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Abstract 
Satisfying the normality assumption is fundamental to many statistical inferences, as 

its violation can significantly affect the validity and reliability of conclusions drawn from 
the data. In this paper, we introduce a novel method for normalizing data that applies to 
both parametric and non-parametric cases. This method is grounded in a refined version 
of the empirical distribution function (EDF), which enhances its flexibility and accuracy 
compared to traditional normalization techniques. By leveraging this new EDF 
formulation, our approach effectively addresses common issues associated with existing 
methods, such as sensitivity to outliers and the inability to handle skewed distributions 
efficiently. A key advantage of our technique is its reversibility, which enables 
normalized data to be effortlessly transformed back into their original form, thereby 
preserving the integrity of the raw data for further analysis or interpretation. To 
demonstrate the efficacy of our method, we evaluate its performance using multiple real-
world examples, including datasets related to the COVID-19 pandemic. These datasets, 
characterized by their complexity and variability, provide a rigorous test of the proposed 
normalization approach. The results confirm that our method successfully normalizes the 
data while maintaining their underlying structure and relationships, thus improving the 
robustness of subsequent statistical analyses. This innovation not only expands the toolkit 
available for data preprocessing but also enhances the applicability of standard statistical 
techniques to a broader range of real-life datasets. 
 
Keywords: Normality assumption; Box-Cox transformation; Yeo-Johnson Transformation; Empirical 
distribution function. 
 

Introduction 
Statistical distributions are important in practical 

fields such as reliability engineering, medicine, and 
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finance. The normal distribution is particularly important 
among these distributions, especially for classical 
statistical analysis, including confidence intervals, 
hypothesis testing, and regression analysis. These 
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parametric methods rely heavily on the assumption of 
normality (1). However, it is important to acknowledge 
that in certain cases, the central limit theorem cannot be 
used to assume the normality of the data. 

Many researchers often aim to develop new models 
that retain key features of the original model while also 
adhering to all necessary assumptions. This can involve 
techniques such as applying appropriate transformations 
to the data or filtering out questionable data points that 
may be regarded as outliers. This approach has been 
discussed in the works of Thöni (2) and Hoyle (3), among 
others. Nevertheless, there are techniques available to 
transform data and align it with the normal distribution. 
By utilizing such transformations, statistical analysis can 
be tailored to better suit the specific data and take 
advantage of the benefits associated with the normal 
distribution. 

Two popular methods for data normalization, the 
Box-Cox (4, 5) and Yeo-Johnson transformations (6) 
exist. However, these methods have limitations that may 
restrict their applicability. For example, the Box-Cox 
transformation assumes positive and continuous data, 
with the existence of variance being a crucial condition. 
Applying this transformation to heavy-tailed data can be 
problematic and render the results invalid due to the 
absence of variance in such distributions. Additionally, 
both Box-Cox and Yeo-Johnson transformations can be 
substantially influenced by extreme outliers in the 
dataset, potentially distorting the shape and resulting in 
distorted normalized data. 

Furthermore, while the goal of these transformations 
is data normalization, the transformed values obtained 
are not always easy to interpret. Consequently, their use 
may require additional explanation or conversion back to 
the original scale for meaningful inference. To overcome 
these challenges, continued exploration and refinement 
of normalization techniques are necessary. Identifying 
and developing new methods that mitigate the limitations 
of the Box-Cox and Yeo-Johnson transformations would 
contribute to advances in data normalization and enhance 
their overall applicability across diverse datasets. 

This topic has garnered significant attention from 
researchers in recent years. For instance, in the paper (8), 
the Box–Cox transformation a fundamental tool in 
statistical modeling is comprehensively reviewed and 
further developed. The authors provide an in-depth 
exploration of its historical evolution and diverse 
applications. Additionally, they introduce an extended 
Yeo-Johnson transformation, which allows for separate 
power transformations for positive and negative response 
values. The necessity of this extension is demonstrated 
through robust data analysis, highlighting its utility in 
addressing asymmetry and heteroscedasticity in datasets.  

