for each ¢; € A, there is e, €
S$1(S) such that 1y (¢;1(S)) = e, M. As M has FI-SSIP,
T (A) = Ng,ea €9;M <g M. Therefore M is rr-e.Baer.

Corollary 2.22 Let R be a right hereditary, right
noetherian ring. Then every injective module My, is T-
e.Baer if and only if My is m-Rickart.

Proof. [ (27), Corollary 2.30] and Proposition 2.21
complete the result.

Lemma 2.23 Suppose My, is a w-Rickart module and
] is a nonzero projection invariant left annihilator in S.
Then ] contains a nonzero idempotent.

Proof. Let 0 # ] = l5(X) for some nonempty subset
X of M and ¢ € J. Due to m-Rickart property of M,
m(@I(S)) = fM , where f2=f€S . Since | is
projection invariant left ideal of S, it follows from (15)
that 1y (J) 2, M. Consequently, 1y (J) € ry(@I(S)) =
fM. Define e =1 — f. Hence, ery,(J) € efM =0, so
e €ls(ru()) =J.

Theorem 2.24 If S does not contain any infinite set of
nonzero orthogonal idempotents, then My is the m -
Rickart if and only if My is m-e.Baer if and only if Mg is
m-e.Rickart.

Proof. Suppose N 2, M. By Lemma 2.23, I5(N)
contains a nonzero idempotent. By assumption and [ (12),
Lemma 4.3], we can select an idempotent f € [g(N)
such that S(1 — f) = l;(fM) is minimal. We aimed to
prove that I[g(N)NIlg(fM)=0 . On the contrary,
suppose Is(N) N Is(fM) # 0. Then | = I;(NU fM) #
0. Now, by Lemma 2.23, ] must contain a nonzero
idempotent g. Since gf =0, h=f+ (1 — f)g is also
an idempotent in Ig(N) . As hg=g , h#0 .
Additionally, Is(hM) S Is(fM). However, gh = gf +
g1 —f)g =g # 0. Consequently, I;(hM) c I;(fM),
contradicting the choice of f . Therefore, Ig(N) N
ls(fM) = 0. Now, for any ¢ € [5(N), we have ¢(1 —
f)=¢—of . Since f € L(N), p(1—f) € LL(N) N
Is(fM) =0. Thus, ¢ = ¢f € Sf . This implies that
ls(N) = Sf, and hence My is m-e.Baer. The converse is
deduced from Proposition 2.5. The other equivalent
comes from [ (21) Theorem 3.7].

Theorem 2.25 A module My possesses the -e.Baer
property if and only if it is n-Rickart and the set L =
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{Sele € S.(S)} forms a complete lattice in terms of
inclusion.

Proof. Let My be m-Rickart, L = {Se|e € S,(5)} a
complete lattice under inclusion, and X a projection
invariant left ideal of S. Since X is projection invariant,
X = Yyer x,1(S) for each x, € X. Given My is m-
Rickart, for each y € T, there exists an idempotent e, €
$;(S) such that 7y (x,I1(S)) = e,M . Thus, we have
T (X) =Nyer 1y (x,1(S)), implying 7y (X) =Nyer e, M.
Hence, ls(ry(x,I1(5))) =S(1—e,) for each y €T .
Since L is a complete lattice under inclusion, and 1 —
e, € S,.(S), there exists an element e € S,.(S) such that
Se €Nyer S(1 —e,) . Consequently, Se € Is(ry (X)),
yielding 7y (X) = ry (Is(ru (X)) € ry(Se) = (1 —
e)M. As e € lg(ry(x,1(5))) foreachy €T, em = 0 for
each m € ry(X). Therefore, for each m € ry(X), m =
(1 — e)m, implying r,(X) € (1 — e)M. Thus, My is -
e.Baer. Conversely, by Proposition 2.5, My is m-Rickart.
Additionally, as My is m-e.Baer, by [ (15), Theorem 5.1],
S is a m-Baer ring and hence by [ (16), Theorem 2.7], S
is a complete lattice under inclusion.

