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Abstract 
This study examined π-Rickart modules, a module-theoretic analog of π-Rickart rings, from 

the perspective of their endomorphism rings. It is shown that π-Rickart conditions are located 
between π-e. Baer and p.q.-Baer conditions, and it is established that the corresponding 
endomorphism ring possesses the appropriate π-Rickart property. Besides, the notion of π-e.AIP 
modules is presented. Furthermore, connections to the aforementioned concepts of π-Rickart, 
endo-AIP, and π-e.AIP modules are examined. 
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Introduction 
This study operated within the ring and module 

theory framework, where R represents a ring with a non-
zero identity, and M is a unitary right R-module. The 
notation 𝑆 signifies the ring of R-endomorphisms of M. 
We further define, 𝑙ௌ(𝑋) and 𝑟ெ(𝑋) as the left and right 
annihilators of a X within S and M, respectively, and 𝐼(𝑅) 
as the subring of R generated by its idempotent elements. 

Based on (1) and (2), a ring R is referred to as (quasi-
)Baer if, for any nonempty subset (or ideal) 𝑌 of 𝑅, it 
holds that 𝑟ோ(𝑌) ≤⊕ 𝑅ோ . Furthermore, R is designated 
right Rickart (3) if, given each  𝑥 ∈ 𝑅 , 𝑟ோ(𝑥) ≤⊕ 𝑅ோ . 
These classes of modules have applications in functional 
analysis. The concept of Rickart rings was initially 
introduced in (3) and has since been extensively studied 
by various researchers, including (4-9).  

The aforementioned ring-theoretic concepts are 
naturally generalized to the module setting. Specifically, 
as delineated in (10), 𝑀ோ is defined as (quasi-)Baer if, for 
every (fully invariant) submodule 𝐾  of 𝑀ோ , 𝑙ௌ(𝐾) ≤⊕  𝑆ௌ . The notion of p.q.-Baer modules, as 
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introduced in (11), pertains to 𝑀ோ where 𝑟ெ(𝜓𝑆) ≤⊕ 𝑀ோ 
for every 𝜓 ∈ 𝑆. Moreover, based on (12), a module 𝑀ோ 
is classified as Rickart if, for each 𝜓 ∈ 𝑆 , K𝑒𝑟𝜓 =rெ(𝜓) ≤⊕ 𝑀ோ. The absence of symmetry in the Rickart 
ring property, unlike in the Baer and quasi-Baer 
conditions, motivates the introduction of 𝔏 -Rickart 
modules. A module 𝑀ோ is referred to as 𝔏-Rickart (13) if, 
for every 𝑦 ∈ 𝑀, 𝑙ௌ(𝑦) ≤⊕  𝑆ௌ .  

A right (or left) ideal 𝐴 in a ring 𝑅 is called projection 
invariant if, for every element 𝑒 𝑖𝑛 𝑅 such that 𝑒ଶ = 𝑒, 
ideal A remains unchanged when multiplied by e, i.e., 𝑒𝐴 ⊆ 𝐴. The concept of π-Baer rings is introduced in 
(14), is based on these kinds of ideals. A ring 𝑅 is termed  𝜋-Baer if, for any projection-invariant left ideal 𝑋 of 𝑅, rோ(𝑋) ≤⊕ 𝑅ோ. Moreover, this idea extends to modules, 
where a submodule 𝑃 of 𝑀ோ is projection invariant if, for 
all idempotent elements 𝑔 ∈ 𝑆,  submodule satisfies 𝑔(𝑃) ⊆ 𝑃,meaning it is preserved under multiplication 
by g. A module 𝑀ோ is defined as π-e.Baer (15) if every 
projection-invariant submodule 𝑃  of 𝑀ோ  satisfies 𝑙ௌ(𝑃) ≤⊕  𝑆ௌ .. In recent studies, a more generalized form 
of π-Baer rings, called π-Rickart rings, was introduced. 
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As described in (16), a ring R is defined as left π-Rickart 
if, for any element 𝑥 ∈ 𝑅, 𝑙ோ(𝐼(𝑅)𝑥) ≤⊕  𝑅ோ . As with 
the Rickart ring condition, π-Rickart ring condition does 
not generally possess symmetry between the left and 
right aspects.  For more results related to this concept, see 
(17-20). 

Motivated by these studies, we aimed to explore the 
concepts of 𝜋-Rickart from rings to modules. We define 𝑀ோ as 𝜋-Rickart if 𝑟ெ(𝜓𝐼(𝑆)) ≤⊕ 𝑀ோ for all 𝜓 ∈ 𝑆. It is 
apparent that R being a right π-Rickart ring is equivalent 
to 𝑅ோ  being a π-Rickart module. This new module 
classification is situated between p.q.-Baer modules and 
π-e.Baer modules.  In our most recent study (21), we 
investigated π-endo.Rickart modules, which are an 
extension of the concept of left π-Rickart rings. The 
introduction of the concept of π-Rickart modules was 
motivated by the fact that the left and right π-Rickart 
properties are not necessarily symmetric, as previously 
mentioned. Thus, we found an interesting result stating 
that the endomorphism ring of a π-Rickart module is a 
right π-Rickart ring. However, this property does not 
generally hold for π-endo. Rickart modules.               

In Section 1, we introduced 𝜋-Rickart modules and 
explored their fundamental properties. We established 
that a module 𝑀 is 𝜋-Rickart if and only if, for every 
finitely generated left ideal 𝑌  of 𝑆 , 𝑟ெ(𝑌𝐼(𝑆)) ≤⊕ 𝑀ோ 
holds (Proposition 2.8). We showed that 𝜋 -e.Baer 
modules are equivalent to 𝜋-Rickart modules satisfying 
FI-SSIP condition (Proposition 2.21). We investigate 
when the direct summand of a 𝜋-Rickart module retains 
this property (Theorem 2.10). Moreover, we established 
that the ring of endomorphisms of a 𝜋-Rickart module 
forms a right 𝜋 -Rickart ring (Theorem 2.11). An 
analogous version of Chatters and Khuri’s Theorem is 
derived for 𝜋 -Rickart modules (Corollary 2.17). 
Therefore, for a right hereditary, right noetherian ring 𝑅, 
every injective right 𝑅-module 𝑀 is 𝜋-e.Baer if and only 
if 𝑀  is 𝜋 -Rickart (Corollary 2.22). For an 
indecomposable artinian 𝜋-Rickart module 𝑀, the ring of 
endomorphisms of 𝑀 is a division ring (Corollary 2.7). 
Furthermore, 𝑀 is 𝜋-e.Baer if and only if 𝑀 is 𝜋-Rickart 
and the set {𝑆𝑒|𝑒 ∈ 𝑆௥(𝑆)}  is a complete lattice 
(Theorem 2.25). 

In Section 2, we explore the concept of π -e.AIP 
modules, which encapsulated the definitions of 𝜋-Rickart 
and 𝜋-e.Baer modules, extending their applicability to a 
broader class of modules. The interconnections between 𝜋-Rickart, endo-AIP, and 𝜋-e.AIP modules are explored 
(Theorem 3.2). We investigated the conditions in which 
the characteristics of π-e.AIP, Rickart, and π-Rickart 
modules coincide (Proposition 3.4). Furthermore, we 
examine the theoretical characteristics of π-e.AIP 
modules.  The characteristic of π-e.AIP is not preserved 

by direct summands or direct sums, as seen in Example 
3.8. We therefore investigated the circumstances under 
which the aforementioned property was inherited by 
direct summands and direct sums (Theorems 3.6 and 
3.9). We also show that the ring of endomorphisms of a 𝜋-e.AIP module is left 𝜋-AIP (Theorem 3.11). 

The notations 𝑁 ⊆ 𝑀 , 𝑁 ≤ 𝑀 , 𝑁 ⊴ 𝑀 , 𝑁 ⊴௣ 𝑀 , 𝑁 ≤⊕ 𝑀 , and 𝑁 ≤௘௦௦ 𝑀  signify that 𝑁  is a subset, a 
right 𝑅 -submodule, a fully invariant 𝑅 -submodule, a 
projection invariant right 𝑅 -submodule, a direct 
summand of 𝑀 , and an essential submodule of 𝑀 , 
respectively. Recall that an idempotent element 𝑔 ∈ 𝑅 is 
termed left (right) semicentral if 𝑡𝑔 = 𝑔𝑡𝑔 (𝑔𝑡 = 𝑔𝑡𝑔) 
for all 𝑡 ∈ 𝑅 . The sets of left and right semicentral 
idempotents are denoted as 𝑆௟(𝑅)  and 𝑆௥(𝑅) , 
respectively. A ring 𝑅  is abelian if its idempotents 
commute with all elements of 𝑅, and a module is abelian 
if the ring of its endomorphisms is abelian. 