Furthermore, Riani et al. (9) propose an automated 
approach for applying robust versions of the Box–Cox 
and extended Yeo-Johnson transformations to regression 
models. This method ensures that the response variable 
achieves approximate normality, even when it contains 
both positive and negative values. By incorporating 
robust statistical techniques, their approach mitigates the 
influence of outliers and enhances the reliability of model 
assumptions, thereby improving the overall validity of 
regression analyses. 

In this study, we propose a new transformation for 
normalizing data that works accurately for all data 
(positive and negative) with a parametric continuous 
distribution. This transformation is based on a continuous 
version of the empirical distribution function (EDF) and 
can be applied to nonparametric data with the same 
efficiency. It is also applicable for distributions that do 
not have a cumulative distribution of closed form. The 
details of the proposed method, in two cases parametric 
and nonparametric, are presented in Sections 3 and 4 
respectively.  

 

Materials and Methods 
In this section, we will examine some techniques for 

normalizing data, after which we will introduce our 
proposed method. 

1. The Current methods 
1.1 The Box-Cox transformation  
Tukey (7) introduced a family of power 

transformations designed to ensure that the transformed 
values represent a monotonic function of the 
observations within a suitable range, typically indexed by  𝓍௧(ఒ) = ൜log(𝓍௧),          𝜆 = 0 𝓍௧ఒ,                 𝜆 ≠ 0  

for 𝓍௧ > 0. 
However, this family was subsequently refined by 

Box & Cox (1) to address the discontinuity that arises at 𝜆 = 0. 
The Box-Cox transformation is a widely used 

statistical technique for normalizing data. It involves 
transforming a target variable into a normalized variable 
using a power transformation. This transformation is 
controlled by a parameter, the lambda, which is chosen 
such that it achieves the best approximation to a normal 
distribution. The Box-Cox method can be applied to 
various types of data, except negative data, and is 
commonly used in fields such as finance, economics, and 
engineering. 

To transform a target variable 𝓍  into a normalized 
variable 𝑤, we use Equation (1), where t represents the 
period, and λ is a parameter that ranges from -5 to 5.  
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𝑤௧ = ൝log(𝑥௧),          𝜆 = 0 (௫೟ഊିଵ)ఒ ,           𝜆 ≠ 0                                            (1) 

It is mentioned that the current transformation can be 
performed on non-time series data as well. 
 
1.2 Yeo-Johnson transformation 

Yeo-Johnson transformation is also a statistical 
technique that normalizes data similar to the Box-Cox 
transformation. It is an extension of the Box-Cox 
transformation and can be applied to both positive and 
negative values of the target variable. The transformation 
is controlled by a parameter estimated using maximum-
likelihood methods to achieve the best approximation of 
a normal distribution. Yeo-Johnson transformation is 
commonly used in various fields, including finance, 
engineering, and social sciences. 

The Yeo-Johnson transformation is defined by 
Equation (2).  

 

𝜓(𝜆, 𝑦) = ⎩⎪⎨
⎪⎧ (௬ାଵ)  ഊିଵఒ ,                          𝜆 ≠ 0, 𝑦 ≥ 0log  (𝑦 + 1),                      𝜆 = 0, 𝑦 ≥ 0− (ି௬ାଵ)మషഊିଵଶିఒ ,                  𝜆 ≠ 2,𝑦 < 0 − log(−𝑦 + 1),                𝜆 = 2, 𝑦 < 0              (2) 

If y is strictly positive, then the Yeo-Johnson 
transformation is the same as the Box-Cox 
transformation of (𝑦 + 1).  

If 𝑦  is strictly negative, then the Yeo-Johnson 
transformation is the Box-Cox transformation of (−𝑦 +1)  with power 2 − 𝜆 . For both negative and positive 
values, the transformation is a mixture of them, using 
different powers for each. 

 
2. The proposed method for the parametric case 

In this section, a link between two continuous random 
variables through the distribution function method is 
established. Applying the following theorem, we can 
derive a transformation for any arbitrary continuous 
random variable that results in a standard normal 
distribution. 