2 m-endo.AIP Modules

A new class of modules, referred to as m-e.AIP, is
introduced in this section. This class of modules extends
its applicability to a considerably wider class by
including the classes of n-Rickart and n-e.Baer modules.
The interconnections between m—Rickart, endo-AIP, and
m-¢.AIP modules are explored. Moreover, the present
work aimed to investigate potential connections between
m-¢.AIP module and the ring of its endomorphisms.

As defined in (28), a left ideal A of R is right s-unital
if for every x € A, there is some y € A for which xy =
X.

Definition 3.1 We say My is a m-endo.AIP module,
denoted by m-e. AIP, if l(L) forms a right s-unital ideal
of S for all L 2, M. A ring R is considered left m-AIP, if
Ry is a m-e.AIP module.

If K <M and for all right R-module L, the map
LQ®rK—>LQ®rM is a monomorphism, then K is
called pure. Whenever [g(K) stands as a pure left ideal
for any fully invariant submodule K of M, it is recalled
from (29) that My is termed endo-AIP.

Theorem 3.2 The following implications holds true.

(i) My is m-e.AIP = My, is endo-AIP.

(ii) My is Rickart = My, is m-e.AIP.

(iii) My is m-e.Baer = My is m-Rickart = My is -
e.AIP.

Proof. (i) Assume M is m-e.AIP and K < M. For
x € lg(K), since K =, M, there exist ¢ € [5(K) such that
x = xc. Consequently, lg(K) is right s-unital. According
to [ (30), Proposition 11.3.13], l;(K) is pure as a left
ideal. Therefore, My is endo-AlIP.
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(i) Suppose M is Rickart, P 2, M and ¢ € [5(P).
Then, P € 1,(¢). As My is Rickart, there exists g2 =
g € S such that 1, (¢) = gM. Consequently, 1 — g €
ls(P) and (1 — g) = ¢@. Therefore, M is m-¢.AIP.

(iii) By Proposition 2.5, m-e.Baer implies m-Rickart.
Let Mg be m-Rickart, P 2, M and i € [g(P). Then
YyP)=0, so PI(S)P =0 . Consequently, P C
ry(WI(S)). Since M is a m-Rickart module, there exists
c?=c€S such that P Cry,(PI(S)) =cM . This
implies that 1 — ¢ € Ig(P) and ¥(1 — ¢) = . Hence, M
is m-e.AIP.

The following example illustrates that the converse of
Theorem 3.2 does not necessarily hold in general.

Example 3.3 (i) endo-AIP # m-e.AIP: Based on [
(16), Example 1.6], there exists a right p.q.-Baer ring R
with trivial idempotents that is not right 7-Rickart. By [
(29), Theorem 2.5], every right p.q.-Baer ring is endo-
AIP. Thus, Ry is endo-AIP. Since Ry has m-IFP, Ry is
n-e.AlP if and only if Ry is m-Rickart by Proposition 3.4.
Therefore, Ry is not -e.AIP.

(ii) m-e.AIP # m-Rickart: Let R be the ring in [ (22),
Example 1.6]. Then, R is a right Rickart ring that is not
right m-Rickart by[ (16), p.5]. Consider M = Rj. Then,
M is a m-e.AIP module, but not m-Rickart By Theorem
3.2(i).

(iii) m-e.AIP % Rickart: Let R = (g %) and M =

Rg. By [ (31), Proposition 3.12], My is endo-AIP. Note
that I(S) = S, so M is m-e.AIP. However, My is not a
Rickart module [ (12), Example 2.9].

Proposition 3.4  The following conditions are
equivalent for module M with -IFP.

1. My is m-e.AIP.
2. My is Rickart.
3. Mpy is m-Rickart.

Proof. (i) = (ii) Consider n € S and X = ry(n).
Given that M has -IFP, 1y (1) 2, Mg. Since M is -
e.AIP and n € [3(X), there exists P € [(X) such that
np = ¢ . Consequently, n(1 —) =0 and ry(n) S
ry(¥). Hence, Y(1 — ) =0, implying Y2 =P € S.
Lete = 1 —1, then X = eM. Thus, My is Rickart.

