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Abstract

Satisfying the normality assumption is fundamental to many statistical inferences, as
its violation can significantly affect the validity and reliability of conclusions drawn from
the data. In this paper, we introduce a novel method for normalizing data that applies to
both parametric and non-parametric cases. This method is grounded in a refined version
of the empirical distribution function (EDF), which enhances its flexibility and accuracy
compared to traditional normalization techniques. By leveraging this new EDF
formulation, our approach effectively addresses common issues associated with existing
methods, such as sensitivity to outliers and the inability to handle skewed distributions
efficiently. A key advantage of our technique is its reversibility, which enables
normalized data to be effortlessly transformed back into their original form, thereby
preserving the integrity of the raw data for further analysis or interpretation. To
demonstrate the efficacy of our method, we evaluate its performance using multiple real-
world examples, including datasets related to the COVID-19 pandemic. These datasets,
characterized by their complexity and variability, provide a rigorous test of the proposed
normalization approach. The results confirm that our method successfully normalizes the
data while maintaining their underlying structure and relationships, thus improving the
robustness of subsequent statistical analyses. This innovation not only expands the toolkit
available for data preprocessing but also enhances the applicability of standard statistical
techniques to a broader range of real-life datasets.

Keywords: Normality assumption; Box-Cox transformation; Yeo-Johnson Transformation; Empirical
distribution function.

finance. The normal distribution is particularly important

Introduction among these distributions, especially for -classical
Statistical distributions are important in practical statistical analysis, including confidence intervals,
fields such as reliability engineering, medicine, and hypothesis testing, and regression analysis. These
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parametric methods rely heavily on the assumption of
normality (1). However, it is important to acknowledge
that in certain cases, the central limit theorem cannot be
used to assume the normality of the data.

Many researchers often aim to develop new models
that retain key features of the original model while also
adhering to all necessary assumptions. This can involve
techniques such as applying appropriate transformations
to the data or filtering out questionable data points that
may be regarded as outliers. This approach has been
discussed in the works of Thoni (2) and Hoyle (3), among
others. Nevertheless, there are techniques available to
transform data and align it with the normal distribution.
By utilizing such transformations, statistical analysis can
be tailored to better suit the specific data and take
advantage of the benefits associated with the normal
distribution.

Two popular methods for data normalization, the
Box-Cox (4, 5) and Yeo-Johnson transformations (6)
exist. However, these methods have limitations that may
restrict their applicability. For example, the Box-Cox
transformation assumes positive and continuous data,
with the existence of variance being a crucial condition.
Applying this transformation to heavy-tailed data can be
problematic and render the results invalid due to the
absence of variance in such distributions. Additionally,
both Box-Cox and Yeo-Johnson transformations can be
substantially influenced by extreme outliers in the
dataset, potentially distorting the shape and resulting in
distorted normalized data.

Furthermore, while the goal of these transformations
is data normalization, the transformed values obtained
are not always easy to interpret. Consequently, their use
may require additional explanation or conversion back to
the original scale for meaningful inference. To overcome
these challenges, continued exploration and refinement
of normalization techniques are necessary. Identifying
and developing new methods that mitigate the limitations
of the Box-Cox and Yeo-Johnson transformations would
contribute to advances in data normalization and enhance
their overall applicability across diverse datasets.

This topic has garnered significant attention from
researchers in recent years. For instance, in the paper (8),
the Box—Cox transformation a fundamental tool in
statistical modeling is comprehensively reviewed and
further developed. The authors provide an in-depth
exploration of its historical evolution and diverse
applications. Additionally, they introduce an extended
Yeo-Johnson transformation, which allows for separate
power transformations for positive and negative response
values. The necessity of this extension is demonstrated
through robust data analysis, highlighting its utility in
addressing asymmetry and heteroscedasticity in datasets.
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Furthermore, Riani et al. (9) propose an automated
approach for applying robust versions of the Box—Cox
and extended Yeo-Johnson transformations to regression
models. This method ensures that the response variable
achieves approximate normality, even when it contains
both positive and negative values. By incorporating
robust statistical techniques, their approach mitigates the
influence of outliers and enhances the reliability of model
assumptions, thereby improving the overall validity of
regression analyses.