 

Results and Discussion 
1  𝝅- Rickart modules 

 The discussion on π-Rickart modules was initiated in 
this section, with an emphasis on their key attributes. 
Given the connections between Baer and Rickart 
modules, our objective was to explore the connections 
between 𝜋-e.Baer and 𝜋-Rickart modules. Additionally, 
we investigate the connections between extending 
modules and nonsingular modules by analyzing the 
properties of projection-invariant extending modules and 
projection-invariant nonsingular modules.  Furthermore, 
we investigate the endomorphism ring of π-Rickart 
modules.  The results that were employed throughout the 
investigation are summarized below for the sake of 
comprehensiveness. 

Lemma 2.1 [ (22), Lemma 1.1] The followings are 
equivalent for an idempotent element 𝑓 ∈ 𝑅: (1) 𝑓 ∈ 𝑆௟(𝑅). (2) 1 − 𝑓 ∈ 𝑆௥(𝑅). (3) (1 − 𝑓)𝑅𝑓 = 0. (4) 𝑓𝑅 ⊴ 𝑅. (5) 𝑅(1 − 𝑓) ⊴ 𝑅.  (𝑖𝑖) 𝑆௟(𝑅) ∩ 𝑆௥(𝑅) = 𝐵(𝑅), where 𝐵(𝑅) is the set of 
central idempotents.  

Lemma 2.2 [ (15), Lemma 3.1](𝑖) Let 𝑀 =⊕௜∈ூ 𝑀௜ 
and 𝑁 ⊴௣ 𝑀 . Then, 𝑁 =⊕௜∈ூ 𝑁 ∩ 𝑀௜  and 𝑁 ∩𝑀௜ ⊴௣ 𝑀௜ for all 𝑖 ∈ 𝐼. (𝑖𝑖) Let 𝑀 be a module. Then, 𝑒 ∈ 𝑆௟(𝑆) if and only 
if 𝑒𝑀 ⊴௣ 𝑀.  

Definition 2.3  We call 𝑀ோ  is 𝜋-Rickart, if for any 𝜂 ∈ 𝑆 , there exists an idempotent element 𝑓 ∈ 𝑆  such 
that 𝑟ெ(𝜂𝐼(𝑆)) = 𝑓𝑀.  

 Note that the idempotent 𝑓 in Definition 2.3 belongs 
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to 𝑆௟(𝑆) by Lemma 2.2.  
Example 2.4(𝑖) Every abelian von Neumann regular 

(strongly regular) ring is also 𝜋-Rickart. (𝑖𝑖) The module 𝑅ோ  is 𝜋-Rickart if and only if the 
ring 𝑅 is a right 𝜋-Rickart ring. (𝑖𝑖𝑖)  The classes of semisimple modules, Baer 
modules, and 𝜋-e.Baer modules are each examples of 𝜋-
Rickart modules. (𝑖𝑣)  Consider the ring 𝑅  given by 𝑅 = ቀ𝐴 𝐻0 ℂቁ , 
where 𝐴  denotes a Banach subalgebra of the ring of 
bounded linear operators acting on a Hilbert space 𝐻 , 
with the additional condition that 𝐴 contains all rank 1 
idempotents. As indicated in [ (16), Example 3.12], 𝑅 is 
a 𝜋-Baer ring and thus it is 𝜋-Rickart. Furthermore, by 
Theorem 2.10, it follows that 𝑒𝑅  also is a 𝜋 -Rickart 
module, where 𝑒 = ቀ1 00 0ቁ. (𝑣)  ℤ௣ಮ  is an injective ℤ-module, but it does not 
qualify as 𝜋-Rickart.  

In the forthcoming theorem, we showed that 𝜋 -
Rickart modules constitute a discrete category situated 
between 𝜋-e.Baer and p.q.-Baer modules. 

Proposition 2.5  𝑀ோ  is 𝜋-e.Baer ⇒ 𝑀ோ  is 𝜋-Rickart ⇒ 𝑀ோ is p.q.-Baer.  
Proof. Assume 𝑀ோ  is a 𝜋 -e.Baer module. For any 𝜓 ∈ 𝑆 , 𝑆𝜓𝐼(𝑆)  constitutes a left ideal of 𝑆  that is 

projection invariant. Consequently, we have 𝑔ଶ = 𝑔 ∈ 𝑆 
for which 𝑟ெ(𝜓𝐼(𝑆)) = 𝑟ெ(𝑆𝜓𝐼(𝑆)) = 𝑔𝑀. Thus, 𝑀ோ is 𝜋-Rickart. Now, suppose 𝑀ோ is 𝜋-Rickart. Then, for any 𝜓 ∈ 𝑆, we have 𝑔ଶ = 𝑔 ∈ 𝑆 such that 𝑟ெ(𝜓𝐼(𝑆)) = 𝑔𝑀. 
As 𝜓𝐼(𝑆) ⊆ 𝜓𝑆, it follows that 𝑟ெ(𝜓𝑆) ⊆ 𝑟ெ(𝜓𝐼(𝑆)) =𝑔𝑀. Additionally, since 𝑔 ∈ 𝑆௟(𝑆), we have (𝜓𝑆)𝑔𝑀 =(𝜓𝑔)(𝑔𝑆𝑔𝑀) ⊆ (𝜓𝐼(𝑆))𝑔𝑀 = 0 . Hence, 𝑟ெ(𝜑𝑆) =𝑔𝑀, and thus 𝑀 is p.q.-Baer.  

The subsequent example serves to show that the 
implications stated in Proposition 2.5 are not generally 
reversible.  

Example 2.6 (i) Consider the subring 𝑇 of ∏ஶ௡ୀଵ 𝐴௡, 
where 𝐴௡ = ℤ  for 𝑛 = 1,2,⋯ , defined as 𝑇 = {(𝑎௡) ∈∏ஶ௡ୀଵ 𝐴௡|𝑎௡𝑖𝑠 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡}. Then 𝑇்  is a 𝜋-
Rickart module, which is not 𝜋-e.Baer [ (16), Example 
1.6]. (𝑖𝑖)  The ring of endomorphisms of a 𝜋 -e.Baer 
module is a 𝜋-e.Baer ring by [ (15), Theorem 2.5]. Let 𝐵 
be a 𝜋-Rickart ring that is not a 𝜋-Baer ring (see, [ (16), 
Example Example 1.6]). Consider the ring 𝑅 = ቂ𝐵 𝐵0 𝐵ቃ 
and idempotent 𝑔 = ቂ1 00 0ቃ ∈ 𝑅 . Then, based on 
Theorem 2.10, 𝑀ோ = 𝑔𝑅  is a 𝜋 -Rickart module. 
However, since 𝐸𝑛𝑑ோ(𝑀) ≅ 𝐵 is not a 𝜋-Baer ring, 𝑀ோ 
is not a 𝜋-e.Baer module. (𝑖𝑖𝑖) Suppose 𝑅 is a simple ring that only has trivial 

idempotents {0,1}, and is not a domain (see, (23)). Then, 𝑅 is a quasi-Baer ring and therefore p.q-Baer. It can be 
easily verified that 𝑅 does not satisfy the right 𝜋-Rickart 
property. Consequently, 𝑀 = 𝑅ோ is not 𝜋-Rickart.  

Proposition 2.7  (𝑖) For an indecomposable module 𝑀ோ, being 𝜋-Rickart, Baer, and 𝜋-e.Baer are equivalent 
properties. (𝑖𝑖)  If 𝑀ோ  is an indecomposable artinian 𝜋-Rickart 
module, then 𝐸𝑛𝑑ோ(𝑀) is a division ring.  

Proof. (𝑖)  It is straightforward, as 𝑀ோ  is 
indecomposable. (𝑖𝑖) It follows from the part (𝑖) and [ (12), Corollary 
4.11].  

Proposition 2.8 The following conditions are 
equivalent for 𝑀ோ.   