(it) = (iii) Let My be Rickart. Then, for any ¢ € S,
there exists g2 = g € S such that ryy () = gM . It is
evident that ry, (YI(S)) S ry (). As M has n-IFP, for
every m € 1y (y), it follows that m € 1y, (I(S)). Thus,
we can deduce that 7y, (YI(S)) = gM. Consequently, My
is m-Rickart.

(iii) = (i) follows directly from Theorem 3.2.

The necessity of m-/FP condition in Proposition 3.4
is illustrated by the following example. Notably, there is
a module M within -e.AIP class that lacks both the
Rickart property and the -/FP property.

Example 3.5 (i) Consider R and My as described in
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Example 3.3 (ii). My is a m-e.AIP module but not
Rickart. Now, let e;; denote a 2 X 2 matrix with the
element 1 in (i, j)-position and 0 elsewhere. Define ¢ as

o= ((1) 8) and f as e;; + e;,. Note that f2 = f. Since

@e,, = 0 while pfe,, # 0, M fails to satisfy m-IFP.

(ii) Let R = M, (Z[x]) and M = Ry. since Z[x] is a
domain, it is m-Rickart. Utilizing [ (16), Proposition
3.10], we conclude that M is m-Rickart. Nonetheless, M
is not Rickart as seen in [ (32), Example 3.1.28]. Similar
to the part (i), My fails to satisfy m-IFP.

A straight summand of a m-e.AIP module doesn't
always inherit the -e.AIP property. Example 2.9 shows
that the module M_R meets the n-¢.AIP requirement,
which is supported by Theorem 3.2. However, the direct
summand R R does not fit this criterion, as shown in
Example 3.3. The following discussion investigated the
specific conditions under which a direct summand of a -
e.AIP module also retains the n-e.AIP property.

Theorem 3.6 In a m-e.AIP module, any direct
summand that remains invariant under projection also
Sfulfills the -e.AIP condition.

Proof. Consider M to be a m-e.AIP module, and let
P=gM=2,M for some g>=g€S, with A9, P.
Then, g € 5;(S) and E = Endz(P) = gSg. For anyn €
Iz (A), it follows that n(A) = 0, and one can find ¢ € S
with the property n = gipg. Observe from Lemma 2.2
that A 2, M. Since n € [s(A) and M is m-e.AIP, we
have a € [;(A) with n = na. Note that gag € lz(A) and
n(gag) = (g¥g)(gag) = gpg =n. It follows that P
is -e.AIP module.

Corollary 3.7 (i) Given that M is a m-e.AIP module
with an abelian endomorphism ring, it follows that all
direct summands of M are also m-e.AIP.

(ii) Let Rp be m-¢.AIP and e € S;(R). TheneR is a
n-¢.AIP module.

The example below shows that direct sums of -
¢.AIP modules may not inherit the -¢. AIP property.

Example 3.8 Consider the Z -module M = Z @
Z ,. 1t is evident that both Z and Z , are m-c.Baer,
implying they are m-e.AIP. Nevertheless, M itself is not
m-¢.AIP, as shown in [ (29), Example 2.13].

Theorem 3.9 Let M =@, cr M, such that each M,
meets m-e.AIP criterion while also being subisomorphic
to My, for ally # 1 € I'. Then, My is a t-e.AIP module.

Proof. For every y €T, let S, denote the ring of
endomorphisms of M,. The ring of endomorphisms of
M, denoted by S, is structured as a matrix ring. In this
ring, the entry in the (y,y)-position comes from S,,, and
the entry in (y,n)-position (for y,n €T with y #17)
corresponds to a map from M, to M,,. Let P 9, Mp.
Then P =@,erPNM, =@yerB, and B, =PnN
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M, 2, M, for all y €T by Lemma 2.2. Consider ¢ €
ls(P). since @(P) = 0, it follows that ¢, € lsy(Py) for
y €. As M, and M, are subisomorphic, there exists a
monomorphism ,,,: M, > M,,. Clearly, fory #n €T,
Yyy®ny(B,) =0 . Since M, satisfies the m -e.AIP
property, lsy (P,) is right s-unital, and there exists a finite
subset {1y, ... N} of ' such that ¢,, # 0. Hence there is
u, € lsy (P,) such that @, u, = @, and Y, @ u, =
Yyn@yy for y #n €. Since Y, is a monomorphism
fory #n €T, ¢y u, = @p,. We construct an element
X = (Uyy)ypers Where u,, =u, andu,, =0, if y # 7.
Then @px = ¢. Thus, M exhibits the -e.AIP property.