In this study, we propose a new transformation for
normalizing data that works accurately for all data
(positive and negative) with a parametric continuous
distribution. This transformation is based on a continuous
version of the empirical distribution function (EDF) and
can be applied to nonparametric data with the same
efficiency. It is also applicable for distributions that do
not have a cumulative distribution of closed form. The
details of the proposed method, in two cases parametric
and nonparametric, are presented in Sections 3 and 4
respectively.

Materials and Methods
In this section, we will examine some techniques for
normalizing data, after which we will introduce our
proposed method.
1. The Current methods
1.1 The Box-Cox transformation
Tukey (7) introduced a family of power
transformations designed to ensure that the transformed
values represent a monotonic function of the
observations within a suitable range, typically indexed by
x(A) — {lOg(.’)Ct), A=0
t x, N

for x; > 0.

However, this family was subsequently refined by
Box & Cox (1) to address the discontinuity that arises at
A=0.

The Box-Cox transformation is a widely used
statistical technique for normalizing data. It involves
transforming a target variable into a normalized variable
using a power transformation. This transformation is
controlled by a parameter, the lambda, which is chosen
such that it achieves the best approximation to a normal
distribution. The Box-Cox method can be applied to
various types of data, except negative data, and is
commonly used in fields such as finance, economics, and
engineering.

To transform a target variable x into a normalized
variable w, we use Equation (1), where t represents the
period, and A is a parameter that ranges from -5 to 5.
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log(xy), A=0
We =) -1
A )

(M

It is mentioned that the current transformation can be
performed on non-time series data as well.

1.2 Yeo-Johnson transformation

Yeo-Johnson transformation is also a statistical
technique that normalizes data similar to the Box-Cox
transformation. It is an extension of the Box-Cox
transformation and can be applied to both positive and
negative values of the target variable. The transformation
is controlled by a parameter estimated using maximum-
likelihood methods to achieve the best approximation of
a normal distribution. Yeo-Johnson transformation is
commonly used in various fields, including finance,
engineering, and social sciences.

The Yeo-Johnson transformation is defined by
Equation (2).

y+1) -1

l(T 1#0,y=0
lo +1 A=0,y=0
yay =1 ";’5{1)2 >, y o
|— , A#2,y<0
k—log( y+1) A=2,y<0

then the Yeo-Johnson
the Box-Cox

If y is strictly positive,
transformation is the same as
transformation of (y + 1).

If y is strictly negative, then the Yeo-Johnson
transformation is the Box-Cox transformation of (—y +
1) with power 2 — 4. For both negative and positive
values, the transformation is a mixture of them, using
different powers for each.

2. The proposed method for the parametric case

In this section, a link between two continuous random
variables through the distribution function method is
established. Applying the following theorem, we can
derive a transformation for any arbitrary continuous
random variable that results in a standard normal
distribution.

Theorem 1. Let X and Y be continuous random
variables with cumulative distribution functions (CDFs)
Fyx and Fy, respectively. If the function h is defined
ash(y) = Fx_l(Fy(y)); then h(Y) 2 X.

Proof. The CDF of h(Y) is computed as follows:

Fagy (@) = P (h(Y) < x) = P (K (Fy(V)) <x)
= P (Fy(Y)) < Fx(x)),
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then

Fuy () = P (Y < K7 (Fe () =
= Fy(x).

Fe (7 (F ()

Since, Fpyy(x) = F(x) for all x,
complete.

the proof is

The following corollaries resulted directly from
Theorem 1.