    1.  𝑀ோ is 𝜋-Rickart.  
    2.  For every finite subset 𝑋 = {𝜑ଵ, . . . ,𝜑௡} of 𝑆, 𝑟ெ(𝑋𝐼(𝑆)) ≤⊕ 𝑀.  
    3.  For each finitely generated left ideal 𝑌  of 𝑆 , 𝑟ெ(𝑌𝐼(𝑆)) ≤⊕ 𝑀.  
Proof. (𝑖) ⇒ (𝑖𝑖) It can be verified that 𝑟ெ(𝑋𝐼(𝑆)) =𝑟ெ(𝜑ଵ𝐼(𝑆)) ∩. . .∩ 𝑟ெ(𝜑௡𝐼(𝑆)) . Since 𝑀  is 𝜋 -Rickart, 

we can find elements 𝑔௝ ∈ 𝑆௟(𝑆) such that 𝑟ெ(𝜑𝑗𝐼(𝑆)) =𝑔௝𝑀  for each 𝑗 ∈ {1,2, … } . Therefore, 𝑟ெ(𝑋𝐼(𝑆)) =⋂௡௝ୀଵ 𝑔௝𝑀 = 𝑔𝑀, where 𝑔 = 𝑔ଵ𝑔ଶ ⋯𝑔௡ ∈ 𝑆௟(𝑆). 
 (𝑖𝑖) ⇒ (𝑖𝑖𝑖) It is straightforward. 
 (𝑖𝑖𝑖) ⇒ (𝑖) It is evident because every principal left 

ideal is finitely generated.  
The following example shows that a direct summand 

of a 𝜋-Rickart module may not necessarily be 𝜋-Rickart, 
in general. 

Example 2.9 Consider a prime ring 𝑅  where 𝑅ோ  is 
uniform and 𝑍(𝑅ோ) ≠ 0 . Now, let’s consider the free 
module 𝐴ோ=⊕௜ୀଵ௡ 𝑅௜  where 𝑅௜ ≅ 𝑅 for each 1 ≤ 𝑖 ≤ 𝑛. 
Based on [ (15), Example 4.1], we can deduce that 𝐴ோ is 𝜋-e.Baer. Using Proposition 2.5, we can further deduce 
that 𝐴ோ is 𝜋-Rickart. However, since each one sided ideal 
of 𝑅 is projection invariant and 𝑅 is not Rickart, we can 
conclude that 𝑅ோ is not 𝜋-Rickart.  

The forthcoming theorem establishes the conditions 
under which a direct summand of a 𝜋-Rickart module is 𝜋-Rickart. 

Theorem 2.10 Direct summands that are projection 
invariant in 𝜋-Rickart modules remain 𝜋-Rickart.  

Proof. Let 𝑀  be 𝜋 -Rickart and 𝑁  be a projection 
invariant direct summand of 𝑀ோ. Then, there exist 𝑒ଶ =𝑒 ∈ 𝑆  such that 𝑁 = 𝑒𝑀  and 𝐸 ≅ 𝑒𝑆𝑒 , where 𝐸 =𝐸𝑛𝑑ோ(𝑁). Note that 𝑒 ∈ 𝑆௟(𝑆), as 𝑁 ⊴௣ 𝑀. Observe that 𝜑 = 𝑒𝜑𝑒, so 𝐼(𝐸) = 𝑒𝐼(𝑆)𝑒. For every 𝑛 ∈ 𝑟ே(𝜑𝐼(𝐸)), 𝑛 = 𝑒𝑛 . So 𝜑𝐼(𝑆)𝑛 = 𝑒𝜑𝑒𝐼(𝑆)𝑒𝑛 = 𝜑(𝑒𝐼(𝑆)𝑒)𝑛 =𝜑𝐼(𝐸)𝑛 = 0 , and hence 𝑟ே(𝜑𝐼(𝐸)) ⊆ 𝑟ெ(𝜑𝐼(𝑆)) ∩ 𝑁 . 
Now let 𝑥 ∈ 𝑟ெ(𝜑𝐼(𝑆)) ∩ 𝑁  we have 𝑥 = 𝑒𝑥 ∈ 𝑁  and 
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𝜑𝐼(𝐸)𝑥 = 𝜑𝑒𝐼(𝑆)𝑒𝑥 = 𝜑𝐼(𝑆)𝑥 = 0.  This implies that 𝑟ே(𝜑𝐼(𝐸)) = 𝑟ெ(𝜑𝐼(𝑆)) ∩ 𝑁 . Since 𝑀  is 𝜋 -Rickart, 𝑟ெ(𝜑𝐼(𝑆)) = 𝑓𝑀  for some 𝑓ଶ = 𝑓 ∈ 𝑆 . Hence 𝑟ெ(𝜑𝐼(𝑆)) ∩ 𝑁 = 𝑓𝑀 ∩ 𝑒𝑀 = (𝑒𝑓𝑒)𝑒𝑀, and 𝑒𝑓𝑒 is an 
idempotent of 𝑒𝑆𝑒 . Therefore 𝑟ே(𝜑𝐼(𝐸)) =(𝑒𝑓𝑒)𝑒𝑀 ≤⊕ 𝑒𝑀 = 𝑁.  

Theorem 2.11 The endomoprhism ring of a 𝜋 -
Rickart module is a right 𝜋-Rickart ring.  

Proof. Consider 𝑀 as a 𝜋-Rickart module. For every 𝜓 ∈ 𝑆, there is 𝑔ଶ = 𝑔 ∈ 𝑆 such that 𝑟ெ(𝜓𝐼(𝑆)) = 𝑔𝑀. 
Consequently, 𝜓𝐼(𝑆)𝑔 = 0 , implying 𝑔𝑆 ⊆ 𝑟ௌ(𝜓𝐼(𝑆)) . 
Now, let 𝛼 ∈ 𝑟ௌ(𝜓𝐼(𝑆)) . Hence, 𝜓𝐼(𝑆)𝛼 = 0 , which 
leads to 𝛼(𝑀) ⊆ 𝑟ெ(𝜓𝐼(𝑆)) . This implies 𝛼 = 𝑔𝛼 , so 𝑟ௌ(𝜓𝐼(𝑆)) = 𝑔𝑆. Therefore, 𝑆 is right 𝜋-Rickart.  

Corollary 2.12 Let 𝑅 be a right 𝜋-Rickart ring and 𝑒 ∈ 𝑆௟(𝑅). Then 𝑒𝑅𝑒 is also a right 𝜋-Rickart ring. 
Proof. Since 𝑒 ∈ 𝑆௟(𝑅),it follows from Lemma 2.2 

that 𝑒𝑅 ⊴௣ 𝑅 . Note that 𝐸𝑛𝑑ோ(𝑒𝑅) ≅ 𝑒𝑅𝑒 . Thus, the 
conclusion is derived from Theorem 2.10 and 2.11.  

The following example shows that the converse of 
Theorem 2.11 does not hold, in general. 

Example 2.13 Let 𝒞 = ൤ℤ ℤଶ0 ℤଶ൨  and 𝑔 = ቂ1 00 0ቃ ∈𝒞 . Consider 𝑀𝒞 = 𝑔𝒞 . Then 𝐸𝑛𝑑𝒞(𝑀)  is a 𝜋 -Rickart 
ring. However 𝑀𝒞 is not a 𝜋-Rickart module.  

As defined in [20], 𝑀ோ is called local-retractable if, 
for each ⌀ ≠ 𝐴 ⊆ 𝑆 and for any 0 ≠ 𝑚 ∈ 𝑟ெ(𝐴), there 
exists a homomorphism 𝜓௠:𝑀 → 𝑟ெ(𝐴)  with 𝑚 ∈𝜓௠(𝑀) ⊆ 𝑟ெ(𝐴). Local-retractability paves the way for 
the establishment of the converse of Theorem 2.11. 

Theorem 2.14  Let 𝑀ோ be local-retractable module. 
Then, 𝑀ோ is a 𝜋-Rickart module if and only if 𝑆 is a right 𝜋-Rickart ring.  

Proof. Let 𝑆  be 𝜋 -Rickart and 𝜑 ∈ 𝑆 . Then, there 
exists 𝑔ଶ = 𝑔 ∈ 𝑆 such that 𝑟ௌ(𝜑𝐼(𝑆)) = 𝑔𝑆. By [ (13), 
Proposition 2.20], 𝑟ெ(𝜑𝐼(𝑆)) = 𝑟ௌ(𝜑𝐼(𝑆))(𝑀) . Thus, 𝑟ெ(𝜑𝐼(𝑆)) = 𝑔𝑆(𝑀) = 𝑔𝑀 . Therefore, 𝑀  is a 𝜋 -
Rickart module. The converse follows from Theorem 
2.11.  