Theorem 1. Let 𝑋  and 𝑌  be continuous random 
variables with cumulative distribution functions (CDFs) 𝐹௑  and 𝐹௒ , respectively. If the function ℎ  is defined 
as ℎ(𝑦) = 𝐹௑ିଵ൫𝐹௒(𝑦)൯; then ℎ(𝑌)  ୀ஽ 𝑋. 

Proof. The CDF of ℎ(𝑌) is computed as follows:  𝐹௛(௒)(𝑥) =  𝑃 (ℎ(𝑌) ≤  𝑥 ) = 𝑃 ൫ 𝐹௑ିଵ൫F௒(Y)൯  ≤ 𝑥 ൯= 𝑃 (𝐹௒(𝑌)) ≤ 𝐹௑(𝑥)), 

then 

𝐹௛(௒)(𝑥) = 𝑃 ቀ𝑌 ≤ 𝐹௒ିଵ൫𝐹௑(𝑥)൯ቁ = 𝐹௒ ቀ𝐹௒ିଵ൫𝐹௑(𝑥)൯ቁ= 𝐹௑(𝑥). 
Since, 𝐹௛(௒)(𝑥) = 𝐹(𝑥)  for all 𝑥 , the proof is 

complete. 
 
The following corollaries resulted directly from 

Theorem 1.  
Corollary 1. Let 𝑋  and 𝑌  have exponential 

distribution with parameters 𝜆ଵ and 𝜆ଶ, respectively. Let 𝐹௑and 𝐹௒ be their CDFs. then, 

𝐹௑ିଵ(𝓍) = −  1𝜆ଵ ln(1 − 𝓍) 

and 𝐹௒(𝑦) = 1 − 𝑒ିఒమ௬. Therefore, 

 𝐹௑ିଵ൫𝐹௒(𝑦)൯ = − ଵఒభ 𝑙𝑛(1 − 1 + 𝑒ିఒమ௬) = ఒమఒభ 𝑦. 

Thus,  ఒమఒభ 𝑌  ୀ஽ 𝑋.  
 
Corollary 2. Let  𝑋~𝑤𝑒𝒾𝑏𝑢𝑙𝑙(𝛼, 𝜆) 

and  𝑌~𝑙𝑜𝑔𝒾𝑠𝑡𝒾𝑐(0,1) , with CDFs 𝐹௑  and  𝐹௒ , 
respectively. Then, 

𝐹௑ିଵ(𝓍) = ቂ− ଵఒ ln(1 − 𝓍)ቃభഀ, 

and 𝐹௒(𝑦) = tanିଵ(𝑦). 
Therefore, 

𝐹௑ିଵ൫𝐹௒(𝑌)൯  ቂ− ଵఒ ln(1 − tanିଵ(𝑌))ቃభഀ  ୀ஽ 𝑋. 

Now, the basic theorem of this section is stated. 
 
Theorem 2. For any continuous random variable Y 

with CDF 𝐹௒, the transformation ℎ(𝑌) = 𝚽ିଵ(Fଢ଼(𝑌)),
                                                      

(3) 

has a standard Normal distribution. Here, 𝜱 is the 
cdf of standard Normal distribution. 

 
Proof: Substituting 𝑋 as a standard Normal variable 

in Theorem 1, proves Theorem 2. 
The equation (3) converts data with CDF 𝐹௒  to 
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normalized data. For probable application, the inverse of 
(3) returns normalized data to the original distribution. In 
other words,  

      ℎିଵ(𝑍) = 𝐹௒ିଵ(𝜱(𝑍)).                                 (4) 

This converts the normal random variable 𝑍  to a 
random variable 𝑌 with CDF 𝐹௒. 

For instance, if 𝑌~Exp(λ) then 𝚽ିଵ(1− 𝑒ିఒ௒)~𝑁(0,1). 

In practice, we can utilize the "𝑞𝑛𝑜𝑟𝓂"   function 
directly from the R software as " 𝚽ିଵ". This means that 
any dataset 𝒚 with a cumulative distribution function of 𝐹௒ can be transformed into a normally distributed dataset 
by using 𝑞𝑛𝑜𝑟𝓂(𝐹௒(𝑦))". 