Corollary 1. Let X and Y have exponential
distribution with parameters 4; and A,, respectively. Let
Fyand Fy be their CDFs. then,

Fy ' (x) = — A—llln(l —x)

and Fy(y) = 1 — e~*2Y_ Therefore,
F Y (R =—2m(l—-1+ehy)=2
X ( y()’)) I In( te ) /11y

A2 yp
’MYX

Thus
Corollary 2.
and Y~logistic(0,1) ,

respectively. Then,

Let X~weibull(a, 1)
with CDFs Fy and Fy ,

Fe ') = [~3In(1 - x)]%,

and F,(y) = tan™1(y).
Therefore,

Fy Y (Fy (1)) [— 2In(1 - tan_l(Y))]E DX

Now, the basic theorem of this section is stated.

Theorem 2. For any continuous random variable Y
with CDF Fy, the transformation

h(Y) = @7 (Fy(Y)), 3)

has a standard Normal distribution. Here, @ is the
cdf of standard Normal distribution.

Proof: Substituting X as a standard Normal variable
in Theorem 1, proves Theorem 2.
The equation (3) converts data with CDF Fy, to



Vol. 36 No.1 Winter 2025 M.M Saber, et al. J. Sci. . R. Iran

normalized data. For probable application, the inverse of
(3) returns normalized data to the original distribution. In
other words,

h™'(2) = F, " (@(2)). (4)

This converts the normal random variable Z to a
random variable Y with CDF F.
For instance, if Y ~Exp(A) then

@ 1(1—eM)~N(0,1).

In practice, we can utilize the "qnorm" function
directly from the R software as " ®~1". This means that
any dataset y with a cumulative distribution function of
Fy can be transformed into a normally distributed dataset
by using gnorm(Fy (y))".

To evaluate the effectiveness of the proposed
transformation method, a simulation study is conducted.
Suppose that Y~E(1) then ® (1 — e 2Y)~N(0,1) .
Therefore, to transform a sample y drawn from an
exponential distribution, we apply the transformation:

"gnorm(1 — exp (—Ay))"

This transformation maps the exponential data into
standard normal scores. To assess the performance of this
method across different scenarios, various combinations
of sample sizes and values of A are considered. The
resulting transformed datasets are then tested for
normality using the Kolmogorov—Smirnov and Shapiro—
Wilk tests.

The corresponding p-values obtained from these tests
are summarized in Table 1. As shown in the table, at the
significance level of 0=0.05, the original data do not
follow a normal distribution, whereas the transformed
data satisfy the normality assumption based on both the
K-S and S-W tests.

However, after applying a  normalizing
transformation, normality is satisfied according to both
K-S and S-W tests under the level of significance a =
0.05. Interestingly, for sample sizes of n =5 and n =
10, the K-S test suggests that the original data also
follows a normal distribution. However, these results are
attributed to the fact that the K-S test is asymptotic and

may not perform accurately enough for small sample
sizes. Hence, for the two cases, the normality of the
original data should only be assessed using the S-W test.
After applying the transformation method, the data
demonstrates substantial improvements in normality,
with K-S values increasing significantly (e.g., from 0.027
to 0.998 for (40,1.5) and from 0.034 to 0.788 for
(20,1.5)). Likewise, the S-W test values increase
noticeably, with some cases (e.g., (40,1.5) and (5,0.1))
achieving p-values above 0.5, indicating much better
adherence to normality. However, for cases with lower A
values and smaller sample sizes (e.g., (10,1.5) and
(30,0.4)), normality is not fully achieved, suggesting that
the transformation method is more effective for larger
datasets and higher rate parameters.

2.1. Application to Skewed data

There are instances where the CDF of the original
distribution lacks a closed form. In such cases, we can
adapt the equation Fy (y) = ®(y) to normalize the data.
It is worth noting that in this context, Fy (y) represents
the CDF of the original distribution. Suppose that Y has
a skew-normal distribution denoted by Y ~SN(a) for o #
0. Then,

r@) =20 P(ay),
Fr ) = [ 2pw)®(aw) dw,

where ¢ and ® are the standard normal density and
distribution function, respectively.