Corollary 2.15  Consider 𝔉  as a free 𝑅 -module. 
Then, 𝔉 is 𝜋-Rickart if and only if 𝐸𝑛𝑑ோ(𝔉) is a right 𝜋-
Rickart ring.  

Proof. It is clear from [ (13),  Lemma 2.9 ] and 
Theorem 2.14.  

Based on (13), 𝑀ோ is identified as  𝜋-e.nonsingular if 𝑟ெ(𝐴) ≤௘௦௦ 𝑔𝑀 where 𝑔ଶ = 𝑔 ∈ 𝑆 and 𝐴 ⊴௣ 𝑆, leading 
to 𝑟ெ(𝐴) = 𝑔𝑀 . Thus, 𝑀ோ  is termed 𝔎-nonsingular in 
(13), if, for any 𝜑 ∈ 𝑆, 𝐾𝑒𝑟𝜑 ≤௘௦௦ 𝑀 implies 𝜑 = 0. 

Proposition 2.16  Given a 𝜋-Rickart module 𝑀ோ, we 
have the following properties:   

    1.  𝑀ோ is 𝜋-e.nonsingular.  
    2.  𝑆 is a semiprime ring if and only if every left 

semicentral idempotents of 𝑆 is central.  

3.  𝑀ோ is 𝔎-nonsingular, if every essential submodule 
of 𝑀 is an essential extension of a projection invariant 
submodule.  

Proof. (𝑖)  Let 𝑀ோ  be 𝜋 -Rickart, and let 𝑃  be a 
projection invariant left ideal in 𝑆 . Assume 𝑟ெ(𝑃) ≤௘௦௦ 𝑔𝑀 , with 𝑔ଶ = 𝑔 ∈ 𝑆 . Since 𝑟ெ(𝑃) =⋂ఝ∈ூ 𝑟ெ(𝜑𝐼(𝑆)), for any 𝜑 ∈ 𝑃, it follows that 𝑟ெ(𝑃) ≤𝑟ெ(𝜑𝐼(𝑆)) ∩ 𝑔𝑀 ≤௘௦௦ 𝑔𝑀 . As 𝑀  is 𝜋 -Rickart, there 
exists ℎ ∈ 𝑆௟(𝑆)  such that 𝑟ெ(𝜑𝐼(𝑆)) = ℎ𝑀 . Hence ℎ𝑀 ∩ 𝑔𝑀 = 𝑔ℎ𝑀 , 𝑔ℎ𝑀 ≤௘௦௦ 𝑔𝑀 . Since 𝑔ℎ  is an 
idempotent in 𝑆 , 𝑔ℎ𝑀 = 𝑔𝑀 . Thus, 𝑔𝑀 ≤ 𝑟ெ(𝜑𝐼(𝑆)) 
leading to 𝑔𝑀 ≤ ⋂ఝ∈ூ 𝑟ெ(𝜑𝐼(𝑆)) = 𝑟ெ(𝑃). Therefore, 𝑔𝑀 = 𝑟ெ(𝑃), so 𝑀 is 𝜋-e.nonsingular. (𝑖𝑖) Clearly, each left semicentral idempotents of a 
semiprime ring is central. Let 𝑀 be a 𝜋-Rickart module 
and all left semicentral idempotents in 𝑆  be central. 
Suppose 𝜑 ∈ 𝑆  and 𝜑𝑆𝜑 = 0 . Then, 𝜑𝐼(𝑆)𝜑 = 0 . 
Consequently, for every 𝑚 ∈ 𝑀, 𝜑(𝑚) ∈ 𝑟ெ(𝜑𝐼(𝑆)) =𝑔𝑀 for some 𝑔 ∈ 𝑆௟(𝑆). This implies 𝜑𝑔 = 0 and (1 −𝑔)𝜑(𝑚) = 0 for each 𝑚 ∈ 𝑀. As 𝑔 is a central, we have 𝜑 = 𝑔𝜑 + (1 − 𝑔)𝜑 = 0. Hence, 𝑆 is a semiprime ring.  (𝑖𝑖𝑖)  suppose 𝜓 ∈ 𝑆  and 𝐾𝑒𝑟𝜓 ≤௘௦௦ 𝑀 . By 
assumption, there exists 𝑁 ⊴௣ 𝑀  such that 𝑁 ≤௘௦௦ 𝐾𝑒𝑟𝜓 ≤௘௦௦ 𝑀 . Consequently, 𝜓𝐼(𝑆)𝑁 = 𝜓𝑁 =0 . Thus, 𝑁 ⊆ 𝑟ெ(𝜓𝐼(𝑆)) . Since 𝑀  is 𝜋 -Rickart, 𝑟ெ(𝜓𝐼(𝑆)) = 𝑔𝑀 for some 𝑔ଶ = 𝑔 ∈ 𝑆. As 𝑁 ≤௘௦௦ 𝑀, 𝑔 = 1. Consequently, 𝜓 = 0, implying that 𝑀  is a 𝔎-
nonsingular module.  

In their important 1980 publication, Chatters and 
Khuri demonstrated that a right nonsingular, right 
extending ring is accurately defined as a right 
cononsingular Baer ring. The objective of the 
forthcoming discussion was to further explore analogues 
of Chatters–Khuri Theorem, with insights to be drawn 
from the results presented in this paper. Based on (24), 𝑀ோ  is termed 𝜋-extending if for any 𝑁 ⊴௣ 𝑀, we have 𝑁 ≤⊕ 𝑔𝑀  where 𝑔ଶ = 𝑔 . As per (15), a module 𝑀ோ 
satisfies the 𝜋 -e.cononsingular property if, for all 𝑃 ⊴௣ 𝑀 , the condition 𝑟ெ(𝑙ௌ(𝑃)) ≤⊕ 𝑀  leads to 𝑃 ≤௘௦௦ 𝑟ெ(𝑙ௌ(𝑃)). 

Corollary 2.17  (𝑖) Any abelian right 𝜋-Rickart ring is a semiprime 
ring. (𝑖𝑖)  Any 𝜋 -extending 𝜋 -Rickart module is 𝜋 -
e.cononsingular and 𝜋-e.Baer. 

Proof. Proposition 2.16 and [6, Theorem 4.16] yield 
the result.  

A module 𝑀ோ has IFP (Insertion of Factors Property), 
if for any element 𝜑 ∈ 𝑆 , we have 𝑟ெ(𝜑) ⊴ 𝑀  (25). 
Following this idea, we define 𝜋 -IFP module as a 
generalization of IFP modules. This new class of 
modules strengthen the condition for modules with IFP.  



On Projection Invariant Rickart Modules 

325 

Definition 2.18 We call a module 𝑀ோ is 𝜋-IFP, if for 
every 𝜙 ∈ 𝑆 , the submodule 𝑟ெ(𝜙)  is a projection 
invariant submodule of 𝑀 . (or equivalently, for each 𝑚 ∈ 𝑀, 𝑙ௌ(𝑚) is a projection invariant left ideal of 𝑆).  

Note that every ring with IFP has 𝜋 -IFP, but the 
converse is not true. For example, every simple abelian 
ring which is not a domain (see, (23)) has 𝜋-IFP but does 
not have IFP. Therefore, every abelian ring has 𝜋-IFP, 
but it does not have IFP in general [ (26), Example 14]. 

Example 2.19  Let 𝐴 be an abelian ring which does 
not have IFP. Consider 𝑅 = ቀ𝐴 𝐴0 𝐴ቁ  and 𝑀ோ = 𝑒𝑅 

where 𝑒 = ቀ1 00 0ቁ ∈ 𝑅 . Since 𝑆 = ቀ𝐴 00 0ቁ  and 𝐴  is 
abelian, 𝑀 has 𝜋-IFP. On the other hand, since 𝐴 does 
not satisfy IFP, there exist 𝑥,𝑦 ∈ 𝐴 such that 𝑥𝑦 = 0 and 𝑥𝐴𝑦 ≠ 0 . Consequently, there exists 𝑎 ∈ 𝐴  such that 𝑥𝑎𝑦 ≠ 0 . Set 𝑚 = ቀ𝑦 𝑦0 0ቁ  and 𝜙 = ቀ𝑥 00 0ቁ ∈ 𝑆.  It 
follows that 𝜙(𝑚) = 0 , thus 𝜙 ∈ 𝑙ௌ(𝑚) . However, 𝜙𝑎𝑚 ≠ 0  for ቀ𝑎 00 0ቁ ∈ 𝑆 . Thus 𝑙ௌ(𝑚)  is not a fully 
invariant left ideal of 𝑆. Hence, 𝑀 fails to satisfy the IFP.  