To evaluate the effectiveness of the proposed 
transformation method, a simulation study is conducted. 
Suppose that 𝑌~𝐸(𝜆)  then  Φିଵ(1− eି஛ଢ଼)~N(0,1) . 
Therefore, to transform a sample y drawn from an 
exponential distribution, we apply the transformation: " 𝑞𝑛𝑜𝑟𝑚(1 − 𝑒𝑥𝑝 (−𝜆𝒚))" 

This transformation maps the exponential data into 
standard normal scores. To assess the performance of this 
method across different scenarios, various combinations 
of sample sizes and values of λ are considered. The 
resulting transformed datasets are then tested for 
normality using the Kolmogorov–Smirnov and Shapiro–
Wilk tests. 

The corresponding p-values obtained from these tests 
are summarized in Table 1. As shown in the table, at the 
significance level of α=0.05, the original data do not 
follow a normal distribution, whereas the transformed 
data satisfy the normality assumption based on both the 
K-S and S-W tests. 

However, after applying a normalizing 
transformation, normality is satisfied according to both 
K-S and S-W tests under the level of significance 𝛼 =0.05. Interestingly, for sample sizes of 𝑛 = 5 and 𝑛 =10 , the K-S test suggests that the original data also 
follows a normal distribution. However, these results are 
attributed to the fact that the K-S test is asymptotic and 

may not perform accurately enough for small sample 
sizes. Hence, for the two cases, the normality of the 
original data should only be assessed using the S-W test. 
After applying the transformation method, the data 
demonstrates substantial improvements in normality, 
with K-S values increasing significantly (e.g., from 0.027 
to 0.998 for (40,1.5) and from 0.034 to 0.788 for 
(20,1.5)). Likewise, the S-W test values increase 
noticeably, with some cases (e.g., (40,1.5) and (5,0.1)) 
achieving p-values above 0.5, indicating much better 
adherence to normality. However, for cases with lower λ 
values and smaller sample sizes (e.g., (10,1.5) and 
(30,0.4)), normality is not fully achieved, suggesting that 
the transformation method is more effective for larger 
datasets and higher rate parameters. 

 
2.1. Application to Skewed data 

There are instances where the CDF of the original 
distribution lacks a closed form. In such cases, we can 
adapt the equation 𝐹௒(𝑦) = 𝚽(y)  to normalize the data. 
It is worth noting that in this context, 𝐹௒ (y) represents 
the CDF of the original distribution. Suppose that Y has 
a skew-normal distribution denoted by 𝑌~SN(α) for α ≠0. Then, 𝑓௒(𝑦) = 2𝜙(𝑦)𝚽(α𝑦), 

             𝐹௒(𝑦) = ׬ 2𝜙(𝑤)𝚽(α𝑤)௬ିஶ 𝑑𝑤, 

where 𝜙 and 𝚽 are the standard normal density and 
distribution function, respectively. 

 Let  α = 1 , 𝐹௒(𝑦) = 𝚽ଶ(y) . 
Then  𝚽ିଵ(𝚽ଶ(Y) )~𝑁(0,1). When  α ≠ 1, 𝐹௒(𝑦) does 
not a close form. In this case, the transformation is carried 
out through (4). Therefore,  𝚽ିଵ(׬ 2𝜙(𝑤)𝚽(α𝑤)௬ିஶ 𝑑𝑤 )~𝑁(0,1). 

3. The proposed method for nonparametric case 
Theorem 2 is a useful tool for normalizing data in 

various applications. If the distribution of the data is 
known, this corollary can be implemented directly. 
However, in cases where the data lacks a parametric 

 
Table 1. Results of Normality Tests for Original and Transformed Exponential Data at α=0.05 Significance Level. 