Let a=1 , F(y) = ®%(y) .
Then &~ 1(®2(Y) )~N(0,1). When a # 1, Fy(y) does
not a close form. In this case, the transformation is carried
out through (4). Therefore,

@17 2¢w)®(aw) dw )~N(0,1).

3. The proposed method for nonparametric case
Theorem 2 is a useful tool for normalizing data in
various applications. If the distribution of the data is
known, this corollary can be implemented directly.
However, in cases where the data lacks a parametric

Table 1. Results of Normality Tests for Original and Transformed Exponential Data at a=0.05 Significance Level.

(n,2) (40,1.5) (20,1.5) (10,1.5) (30,0.4) (15,0.4) (5,0.1)
K-S for EQ)  0.747 0.121 0.719 0.390 0.409 0.479
Original data K-S 0.027 0.034 0.130 0.031 0.070 0.175
S-W 0.000 0.000 0.001 0.000 0.000 0.011
Transformed data K-S 0.998 0.788 0.694 0.540 0.606 0.773
S-W 0.588 0.578 0.444 0.184 0.200 0.537
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distribution, one can utilize the empirical distribution
function (EDF) denoted by Fy instead of Fy in Theorem
2.

Let Y(l) <, Y(Z) <
of the sample. Then,

-+ < Yn) denote the order statistics

Fr(y) =

0, y< Y(1)

5 Yip £ ¥ < Ygeni=1,.,n=1 (5)
1 yz y(n)

The EDF presented in (5) is not continuous and one-
to-one, two conditions that are necessary for Theorem 2.
To address this issue, we propose a new version of the
empirical distribution function called the Generalized
Empirical Distribution Function (GEDF), denoted by
E;ov, (7). The GEDF is defined in the following form and
is recommended for use instead.

Flew(®) =

l( 0, y < Y(l) -6
y-Y(+68

T Yy =8 <y < Yy

(. Y=Y —

| = (4' + Y(¢+1>—Y<¢-))' Yo <y < Yapit=1..n-1
1, y = Y(n)

(6)

The value of § can be determined based on the range
of data and is typically a small value. Specifically, we use
the formula

min

0=,-1, ..

1
n—1 [ﬁ (Yeirn) — Y(i))]
to calculate its value.
The GEDF in (6) is continuous everywhere and is

one-to-one for all y < Y3 as well. Its inverse function is
given by Equation (7):

Fiew®) =
Yy —6(1 —np) p<%
Yy + (Ve = Y)p —4)  t<p< “hi=1..,n-1
(M
Equations (5) and (6) show that Fy"(Y,)=
Elew (Y(i)) = % . However, in practical statistical

applications, we deal with data values Y, for 4 =
1,...,n — 1, and there is no data available in the intervals

33

(Y(i)JY(/L+1)) for 4= 1, e, = 1 , oOor below Y(l) .
Therefore, there is no difference between using (5) or (6)
in such cases. However, the key advantage of GEDF is
its continuity property, which distinguishes it from EDF.
Moreover, as mentioned earlier, GEDF can be used as per
Theorem 2 to obtain the desired conversions. To address
this we recommend using half ( [g] ) for

constructing random data using (6) and then normalizing
the remaining data with this function. Subsequently, we
can swap these two datasets in the next step.

Suppose yi, Va, ..., ¥n 1S @ nonparametric data set

issue,

and let m, =[2] and m,=n-—m, Choose
2
Y(l) Y(l), Y(l) randomly from y;, y,, ..., Y, and the
name remained data as Y(z) Y(z) Y,,(,LZZ) The two
following transformations convert y;, V,,..., ¥, to
normalized data.
. O _y@®
50 = min Yarn — Yo
i=1 LMy — 1 m?2
1
. 2 )
5@ — min Yien — Yo
4::1,...,4'1/1,2—1 mz
For Yl(l), o Y,(nll) h(y) is used as follows
h(y) =
3.5, v®-s@
I (2)
YY) +6® @ _ 5@ @
{I @ ( a5 ) Yoy -0 sy s Yo
lo1(L 20\ y@ o, oy® g
| e &))@ G+’ o
l 3.5, Y@ <y
(®)
and for Yl(z), " Yﬁz) h(y) is applied in the following
h(y) =
( -35, y< v -0
I 1) s(1)
1
{ y Yil) .
I<I> 1 <ml m [<(1)())‘Y((§)]> Y(%) sys Y((¢121);" =1..,m -1
i+1
( 3.5, Y& <y