Corollary 3.10 If a module is -e. AIP, then its direct
sum with any number of copies also preserves the w-e.AIP
condition.

Theorem 3.11 For a m-e.AIP module My, then the
ring of its endomorphisms, denoted Endg (M), is a lefi m-
AIP ring.

Proof. Assume A is a projection invariat right ideal in
S . For every ¢ € ;(A), pA(M) =0 . Then, ¢ €
[s(AM). Since AM 2, M and M is m-¢.AIP, thereis Y €
ls(AM) such that @y = ¢. It follows that YA = 0, so
P € l[5(A). Therefore, we can deduce that S is left m-AIP
ring.

The subsequent example indicates that the converse
of Theorem 3.11 is not necessarily valid. It shows that a
module having a left 7-AIP endomorphism ring does not
ensure that the module itself is -e.AIP.

Example 3.12 Let’s consider Z -module M =

Z (p™), where p is a prime number. The endomorphism
ring End(M 7 ) is a commutative domain, specifically the
ring of p-adic integers. Therefore, End(M 7 ) is a m-Baer
ring, and by Theorem 3.2, it is mw-AIP. From [ (33),
Theorem 1.2], it follows that M5 being a duo module
implies that it satisfies the m-IFP condition. However, as
illustrated in [ (12), Example 2.17], M ; does not possess
the Rickart property. Thus, based on Proposition 3.4, M 5
does not fulfill the condition of being m-e.AIP.

For the converse of Theorem 3.11 to be valid, the
concept of being locally m-quasi-retractable is exactly the
required condition.

Definition 3.13 We say that My is locally m-quasi-
retractable if for each y € S where 1y (SyI(S)) # 0,
there is a nonzero element 3 € S satisfying (M) =
T (SYI(S)).

Proposition 3.14 Given that My is locally m-quasi-
retractable and S is a left m-AIP ring, it follows that My
is m-e.AIP.

Proof. Suppose 0 # X 2, M and y € [5(X). Because
X 2, M, it follows that SyI(S) € [s(X). Therefore, 0 #
X S ry(SyI(S)). Based on the concept of m- quasi-
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retractability, there exists a nonzero f € S such that
B(M) =1y (SyI(S)). Consequently, X € 1, (SyI(S)) =
B(M) andy € [;(I(S)BS), where I(S)BS is a projection
invariant right ideal of S. Given that S is a left m-AIP
ring, Ls((I(S)PS) is right s-unital. Therefore, there exists
y" € Is(I(S)BS) such that y = yy'. Since X € B(M), it
follows that y'(I(S)X) €y (I(S)B(M)) = 0. Hence,
Y € I5(X), considering X <, Mg. Consequently, M is a
m-e.AIP module.

According to [ (16), Definition 2.1], a ring R is
defined as right p-regular if, for each y € R there exists
n =n? € R such that RyI(R) = Ry.

Proposition 3.15 A right p-regular ring S ensures
that My possesses the m-e.AIP condition.

Proof. Based on [ (16), Lemma 2.2], S is right m-
Rickart. Consequently, S is is a left mw-AIP ring by
Theorem 3.2. For any y € S, since S is right p-regular,
there exists a central idempotent g €S such that
SyI(S) = gS as per [ (16), Proposition 2.4]. Note that
g*1land0# B =1—g€S. Given that g is central,
we have (M) = 1y, (SyI(S)). As a result, M is locally
7 -quasi-retractable. Consequently, Proposition 3.14
concludes the proof.

Corollary 3.16 The ring of endomorphisms of a free
module over a p-regular ring is a left m-AIP ring.

Proof. Tis conclusion is derived from Corollary 3.10
and Theorem 3.11.
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