 (𝒏, 𝝀) (𝟒𝟎,𝟏.𝟓) (𝟐𝟎,𝟏.𝟓) (𝟏𝟎,𝟏.𝟓) (𝟑𝟎,𝟎.𝟒) (𝟏𝟓,𝟎.𝟒) (𝟓,𝟎.𝟏) 

 
Original data 

K-S for E(λ) 0.747 0.121 0.719 0.390 0.409 0.479 
K-S 0.027 0.034 0.130 0.031 0.070 0.175 
S-W 0.000 0.000 0.001 0.000 0.000 0.011 

Transformed data K-S 0.998 0.788 0.694 0.540 0.606 0.773 
S-W 0.588 0.578 0.444 0.184 0.200 0.537 
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distribution, one can utilize the empirical distribution 
function (EDF) denoted by 𝐹௒∗  instead of 𝐹௒ in Theorem 
2. 

Let 𝑌(ଵ) ≤,𝑌(ଶ) ≤ ⋯ ≤ 𝑌(୬) denote the order statistics 
of the sample. Then, 

 𝐹௒∗(𝑦) =
൞0,                                                                           𝑦 <  𝑌(ଵ)          𝒾௡ ,                               𝑌(𝒾) ≤  𝑦 <  𝑌(𝒾ାଵ); 𝒾 = 1, … ,𝑛 − 1   1,                                                                          𝑦 ≥ 𝑌(௡)          (5)  

The EDF presented in (5) is not continuous and one-
to-one, two conditions that are necessary for Theorem 2. 
To address this issue, we propose a new version of the 
empirical distribution function called the Generalized 
Empirical Distribution Function (GEDF), denoted by 𝐹௡௘௪∗ (𝑦). The GEDF is defined in the following form and 
is recommended for use instead. 

𝐹௡௘௪∗ (𝑦) =
⎩⎪⎨
⎪⎧ 0,                                                                           𝑦 <  𝑌(ଵ) − 𝛿              ௬ି௒(భ)ାఋ௡ఋ  ,                                                     𝑌(ଵ) − 𝛿 ≤ 𝑦 <  𝑌(ଵ)           ଵ௡ ൬𝒾 + ௬ି௒(𝒾)௒(𝒾శభ)ି௒(𝒾)൰ ,                      𝑌(𝒾) ≤  𝑦 <  𝑌(𝒾ାଵ); 𝒾 = 1, … ,𝑛 − 11,                                                                                               𝑦 ≥ 𝑌(௡)         

                                                                                      (6) 

The value of 𝛿 can be determined based on the range 
of data and is typically a small value. Specifically, we use 
the formula 

𝛿 = min𝒾 = 1, … ,𝑛 − 1 ൤ 1𝑛ଶ ൫𝑌(𝒾ାଵ) − 𝑌(𝒾)൯൨ 
to calculate its value. 
 
The GEDF in (6) is continuous everywhere and is 

one-to-one for all 𝑦 ≤ 𝑌(௡) as well. Its inverse function is 
given by Equation (7): 

𝐹௡௘௪∗ିଵ(𝑝) =
൞ 𝑌(ଵ) − 𝛿(1 − 𝑛𝑝)                                       𝑝 < ଵ௡                           𝑌(𝒾) + (𝑌(𝒾ାଵ) − 𝑌(𝒾))(𝑛𝑝 − 𝒾)       𝒾௡ ≤  𝑝 ≤  𝒾ାଵ௡ ; 𝒾 = 1, … ,𝑛 − 1      

                                                                                     (7) 

Equations (5) and (6) show that  𝐹௒∗൫𝑌(𝒾)൯ =𝐹௡௘௪∗ ൫𝑌(𝒾)൯ = 𝒾௡ . However, in practical statistical 
applications, we deal with data values  𝑌(𝒾)  for 𝒾 =1, … ,𝑛 − 1, and there is no data available in the intervals 

(𝑌(𝒾),𝑌(𝒾ାଵ))  for 𝒾 = 1, … ,𝑛 − 1 , or below 𝑌(ଵ) . 
Therefore, there is no difference between using (5) or (6) 
in such cases. However, the key advantage of GEDF is 
its continuity property, which distinguishes it from EDF. 
Moreover, as mentioned earlier, GEDF can be used as per 
Theorem 2 to obtain the desired conversions. To address 
this issue, we recommend using half ( [௡ଶ] ) for 
constructing random data using (6) and then normalizing 
the remaining data with this function. Subsequently, we 
can swap these two datasets in the next step. 