 An additional example of a 𝜋-IFP module that is not 
IFP can be constructed by taking 𝐴 as a simple abelian 
ring that is not a domain, as presented in Example 2.19. 

Proposition 2.20 The following statements are 
equivalent.   

    1.  𝑀ோ is both Rickart and abelian.  
    2.  𝑀ோ is 𝜋-Rickart and fulfills the 𝜋-IFP.  
Proof. (𝑖) ⇒ (𝑖𝑖)  It is evident that every abelian 

module satisfies 𝜋-IFP property. Let 𝜑 ∈ 𝑆. Since 𝑀ோ is 
Rickart, there exists 𝑓ଶ = 𝑓 ∈ 𝑆 such that 𝑟ெ(𝜑) = 𝑓𝑀. 
For any 𝑥 ∈ 𝑟ெ(𝜑𝐼(𝑆)), we have 𝜑𝐼(𝑆)𝑥 = 0. Thus, 𝑥 ∈ker(𝜑) = 𝑓𝑀 . Since 𝑀  is abelian, 𝜑𝐼(𝑆)𝑓𝑀 =𝜑𝑓𝐼(𝑆)𝑀 = 0. Therefore, 𝑟ெ(𝜑𝐼(𝑆)) = 𝑓𝑀, indicating 
that 𝑀ோ is 𝜋-Rickart.  (𝑖𝑖) ⇒ (𝑖)  Let 𝜑 ∈ 𝑆  and 𝑥 ∈ 𝑟ெ(𝜑) . Since 𝑀 
satisfies the 𝜋 -IFP, we have 𝐼(𝑆)𝑥 ⊆ 𝑟ெ(𝜑) . This 
implied that 𝑥 ∈ 𝑟ெ(𝜑𝐼(𝑆)). Therefore, we conclude that 𝑟ெ(𝜑) = 𝑟ெ(𝜑𝐼(𝑆)) . Since 𝑀ோ  is 𝜋 -Rickart, one can 
find an element 𝑓 ∈ 𝑆  satisfying 𝑓ଶ = 𝑓  and 𝑟ெ(𝜑) =𝑓𝑀. Now, we proceed to prove that 𝑀ோ is abelian. Since 𝑀  has 𝜋 -IFP, 𝑟ெ(𝑔) = (1 − 𝑔)𝑀 ⊴௣ 𝑀  for any 
idempotent 𝑔 ∈ 𝑆 . Consequently, 𝑔 ∈ 𝑆௟(𝑆)  and 
similarly 𝑔 ∈ 𝑆௥(𝑆). Therefore 𝑆 is an abelian ring. 𝑀ோ is said to possess the FI–strong summand 
intersection property (FI–SSIP) if every family of 
completely invariant direct summands of M_R has an 
intersection that is a direct summand of 𝑀ோ .  The 
following conclusion clarifies the conditions under which 
the π-e.Baer and π-Rickart modules are interchangeable. 

Proposition 2.21  𝑀ோ is 𝜋-e.Baer if and only if 𝑀ோ is 𝜋-Rickart and has the FI-SSIP.  

Proof. Assume 𝑀 is 𝜋-e.Baer and {𝑁ఊ}ఊ∈୻ is a family 
of fully invariant direct summands of 𝑀. For every 𝛾 ∈Γ, there exist an element 𝑒ఊ ∈ 𝑆௟(𝑆) such that 𝑁ఊ = 𝑒ఊ𝑀. 
Let 𝐽 = ∑ఊ∈୻ 𝑆(1 − 𝑒ఊ). Then 𝐽 is a projection invariant 
left ideal of 𝑆, as 1 − 𝑒ఊ ∈ 𝑆௥(𝑆) for each 𝛾 ∈ Γ. Hence 𝑟ெ(𝐽) ≤⊕ 𝑀. It follows that ⋂ఊ∈୻ 𝑁ఊ = ⋂ఊ∈୻ 𝑟ெ(𝑆(1 −𝑒ఊ)) = 𝑟ெ(𝐽). Therefore, 𝑀 has FI-SSIP. By Proposition 
2.5, every 𝜋-e.Baer module is 𝜋-Rickart. Conversely, let 𝐴 be a projection invariant left ideal of 𝑆. Then, we have 𝐴 = ∑ఝ೔∈஺ 𝜑௜𝐼(𝑆) . So 𝑟ெ(𝐴) = ⋂ఝ೔∈஺ 𝑟ெ(𝜑௜𝐼(𝑆)) . 
Since 𝑀ோ  is 𝜋-Rickart, for each 𝜑௜ ∈ 𝐴, there is 𝑒ఝ೔ ∈𝑆௟(𝑆) such that 𝑟ெ(𝜑௜𝐼(𝑆)) = 𝑒ఝ೔𝑀. As 𝑀 has FI-SSIP, 𝑟ெ(𝐴) = ⋂ఝ೔∈஺ 𝑒ఝ೔𝑀 ≤⊕ 𝑀. Therefore 𝑀 is 𝜋-e.Baer.  

Corollary 2.22  Let 𝑅  be a right hereditary, right 
noetherian ring. Then every injective module 𝑀ோ  is 𝜋-
e.Baer if and only if 𝑀ோ is 𝜋-Rickart.  

Proof. [ (27), Corollary 2.30] and Proposition 2.21 
complete the result.  

Lemma 2.23  Suppose 𝑀ோ is a 𝜋-Rickart module and 𝐽 is a nonzero projection invariant left annihilator in 𝑆. 
Then 𝐽 contains a nonzero idempotent.  

Proof. Let 0 ≠ 𝐽 = 𝑙ௌ(𝑋) for some nonempty subset 𝑋  of 𝑀  and 𝜑 ∈ 𝐽 . Due to 𝜋 -Rickart property of 𝑀 , 𝑟ெ(𝜑𝐼(𝑆)) = 𝑓𝑀 , where 𝑓ଶ = 𝑓 ∈ 𝑆 . Since 𝐽  is 
projection invariant left ideal of 𝑆, it follows from (15) 
that 𝑟ெ(𝐽) ⊴௣ 𝑀 . Consequently, 𝑟ெ(𝐽) ⊆ 𝑟ெ(𝜑𝐼(𝑆)) =𝑓𝑀 . Define 𝑒 = 1 − 𝑓 . Hence, 𝑒𝑟ெ(𝐽) ⊆ 𝑒𝑓𝑀 = 0, so 𝑒 ∈ 𝑙ௌ(𝑟ெ(𝐽)) = 𝐽.  

Theorem 2.24 If 𝑆 does not contain any infinite set of 
nonzero orthogonal idempotents, then 𝑀ோ  is the 𝜋 -
Rickart if and only if 𝑀ோ is 𝜋-e.Baer if and only if  𝑀ோ is 𝜋-e.Rickart.  

Proof. Suppose 𝑁 ⊴௣ 𝑀 . By Lemma 2.23, 𝑙ௌ(𝑁) 
contains a nonzero idempotent. By assumption and [ (12), 
Lemma 4.3], we can select an idempotent 𝑓 ∈ 𝑙ௌ(𝑁) 
such that 𝑆(1 − 𝑓) = 𝑙ௌ(𝑓𝑀) is minimal. We aimed to 
prove that 𝑙ௌ(𝑁) ∩ 𝑙ௌ(𝑓𝑀) = 0 . On the contrary, 
suppose 𝑙ௌ(𝑁) ∩ 𝑙ௌ(𝑓𝑀) ≠ 0 . Then 𝐽 = 𝑙ௌ(𝑁 ∪ 𝑓𝑀) ≠0 . Now, by Lemma 2.23, 𝐽  must contain a nonzero 
idempotent 𝑔. Since 𝑔𝑓 = 0, ℎ = 𝑓 + (1 − 𝑓)𝑔 is also 
an idempotent in 𝑙ௌ(𝑁) . As ℎ𝑔 = 𝑔 , ℎ ≠ 0 . 
Additionally, 𝑙ௌ(ℎ𝑀) ⊆ 𝑙ௌ(𝑓𝑀) . However, 𝑔ℎ = 𝑔𝑓 +𝑔(1 − 𝑓)𝑔 = 𝑔 ≠ 0 . Consequently, 𝑙ௌ(ℎ𝑀) ⊂ 𝑙ௌ(𝑓𝑀) , 
contradicting the choice of 𝑓 . Therefore, 𝑙ௌ(𝑁) ∩𝑙ௌ(𝑓𝑀) = 0. Now, for any 𝜑 ∈ 𝑙ௌ(𝑁), we have 𝜑(1 −𝑓) = 𝜑 − 𝜑𝑓 . Since 𝑓 ∈ 𝑙ௌ(𝑁) , 𝜑(1 − 𝑓) ∈ 𝑙ௌ(𝑁) ∩𝑙ௌ(𝑓𝑀) = 0 . Thus, 𝜑 = 𝜑𝑓 ∈ 𝑆𝑓 . This implies that 𝑙ௌ(𝑁) = 𝑆𝑓, and hence 𝑀ோ is 𝜋-e.Baer. The converse is 
deduced from Proposition 2.5. The other equivalent 
comes from [ (21) Theorem 3.7]. 