&)

The inverse conversion for returning normalized data
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to the original is

h(2) =

Yy —8(1-n@(@) @@ <

Yoy + (Y(¢‘+1) - Y(i))(nd)(z) — 1), i ¢n1
(10)
where § is defined as
= min Y)Y
6_’i=1,...,n—1( n2 )

4. Application to read data sets

In this section, we demonstrate proficiency of the
proposed method in two real data sets.

4.1. Confirmed case rate of the COVID-19 data

This data demonstrates the effectiveness of
normalizing transformations for nonparametric data
using several real-world datasets. Specifically, we
analyze the confirmed case rate (CCR) of the COVID-19
virus across ten different countries: Canada, France,
Germany, Iran, Iraq, Italy, Mexico, Netherlands, Turkey,
and the UK. These datasets were sourced from publicly
available data provided by the World Health
Organization (WHO) at https://covid19.who.int/

The CCR data exhibit significant variability and
skewness, making them ideal candidates for
normalization techniques. To address this, we applied
Equations (9) and (10), which represent mathematical
transformations designed to reduce skewness and
approximate a normal distribution. After applying these
transformations, we evaluated the normalized data using
two widely used statistical tests: The Kolmogorov-
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Smirnov (K-S) test and the Shapiro-Wilk (S-W) test. The
K-S test assesses the goodness-of-fit between the
empirical distribution of the data and a theoretical normal
distribution, while the S-W test is particularly sensitive
to deviations from normality in smaller sample sizes. The

S ®(z) < —;4=1,..,n rébults of both tests are reported in Table 2, where it is

evident that the transformations significantly improve the
normality of the datasets. This improvement is reflected
in the p-values of the tests, which indicate a closer
adherence.

The table clearly shows that none of the original
datasets are normally distributed, while all datasets
normalized using nonparametric transformations have a
normal distribution.

To have a comparison with previous methods of
normalization, data also were transformed by Box-Cox
transformation with the best value of A. This work is done
by function “boxcox” in package “MASS”. The results
demonstrate that none of these transformed data have a
normal distribution regarding the K-S test. However,
regarding the S-W test, the transformed data of 4
countries have a normal distribution. This certifies the
better performance of our method concerning, for, to
Box-Cox transformation.

The results in Table 2 indicate that the original
COVID-19 CCR data strongly deviates from normality,
as evidenced by extremely small p-values from both the
K-S and S-W tests. This suggests that the data
distribution is significantly non-normal across all
countries. Upon applying the Box-Cox transformation,
slight improvements are observed in normality,
particularly in the S-W test for some countries (e.g.,
Canada: 0.2695, Mexico: 0.7005, and the UK: 0.833).
However, many values remain well below conventional
thresholds for normality (p > 0.05), indicating that the

Table 2. Normality tests for original and transformed CCR of COVID-19 data.