Suppose  𝑦ଵ,  𝑦ଶ, … ,  𝑦୬  is a nonparametric data set 
and let 𝓂ଵ = [௡ଶ]  and  𝓂ଶ = 𝑛 −𝓂ଵ . Choose 𝑌ଵ(ଵ),𝑌ଶ(ଵ), … ,𝑌𝓂భ(ଵ) randomly from  𝑦ଵ,  𝑦ଶ, … ,  𝑦୬  and the 
name remained data as  𝑌ଵ(ଶ),𝑌ଶ(ଶ), … ,𝑌𝓂మ(ଶ) . The two 
following transformations convert  𝑦ଵ,  𝑦ଶ, … ,  𝑦୬  to 
normalized data.  

𝛿(ଵ) = min𝒾 = 1, … ,𝓂ଵ − 1 ൭𝑌(𝒾ାଵ)(ଵ) − 𝑌(𝒾)(ଵ)𝓂ଵଶ ൱ 

𝛿(ଶ) = min𝒾 = 1, … ,𝓂ଶ − 1 ൭𝑌(𝒾ାଵ)(ଶ) − 𝑌(𝒾)(ଶ)𝓂ଶଶ ൱ 

For 𝑌ଵ(ଵ), … ,𝑌𝓂భ(ଵ), ℎ(𝑦) is used as follows 

ℎ(𝑦) =

⎩⎪⎪
⎨⎪
⎪⎧ −3.5,                                                                    𝑦 <  𝑌(ଵ)(ଶ) − 𝛿(ଶ)𝚽ିଵ ቆ௬ି௒(భ)(మ)ାఋ(మ)𝓂మ ఋ(మ) ቇ ,                           𝑌(ଵ)(ଶ) − 𝛿(ଶ) ≤ 𝑦 ≤  𝑌(ଵ)(ଶ)
𝚽ିଵ ቆ 𝒾𝓂మ + ௬ି௒(𝒾)(మ)𝓂మ ቂ௒(𝒾శభ)(మ) ି௒(𝒾)(మ)ቃቇ ,       𝑌(𝒾)(ଶ) ≤  𝑦 ≤  𝑌(𝒾ାଵ)(ଶ) ; 𝒾 = 1, … ,𝓂ଶ − 13.5,                                                                                𝑌(𝓂మ)(ଶ) < 𝑦

     

                                                                                      (8)  

and for 𝑌ଵ(ଶ), … ,𝑌𝓂మ(ଶ), ℎ(𝑦) is applied in the following 

ℎ(𝑦) =

⎩⎪⎪
⎨⎪
⎪⎧ −3.5,                                          𝑦 <  𝑌(ଵ)(ଵ) − 𝛿(ଵ) 𝚽ିଵ ቆ௬ି௒(భ)(భ)ାఋ(భ)𝓂భ ఋ(భ) ቇ ,                           𝑌(ଵ)(ଵ) − 𝛿(ଵ) ≤ 𝑦 ≤  𝑌(ଵ)(ଵ)
𝚽ିଵ ቆ 𝒾𝓂భ + ௬ି௒(𝒾)(భ)𝓂భቂ௒(𝒾శభ)(భ) ି௒(𝒾)(భ)ቃቇ ,       𝑌(𝒾)(ଵ) ≤  𝑦 ≤  𝑌(𝒾ାଵ)(ଵ) ; 𝒾 = 1, … ,𝓂ଵ − 13.5,                                           𝑌(𝓂భ)(ଵ) < 𝑦

      
                                                                                   (9) 

The inverse conversion for returning normalized data 
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to the original is   

ℎିଵ(𝑧) =
൞ 𝑌(ଵ) − 𝛿൫1 − 𝑛 𝚽(z)൯,        𝚽(z) < ଵ௡                                                    𝑌(𝒾) + ൫𝑌(𝒾ାଵ) − 𝑌(𝒾)൯(𝑛𝚽(z) − 𝒾),     𝒾௡ ≤ 𝚽(z) ≤  𝒾ାଵ௡ ; 𝒾 = 1, … ,𝑛 − 1      

                                                                                    (10) 

where 𝛿 is defined as 

𝛿 = min𝒾 = 1, … ,𝑛 − 1 ቀ௒(𝒾శభ)ି௒(𝒾)௡మ ቁ. 