Theorem 2.25 A module 𝑀ோ possesses the 𝜋-e.Baer 
property if and only if it is π-Rickart and the set 𝐿 =
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{𝑆𝑒|𝑒 ∈ 𝑆௥(𝑆)}  forms a complete lattice in terms of 
inclusion. 

Proof. Let 𝑀ோ  be 𝜋 -Rickart, 𝐿 = {𝑆𝑒|𝑒 ∈ 𝑆௥(𝑆)}  a 
complete lattice under inclusion, and 𝑋  a projection 
invariant left ideal of 𝑆. Since 𝑋 is projection invariant, 𝑋 = ∑ఊ∈୻ 𝑥ఊ𝐼(𝑆)  for each 𝑥ఊ ∈ 𝑋 . Given 𝑀ோ  is 𝜋 -
Rickart, for each 𝛾 ∈ Γ, there exists an idempotent 𝑒ఊ ∈𝑆௟(𝑆)  such that 𝑟ெ(𝑥ఊ𝐼(𝑆)) = 𝑒ఊ𝑀 . Thus, we have 𝑟ெ(𝑋) =∩ఊ∈୻ 𝑟ெ(𝑥ఊ𝐼(𝑆)), implying 𝑟ெ(𝑋) =∩ఊ∈୻ 𝑒ఊ𝑀. 
Hence, 𝑙ௌ(𝑟ெ(𝑥ఊ𝐼(𝑆))) = 𝑆(1 − 𝑒ఊ)  for each 𝛾 ∈ Γ . 
Since 𝐿  is a complete lattice under inclusion, and 1 −𝑒ఊ ∈ 𝑆௥(𝑆), there exists an element 𝑒 ∈ 𝑆௥(𝑆) such that 𝑆𝑒 ⊆∩ఊ∈୻ 𝑆(1 − 𝑒ఊ) . Consequently, 𝑆𝑒 ⊆ 𝑙ௌ(𝑟ெ(𝑋)) , 
yielding 𝑟ெ(𝑋) = 𝑟ெ(𝑙ௌ(𝑟ெ(𝑋))) ⊆ 𝑟ெ(𝑆𝑒) = (1 −𝑒)𝑀. As 𝑒 ∈ 𝑙ௌ(𝑟ெ(𝑥ఊ𝐼(𝑆))) for each 𝛾 ∈ Γ, 𝑒𝑚 = 0 for 
each 𝑚 ∈ 𝑟ெ(𝑋). Therefore, for each 𝑚 ∈ 𝑟ெ(𝑋), 𝑚 =(1 − 𝑒)𝑚, implying 𝑟ெ(𝑋) ⊆ (1 − 𝑒)𝑀. Thus, 𝑀ோ is 𝜋-
e.Baer. Conversely, by Proposition 2.5, 𝑀ோ is 𝜋-Rickart. 
Additionally, as 𝑀ோ is 𝜋-e.Baer, by [ (15), Theorem 5.1], 𝑆 is a 𝜋-Baer ring and hence by [ (16), Theorem 2.7], 𝑆 
is a complete lattice under inclusion. 

2  𝝅-endo.AIP Modules 
 A new class of modules, referred to as π-e.AIP, is 

introduced in this section.  This class of modules extends 
its applicability to a considerably wider class by 
including the classes of π-Rickart and π-e.Baer modules. 
The interconnections between 𝜋–Rickart, endo-AIP, and 𝜋 -e.AIP modules are explored. Moreover, the present 
work aimed to investigate potential connections between 𝜋-e.AIP module and the ring of its endomorphisms. 

As defined in (28), a left ideal 𝐴 of 𝑅 is right s-unital 
if for every 𝑥 ∈ 𝐴, there is some 𝑦 ∈ 𝐴 for which 𝑥𝑦 =𝑥. 

Definition 3.1 We say 𝑀ோ  is a 𝜋-endo.AIP module, 
denoted by 𝜋-e.AIP, if 𝑙ௌ(𝐿) forms a right s-unital ideal 
of 𝑆 for all 𝐿 ⊴௣ 𝑀. A ring 𝑅 is considered left 𝜋-AIP, if 𝑅ோ is a 𝜋-e.AIP module.  

If 𝐾 ≤ 𝑀  and for all right 𝑅 -module 𝐿 , the map 𝐿 ⊗ோ 𝐾 → 𝐿⊗ோ 𝑀  is a monomorphism, then 𝐾  is 
called pure. Whenever 𝑙ௌ(𝐾) stands as a pure left ideal 
for any fully invariant submodule 𝐾 of 𝑀, it is recalled 
from (29) that 𝑀ோ is termed endo-AIP. 

Theorem 3.2  The following implications holds true. (𝑖) 𝑀ோ is 𝜋-e.AIP ⇒ 𝑀ோ is endo-AIP. (𝑖𝑖) 𝑀ோ is Rickart ⇒ 𝑀ோ is 𝜋-e.AIP. (𝑖𝑖𝑖) 𝑀ோ  is 𝜋-e.Baer ⇒ 𝑀ோ  is 𝜋-Rickart ⇒ 𝑀ோ  is 𝜋-
e.AIP. 

Proof. (𝑖)  Assume 𝑀  is 𝜋 -e.AIP and 𝐾 ⊴ 𝑀 . For 𝑥 ∈ 𝑙ௌ(𝐾), since 𝐾 ⊴௣ 𝑀, there exist 𝑐 ∈ 𝑙ௌ(𝐾) such that 𝑥 = 𝑥𝑐. Consequently, 𝑙ௌ(𝐾) is right s-unital. According 
to [ (30), Proposition 11.3.13], 𝑙ௌ(𝐾)  is pure as a left 
ideal. Therefore, 𝑀ோ is endo-AIP. 

(𝑖𝑖)  Suppose 𝑀  is Rickart, 𝑃 ⊴௣ 𝑀  and 𝜑 ∈ 𝑙ௌ(𝑃) . 
Then, 𝑃 ⊆ 𝑟ெ(𝜑). As 𝑀ோ  is Rickart, there exists 𝑔ଶ =𝑔 ∈ 𝑆  such that 𝑟ெ(𝜑) = 𝑔𝑀 . Consequently, 1 − 𝑔 ∈𝑙ௌ(𝑃) and 𝜑(1 − 𝑔) = 𝜑. Therefore, 𝑀 is 𝜋-e.AIP. (𝑖𝑖𝑖) By Proposition 2.5, 𝜋-e.Baer implies 𝜋-Rickart. 
Let 𝑀ோ  be 𝜋 -Rickart, 𝑃 ⊴௣ 𝑀  and 𝜓 ∈ 𝑙ௌ(𝑃) . Then 𝜓(𝑃) = 0 , so 𝜓𝐼(𝑆)𝑃 = 0 . Consequently, 𝑃 ⊆𝑟ெ(𝜓𝐼(𝑆)). Since 𝑀 is a 𝜋-Rickart module, there exists 𝑐ଶ = 𝑐 ∈ 𝑆  such that 𝑃 ⊆ 𝑟ெ(𝜓𝐼(𝑆)) = 𝑐𝑀 . This 
implies that 1 − 𝑐 ∈ 𝑙ௌ(𝑃) and 𝜓(1 − 𝑐) = 𝜓. Hence, 𝑀 
is 𝜋-e.AIP.  

The following example illustrates that the converse of 
Theorem 3.2 does not necessarily hold in general. 