Country Canada France Germany Iran Iraq
Original data K-S <2x 10716 <2x 10716 <2x 10716 <2x 10716 <2x 10716
S-w 0.0073 <2x 10716 2% 10715 4x 10716 3.9x 1077
Transformed data K-S <22x 1071 <22x 10716 <2.2x 10716 <22x 10716 <22x 1071
by Box-Cox S-W 0.2695 1.49x 1075 8.20x 10~ 1.89x 1075 8.59x 1077
Transformed data K-S 0.4992 0.9991 0.3439 0.9642 0.786
by method of s-w 0.1385 08113 0.8621 02411 04
paper
Country Italy Mexico Netherlands Turkey UK
Original data K-S <7x 10716 <2x 10716 1.2x 10715 <2x 10716 4.6x 1077
S-w 0.0047 1.6x 1076 0.0433 <2x 10716 0.8188
Transformed data K-S <Ix 1071 <22x1071° 1.221x 10715 <22x 10716 2.49x 10713
by Box-Cox S-W 0.0422 0.7005 0.8813 1.30x 107° 0.833
Transformed data K-S 0.9635 0.8221 0.9409 0.6051 0.7644
by method of S-W 0.2861 0.5015 0.2793 0.2368 0.2571
paper
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Figure 1. "Effect of Proposed Transformations on Normality: Q-Q Plots and Density Curves for Norway, South Korea, and the
USA"
Box-Cox transformation alone is insufficient for achieving a normal distribution in many cases.
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Conversely, the transformation method proposed in the
paper demonstrates a substantial improvement in
normality. K-S test results show much higher p-values
(closer to 1), indicating that the transformed distributions
better fit a normal distribution. Likewise, the S-W test
results show a significant shift towards normality, with
values such as 0.8113 (France), 0.8621 (Germany), and
0.5015 (Mexico) reflecting stronger normality
characteristics than the Box-Cox transformation. This
suggests that the proposed transformation method is
more effective at normalizing the data, making it a
preferable approach for statistical modeling.

Figure 1 illustrates the effects of the proposed
transformation on datasets from Norway, South Korea,
and the United States. The original data demonstrated
significant non-normality, primarily characterized by
right skewness. Following the transformation, the data
aligned much more closely with a normal distribution, as
evidenced by decreased skewness and the emergence of
more symmetrical, bell-shaped density curves. Although
some minor deviations from normality persist in certain
cases, the transformation markedly enhances the data’s
suitability for parametric analyses. Each subplot includes
a Normal Q-Q plot and a density curve, providing clear
visual confirmation of the transformation’s success in
improving  distributional symmetry and overall
normality.

Figure 2 displays a grayscale heatmap of logl0-
transformed p-values from normality tests, illustrating
how well COVID-19 CCR data conform to a normal
distribution across different countries and transformation
techniques. In this visualization, darker shades represent
stronger evidence of deviation from normality (lower p-

M.M Saber, et al.
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values), while lighter shades indicate data closer to a
normal distribution (higher p-values). For example, the
original data for Canada are depicted in very dark hues,
reflecting extremely low p-values (<le-16) and a
significant departure from normality. In contrast, after
applying the proposed transformation, the color intensity
becomes noticeably lighter, with p-values exceeding 0.3,
demonstrating a marked improvement in normality fit.
This comparison underscores the effectiveness of the
proposed method, which outperforms both the
untransformed data and the Box-Cox transformation in
achieving normality.

4.2. The mortality rate and confirmed case rate of
COVID-19 data

It is essential to clarify that this article focuses
exclusively on the normalization of continuous or non-
discrete data. As such, the methodology proposed herein
may not be suitable for normalizing discrete data, a point
we will further explore in this section through a practical
situation that highlights how aggregated data can
sometimes be treated as discrete.

We examine the mortality rate (MR) and confirmed
case rate (CCR) of COVID-19 across three countries: the
USA, South Korea, and Norway. The relevant data can
be downloaded from https://covid19.who.int/

In this case, the MR and CCR data for South
Korea and Norway contain many zeros and are thus
approximately discrete, while the same variables for the
USA are continuous. As shown in Table 3, both the K-S
and S-W tests confirm that none of the six datasets has a
normal  distribution.  Although  the transformed
datasets for the USA are normally distributed, the data

Heatmap of Normality Test p-values (-log10 scale)
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Figure 2 "Comparison of Normality Fit for COVID-19 CCR Data Across Countries: Grayscale Heatmap of Log10-Transformed
p-Values"
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Table 3. Normality tests for original and transformed MR and CCR of COVID-19 data.