4. Application to read data sets 
In this section, we demonstrate proficiency of the 

proposed method in two real data sets. 
4.1. Confirmed case rate of the COVID-19 data 

This data demonstrates the effectiveness of 
normalizing transformations for nonparametric data 
using several real-world datasets. Specifically, we 
analyze the confirmed case rate (CCR) of the COVID-19 
virus across ten different countries: Canada, France, 
Germany, Iran, Iraq, Italy, Mexico, Netherlands, Turkey, 
and the UK. These datasets were sourced from publicly 
available data provided by the World Health 
Organization (WHO) at https://covid19.who.int/ 

The CCR data exhibit significant variability and 
skewness, making them ideal candidates for 
normalization techniques. To address this, we applied 
Equations (9) and (10), which represent mathematical 
transformations designed to reduce skewness and 
approximate a normal distribution. After applying these 
transformations, we evaluated the normalized data using 
two widely used statistical tests: The Kolmogorov-

Smirnov (K-S) test and the Shapiro-Wilk (S-W) test. The 
K-S test assesses the goodness-of-fit between the 
empirical distribution of the data and a theoretical normal 
distribution, while the S-W test is particularly sensitive 
to deviations from normality in smaller sample sizes. The 
results of both tests are reported in Table 2, where it is 
evident that the transformations significantly improve the 
normality of the datasets. This improvement is reflected 
in the p-values of the tests, which indicate a closer 
adherence.  

The table clearly shows that none of the original 
datasets are normally distributed, while all datasets 
normalized using nonparametric transformations have a 
normal distribution.  

To have a comparison with previous methods of 
normalization, data also were transformed by Box-Cox 
transformation with the best value of 𝜆. This work is done 
by function “boxcox” in package “MASS”. The results 
demonstrate that none of these transformed data have a 
normal distribution regarding the K-S test. However, 
regarding the S-W test, the transformed data of 4 
countries have a normal distribution. This certifies the 
better performance of our method concerning, for, to 
Box-Cox transformation.  

The results in Table 2 indicate that the original 
COVID-19 CCR data strongly deviates from normality, 
as evidenced by extremely small p-values from both the 
K-S and S-W tests. This suggests that the data 
distribution is significantly non-normal across all 
countries. Upon applying the Box-Cox transformation, 
slight improvements are observed in normality, 
particularly in the S-W test for some countries (e.g., 
Canada: 0.2695, Mexico: 0.7005, and the UK: 0.833). 
However, many values remain well below conventional 
thresholds for normality (𝑝 > 0.05), indicating that the 

 
Table 2. Normality tests for original and transformed CCR of COVID-19 data. 

 Country Canada France Germany Iran Iraq 

Original data K-S < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ 
S-W 0.0073 < 2× 10ିଵ଺ 2× 10ିଵହ 4× 10ିଵ଺ 3.9× 10ି଻ 

Transformed data 
by Box-Cox 

K-S < 2.2× 10ିଵ଺ < 2.2× 10ିଵ଺ < 2.2× 10ିଵ଺ < 2.2× 10ିଵ଺ < 2.2× 10ିଵ଺ 
S-W 0.2695 1.49× 10ିହ 8.20× 10ିଵଵ 1.89× 10ିହ 8.59× 10ି଻ 

Transformed data 
by method of 
paper 

K-S 0.4992 0.9991 0.3439 0.9642 0.786 

S-W 0.1385 0.8113 0.8621 0.2411 0.4 

 Country Italy Mexico Netherlands Turkey UK 

Original data K-S <7× 10ିଵ଺ < 2× 10ିଵ଺ 1.2× 10ିଵହ < 2× 10ିଵ଺ 4.6× 10ି଻ 
S-W 0.0047 1.6× 10ି଺ 0.0433 < 2× 10ିଵ଺ 0.8188 