Example 3.3  (𝑖) endo-AIP ⇏ 𝜋-e.AIP: Based on [ 
(16), Example 1.6], there exists a right p.q.-Baer ring 𝑅 
with trivial idempotents that is not right 𝜋-Rickart. By [ 
(29), Theorem 2.5], every right p.q.-Baer ring is endo-
AIP. Thus, 𝑅ோ  is endo-AIP. Since 𝑅ோ  has 𝜋-IFP, 𝑅ோ  is 𝜋-e.AIP if and only if 𝑅ோ is 𝜋-Rickart by Proposition 3.4. 
Therefore, 𝑅ோ is not 𝜋-e.AIP. (𝑖𝑖) 𝜋-e.AIP ⇏ 𝜋-Rickart: Let 𝑅 be the ring in [ (22), 
Example 1.6]. Then, 𝑅 is a right Rickart ring that is not 
right 𝜋-Rickart by[ (16), p.5]. Consider 𝑀 = 𝑅ோ. Then, 𝑀 is a 𝜋-e.AIP module, but not 𝜋-Rickart By Theorem 
3.2(𝑖𝑖). (𝑖𝑖𝑖) 𝜋-e.AIP ⇏ Rickart: Let 𝑅 = ቀℤ ℤ0 ℤቁ and 𝑀 =𝑅ோ. By [ (31), Proposition 3.12], 𝑀ோ is endo-AIP. Note 
that 𝐼(𝑆) = 𝑆 , so 𝑀  is 𝜋-e.AIP. However, 𝑀ோ  is not a 
Rickart module [ (12), Example 2.9]. 

Proposition 3.4  The following conditions are 
equivalent for module 𝑀 with 𝜋-IFP.   

    1.  𝑀ோ is 𝜋-e.AIP.  
    2.  𝑀ோ is Rickart.  
    3.  𝑀ோ is 𝜋-Rickart.  
Proof. (𝑖)  ⇒  (𝑖𝑖)  Consider 𝜂 ∈ 𝑆  and 𝑋 = 𝑟ெ(𝜂) . 

Given that 𝑀  has 𝜋-IFP, 𝑟ெ(𝜂) ⊴௣ 𝑀ோ . Since 𝑀  is 𝜋-
e.AIP and 𝜂 ∈ 𝑙ௌ(𝑋) , there exists 𝜓 ∈ 𝑙ௌ(𝑋)  such that 𝜂𝜓 = 𝜑 . Consequently, 𝜂(1 −𝜓) = 0  and 𝑟ெ(𝜂) ⊆𝑟ெ(𝜓) . Hence, 𝜓(1 − 𝜓) = 0 , implying 𝜓ଶ = 𝜓 ∈ 𝑆 . 
Let 𝑒 = 1 − 𝜓, then 𝑋 = 𝑒𝑀. Thus, 𝑀ோ is Rickart. (𝑖𝑖) ⇒ (𝑖𝑖𝑖) Let 𝑀ோ be Rickart. Then, for any 𝜓 ∈ 𝑆, 
there exists 𝑔ଶ = 𝑔 ∈ 𝑆  such that 𝑟ெ(𝜓) = 𝑔𝑀 . It is 
evident that 𝑟ெ(𝜓𝐼(𝑆)) ⊆ 𝑟ெ(𝜓). As 𝑀 has 𝜋-IFP, for 
every 𝑚 ∈ 𝑟ெ(𝜓), it follows that 𝑚 ∈ 𝑟ெ(𝜓𝐼(𝑆)). Thus, 
we can deduce that 𝑟ெ(𝜓𝐼(𝑆)) = 𝑔𝑀. Consequently, 𝑀ோ 
is 𝜋-Rickart. (𝑖𝑖𝑖) ⇒ (𝑖) follows directly from Theorem 3.2.  

The necessity of 𝜋-IFP condition in Proposition 3.4 
is illustrated by the following example. Notably, there is 
a module 𝑀  within 𝜋 -e.AIP class that lacks both the 
Rickart property and the 𝜋-IFP property. 

Example 3.5 (i) Consider 𝑅 and 𝑀ோ as described in 
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Example 3.3 (ii) . 𝑀ோ  is a 𝜋 -e.AIP module but not 
Rickart. Now, let 𝑒௜௝  denote a 2 × 2  matrix with the 
element 1 in (𝑖, 𝑗)-position and 0 elsewhere. Define 𝜑 as 𝜑 = ቀ1 00 0ቁ and 𝑓 as 𝑒ଵଵ + 𝑒ଵଶ. Note that 𝑓ଶ = 𝑓. Since 𝜑𝑒ଶଶ = 0 while 𝜑𝑓𝑒ଶଶ ≠ 0, 𝑀 fails to satisfy 𝜋-IFP. (𝑖𝑖) Let 𝑅 = 𝑀ଶ(ℤ[𝑥]) and 𝑀 = 𝑅ோ . since ℤ[𝑥] is a 
domain, it is 𝜋 -Rickart. Utilizing [ (16), Proposition 
3.10], we conclude that 𝑀 is 𝜋-Rickart. Nonetheless, 𝑀 
is not Rickart as seen in [ (32), Example 3.1.28]. Similar 
to the part (𝑖), 𝑀ோ fails to satisfy 𝜋-IFP.  

A straight summand of a π-e.AIP module doesn't 
always inherit the π-e.AIP property.  Example 2.9 shows 
that the module M_R meets the π-e.AIP requirement, 
which is supported by Theorem 3.2.  However, the direct 
summand R_R does not fit this criterion, as shown in 
Example 3.3. The following discussion investigated the 
specific conditions under which a direct summand of a π-
e.AIP module also retains the π-e.AIP property. 

Theorem 3.6 In a π-e.AIP module, any direct 
summand that remains invariant under projection also 
fulfills the π-e.AIP condition. 

Proof. Consider 𝑀 to be a 𝜋-e.AIP module, and let 𝑃 = 𝑔𝑀 ⊴௣ 𝑀  for some 𝑔ଶ = 𝑔 ∈ 𝑆 , with 𝐴 ⊴௣ 𝑃 . 
Then, 𝑔 ∈ 𝑆௟(𝑆) and 𝐸 = Endோ(𝑃) = 𝑔𝑆𝑔. For any 𝜂 ∈𝑙ா(𝐴), it follows that 𝜂(𝐴) = 0, and one can find 𝜓 ∈ 𝑆 
with the property 𝜂 = 𝑔𝜓𝑔. Observe from Lemma 2.2 
that 𝐴 ⊴௣ 𝑀 . Since 𝜂 ∈ 𝑙ௌ(𝐴)  and 𝑀  is 𝜋 -e.AIP, we 
have 𝑎 ∈ 𝑙ௌ(𝐴) with 𝜂 = 𝜂𝑎. Note that 𝑔𝑎𝑔 ∈ 𝑙ா(𝐴) and 𝜂(𝑔𝑎𝑔) = (𝑔𝜓𝑔)(𝑔𝑎𝑔) = 𝑔𝜓𝑔 = 𝜂 . It follows that 𝑃 
is 𝜋-e.AIP module. 

Corollary 3.7 (𝑖) Given that 𝑀 is a 𝜋-e.AIP module 
with an abelian endomorphism ring, it follows that all 
direct summands of 𝑀 are also 𝜋-e.AIP. (𝑖𝑖) Let 𝑅ோ be 𝜋-e.AIP and 𝑒 ∈ 𝑆௟(𝑅). Then 𝑒𝑅 is a 𝜋-e.AIP module.  

The example below shows that direct sums of 𝜋 -
e.AIP modules may not inherit the 𝜋-e.AIP property. 

Example 3.8  Consider the  ℤ -module 𝑀 =  ℤ ⊕ ℤ ଶ . It is evident that both  ℤ  and  ℤ ଶ  are 𝜋 -e.Baer, 
implying they are 𝜋-e.AIP. Nevertheless, 𝑀 itself is not 𝜋-e.AIP, as shown in [ (29), Example 2.13].  

Theorem 3.9  Let 𝑀 =⊕ఊ∈௰ 𝑀ఊ such that each 𝑀ఊ 
meets 𝜋-e.AIP criterion while also being subisomorphic 
to 𝑀ఎ for all 𝛾 ≠ 𝜂 ∈ 𝛤. Then, 𝑀ோ is a 𝜋-e.AIP module.  