Country USA South Korea Norway
variable MR CCR MR CCR MR CCR
Original data K-S <2x 10716 <2x 10716 <2x 1071 <2x10716 <2x 10716 <2x1071®
& S-w <2x 10716 <2x 10716 8x 10714 <2x 10716 8x 1071 <2x 10716
Transformed K-S <22x 1071  <2x 10716 <2x 10716 <2x 1071 <2x10716 <2x 10716
dBZti_]g;X SW  323x10°  <2x 1076 487x 107 1.12x 1070 <2x 10716  <2x 10716
Transformed K-S 0.9912 0.431 8.69x 1078 <2x 10716 35x 107> <2x 10716
g?t;azrmeth"d S-W 0.7046 05023  327x107% <2x 1076 29x 1076  <2x 1016
for South Korea and Norway do not have the normal overcomes their limitations. Additionally, we have
distribution yet. The results of the Box-Cox introduced a new empirical distribution function that
transformation demonstrate that none of these allows the proposed conversion to be used for non-
transformed data have a normal distribution regarding the parametric  data.  Unlike  conventional empirical

K-S and S-W tests. Therefore, our method has better
performance of Box-Cox transformation.

Table 3 presents normality test results for the
Mortality Rate (MR) and Case Fatality Rate (CCR) of
COVID-19 data across the USA, South Korea, and
Norway. The original data exhibits strong deviations
from normality, as indicated by extremely small p-values
in both the Kolmogorov-Smirnov (K-S) and Shapiro-
Wilk (S-W) tests, confirming significant non-normality.
Applying the Box-Cox transformation yields minor
improvements in a few cases (e.g., the S-W test for MR
in the USA: 3.23x10), but in general, normality is not
achieved, as many values remain exceptionally low. This
suggests that the Box-Cox transformation is insufficient
for properly normalizing the data. On the other hand, the
proposed transformation method in the paper
significantly enhances normality for MR in the USA,
where K-S and S-W tests return p-values of 0.9912 and
0.7046, respectively. However, for CCR in South Korea
and Norway, the transformation does not substantially
improve normality, with many p-values remaining near
zero. This indicates that while the method is effective in
certain cases, its performance varies across datasets and
variables, necessitating further investigation.

Results

The normality of data and its distribution is crucial for
many statistical analyses, as it simplifies the statistical
modeling process. In this article, recognizing the
importance of normalization conversions and their
application in various scientific fields, we have
introduced a new and straightforward normalization
conversion method for both parametric and non-
parametric continuous data. Our approach outperforms
conventional methods such as the Yeo-Johnson
transformation and Box-Cox transformation and
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distribution functions, this new definition is continuous,
enabling us to normalize non-parametric data.

Conclusion

To further strengthen the study, additional validation
should be conducted by comparing the proposed
transformation with other techniques such as Yeo-
Johnson and log transformations, along with
supplementary normality tests like the Anderson-Darling
test. Visualizing the distributions through histograms,
density plots, and Q-Q plots would provide intuitive
confirmation of normality improvements. Moreover,
evaluating the impact of normalization on downstream
statistical analyses, such as regression modeling and
hypothesis testing, would demonstrate its practical
benefits. Expanding the application to other
epidemiological datasets and periods would help assess
its generalizability. Finally, a deeper theoretical
discussion on why the proposed transformation
outperforms Box-Cox, particularly in terms of skewness
and kurtosis reduction, would provide a stronger
mathematical justification for its effectiveness.

Moreover, to further validate the findings, the
proposed transformation should be compared with
alternative techniques such as Yeo-Johnson or log
transformations, and additional normality tests like the
Anderson-Darling test should be conducted. Visualizing
the distributions through histograms, Q-Q plots, and
density plots would provide clearer insights into the
effectiveness of each transformation. Evaluating the
impact of normality improvements on subsequent
statistical analyses, such as predictive modeling and
hypothesis testing, would help establish its practical
benefits. Additionally, applying the method to a broader
range of countries and datasets would assess its
generalizability. Finally, a theoretical discussion on why
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the transformation is more effective for MR than CCR,
possibly exploring the influence of skewness and
kurtosis, would strengthen the study’s conclusions.
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