Proof. For every 𝛾 ∈ Γ , let 𝑆ఊ  denote the ring of 
endomorphisms of 𝑀ఊ . The ring of endomorphisms of 𝑀, denoted by 𝑆, is structured as a matrix ring. In this 
ring, the entry in the (𝛾, 𝛾)-position comes from 𝑆ఊ, and 
the entry in (𝛾, 𝜂) -position (for 𝛾, 𝜂 ∈ Γ  with 𝛾 ≠ 𝜂  ) 
corresponds to a map from 𝑀ఎ  to 𝑀ఊ . Let 𝑃 ⊴௣ 𝑀ோ . 
Then 𝑃 =⊕ఊ∈୻ 𝑃 ∩ 𝑀ఊ =⊕ఊ∈୻ 𝑃ఊ  and 𝑃ఊ = 𝑃 ∩

𝑀ఊ ⊴௣ 𝑀ఊ  for all 𝛾 ∈ Γ  by Lemma 2.2. Consider 𝜑 ∈𝑙ௌ(𝑃). since 𝜑(𝑃) = 0, it follows that 𝜑ఊఊ ∈ 𝑙ௌം(𝑃ఊ) for 𝛾 ∈ Γ. As 𝑀ఎ  and 𝑀ఊ are subisomorphic, there exists a 
monomorphism 𝜓ఊఎ:𝑀ఎ → 𝑀ఊ . Clearly, for 𝛾 ≠ 𝜂 ∈ Γ, 𝜓ఊఎ𝜑ఎఊ(𝑃ఊ) = 0 . Since 𝑀ఊ  satisfies the 𝜋 -e.AIP 
property, 𝑙ௌം(𝑃ఊ) is right s-unital, and there exists a finite 
subset {𝜂ଵ, … 𝜂௡} of Γ such that 𝜑ఎఊ ≠ 0. Hence there is 𝑢ఊ ∈ 𝑙ௌം(𝑃ఊ)  such that 𝜑ఊఊ𝑢ఊ = 𝜑ఊఊ  and 𝜓ఊఎ𝜑ఎఊ𝑢ఊ =𝜓ఊఎ𝜑ఎఊ  for 𝛾 ≠ 𝜂 ∈ Γ . Since 𝜓ఊఎ  is a monomorphism 
for 𝛾 ≠ 𝜂 ∈ Γ, 𝜑ఎఊ𝑢ఊ = 𝜑ఎఊ . We construct an element 𝑥 = (𝑢ఊఎ)ఊ,ఎ∈୻, where 𝑢ఊఊ = 𝑢ఊ and 𝑢ఊఎ = 0, if 𝛾 ≠ 𝜂. 
Then 𝜑𝑥 = 𝜑. Thus, 𝑀 exhibits the 𝜋-e.AIP property.  

Corollary 3.10 If a module is π-e.AIP, then its direct 
sum with any number of copies also preserves the π-e.AIP 
condition. 

Theorem 3.11 For a 𝜋-e.AIP module 𝑀ோ , then the 
ring of its endomorphisms, denoted 𝐸𝑛𝑑ோ(𝑀), is a left 𝜋-
AIP ring.   

Proof. Assume 𝐴 is a projection invariat right ideal in 𝑆 . For every 𝜑 ∈ 𝑙ௌ(𝐴) , 𝜑𝐴(𝑀) = 0 . Then, 𝜑 ∈𝑙ௌ(𝐴𝑀). Since 𝐴𝑀 ⊴௣ 𝑀 and 𝑀 is 𝜋-e.AIP, there is 𝜓 ∈𝑙ௌ(𝐴𝑀) such that 𝜑𝜓 = 𝜑 . It follows that 𝜓𝐴 = 0, so 𝜓 ∈ 𝑙ௌ(𝐴). Therefore, we can deduce that 𝑆 is left 𝜋-AIP 
ring.  

The subsequent example indicates that the converse 
of Theorem 3.11 is not necessarily valid. It shows that a 
module having a left 𝜋-AIP endomorphism ring does not 
ensure that the module itself is 𝜋-e.AIP. 

Example 3.12 Let’s consider ℤ -module 𝑀 = ℤ (𝑝ஶ), where 𝑝 is a prime number. The endomorphism 
ring 𝐸𝑛𝑑(𝑀 ℤ ) is a commutative domain, specifically the 
ring of 𝑝-adic integers. Therefore, 𝐸𝑛𝑑(𝑀 ℤ ) is a 𝜋-Baer 
ring, and by Theorem 3.2, it is 𝜋 -AIP. From [ (33), 
Theorem 1.2], it follows that 𝑀 ℤ  being a duo module 
implies that it satisfies the 𝜋-IFP condition. However, as 
illustrated in [ (12), Example 2.17], 𝑀 ℤ  does not possess 
the Rickart property. Thus, based on Proposition 3.4, 𝑀 ℤ  
does not fulfill the condition of being 𝜋-e.AIP.  

For the converse of Theorem 3.11 to be valid, the 
concept of being locally 𝜋-quasi-retractable is exactly the 
required condition. 

Definition 3.13 We say that 𝑀ோ  is locally 𝜋-quasi-
retractable if for each 𝛾 ∈ 𝑆  where 𝑟ெ(𝑆𝛾𝐼(𝑆)) ≠ 0 , 
there is a nonzero element 𝛽 ∈ 𝑆  satisfying 𝛽(𝑀) =𝑟ெ(𝑆𝛾𝐼(𝑆)).  

Proposition 3.14 Given that 𝑀ோ  is locally 𝜋-quasi-
retractable and 𝑆 is a left 𝜋-AIP ring, it follows that 𝑀ோ 
is 𝜋-e.AIP. 

Proof. Suppose 0 ≠ 𝑋 ⊴௣ 𝑀 and 𝛾 ∈ 𝑙ௌ(𝑋). Because 𝑋 ⊴௣ 𝑀, it follows that 𝑆𝛾𝐼(𝑆) ⊆ 𝑙ௌ(𝑋). Therefore, 0 ≠𝑋 ⊆ 𝑟ெ(𝑆𝛾𝐼(𝑆)) . Based on the concept of 𝜋 - quasi-
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retractability, there exists a nonzero 𝛽 ∈ 𝑆  such that 𝛽(𝑀) = 𝑟ெ(𝑆𝛾𝐼(𝑆)). Consequently, 𝑋 ⊆ 𝑟ெ(𝑆𝛾𝐼(𝑆)) =𝛽(𝑀) and 𝛾 ∈ 𝑙ௌ(𝐼(𝑆)𝛽𝑆), where 𝐼(𝑆)𝛽𝑆 is a projection 
invariant right ideal of 𝑆. Given that 𝑆 is a left 𝜋-AIP 
ring, 𝑙ௌ((𝐼(𝑆)𝛽𝑆) is right s-unital. Therefore, there exists 𝛾′ ∈ 𝑙ௌ(𝐼(𝑆)𝛽𝑆) such that 𝛾 = 𝛾𝛾′. Since 𝑋 ⊆ 𝛽(𝑀), it 
follows that 𝛾′(𝐼(𝑆)𝑋) ⊆ 𝛾′(𝐼(𝑆)𝛽(𝑀)) = 0 . Hence, 𝛾′ ∈ 𝑙ௌ(𝑋), considering 𝑋 ⊴௣ 𝑀ோ. Consequently, 𝑀 is a 𝜋-e.AIP module.  

According to [ (16), Definition 2.1], a ring 𝑅  is 
defined as right 𝜌-regular if, for each 𝛾 ∈ 𝑅 there exists 𝜂 = 𝜂ଶ ∈ 𝑅 such that 𝑅𝛾𝐼(𝑅) = 𝑅𝜂. 

Proposition 3.15  A right ρ-regular ring S ensures 
that 𝑀ோ possesses the π-e.AIP condition. 

Proof. Based on [ (16), Lemma 2.2], 𝑆  is right 𝜋-
Rickart. Consequently, 𝑆  is is a left 𝜋 -AIP ring by 
Theorem 3.2. For any 𝛾 ∈ 𝑆, since 𝑆 is right 𝜌-regular, 
there exists a central idempotent 𝑔 ∈ 𝑆  such that 𝑆𝛾𝐼(𝑆) = 𝑔𝑆 as per [ (16), Proposition 2.4]. Note that 𝑔 ≠ 1 and 0 ≠ 𝛽 = 1 − 𝑔 ∈ 𝑆. Given that 𝑔 is central, 
we have 𝛽(𝑀) = 𝑟ெ(𝑆𝛾𝐼(𝑆)). As a result, 𝑀 is locally 𝜋 -quasi-retractable. Consequently, Proposition 3.14 
concludes the proof.  

Corollary 3.16 The ring of endomorphisms of a free 
module over a 𝜌-regular ring is a left 𝜋-AIP ring.  

Proof. Tis conclusion is derived from Corollary 3.10 
and Theorem 3.11.  
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