Transformed data 
by Box-Cox 

K-S <7× 10ିଵହ < 2.2× 10ିଵ଺ 1.221× 10ିଵହ < 2.2× 10ିଵ଺ 2.49× 10ିଵଷ 
S-W 0.0422 0.7005 0.8813 1.30× 10ିଽ 0.833 

Transformed data 
by method of 
paper 

K-S 0.9635 0.8221 0.9409 0.6051 0.7644 

S-W 0.2861 0.5015 0.2793 0.2368 0.2571 
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Box-Cox transformation alone is insufficient for achieving a normal distribution in many cases. 

 

 

 
Figure 1. "Effect of Proposed Transformations on Normality: Q-Q Plots and Density Curves for Norway, South Korea, and the 

USA" 
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Conversely, the transformation method proposed in the 
paper demonstrates a substantial improvement in 
normality. K-S test results show much higher p-values 
(closer to 1), indicating that the transformed distributions 
better fit a normal distribution. Likewise, the S-W test 
results show a significant shift towards normality, with 
values such as 0.8113 (France), 0.8621 (Germany), and 
0.5015 (Mexico) reflecting stronger normality 
characteristics than the Box-Cox transformation. This 
suggests that the proposed transformation method is 
more effective at normalizing the data, making it a 
preferable approach for statistical modeling. 

Figure 1 illustrates the effects of the proposed 
transformation on datasets from Norway, South Korea, 
and the United States. The original data demonstrated 
significant non-normality, primarily characterized by 
right skewness. Following the transformation, the data 
aligned much more closely with a normal distribution, as 
evidenced by decreased skewness and the emergence of 
more symmetrical, bell-shaped density curves. Although 
some minor deviations from normality persist in certain 
cases, the transformation markedly enhances the data’s 
suitability for parametric analyses. Each subplot includes 
a Normal Q-Q plot and a density curve, providing clear 
visual confirmation of the transformation’s success in 
improving distributional symmetry and overall 
normality. 

Figure 2 displays a grayscale heatmap of log10-
transformed p-values from normality tests, illustrating 
how well COVID-19 CCR data conform to a normal 
distribution across different countries and transformation 
techniques. In this visualization, darker shades represent 
stronger evidence of deviation from normality (lower p-

values), while lighter shades indicate data closer to a 
normal distribution (higher p-values). For example, the 
original data for Canada are depicted in very dark hues, 
reflecting extremely low p-values (<1e-16) and a 
significant departure from normality. In contrast, after 
applying the proposed transformation, the color intensity 
becomes noticeably lighter, with p-values exceeding 0.3, 
demonstrating a marked improvement in normality fit. 
This comparison underscores the effectiveness of the 
proposed method, which outperforms both the 
untransformed data and the Box-Cox transformation in 
achieving normality. 
 
4.2. The mortality rate and confirmed case rate of 
COVID-19 data 

It is essential to clarify that this article focuses 
exclusively on the normalization of continuous or non-
discrete data. As such, the methodology proposed herein 
may not be suitable for normalizing discrete data, a point 
we will further explore in this section through a practical 
situation that highlights how aggregated data can 
sometimes be treated as discrete.  

We examine the mortality rate (MR) and confirmed 
case rate (CCR) of COVID-19 across three countries: the 
USA, South Korea, and Norway. The relevant data can 
be downloaded from https://covid19.who.int/ 

In this case, the MR and CCR data for South 
Korea and Norway contain many zeros and are thus 
approximately discrete, while the same variables for the 
USA are continuous. As shown in Table 3, both the K-S 
and S-W tests confirm that none of the six datasets has a 
normal distribution. Although the transformed 
datasets for the USA are normally distributed, the data 

 
Figure 2 "Comparison of Normality Fit for COVID-19 CCR Data Across Countries: Grayscale Heatmap of Log10-Transformed 

p-Values" 
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for South Korea and Norway do not have the normal 
distribution yet. The results of the Box-Cox 
transformation demonstrate that none of these 
transformed data have a normal distribution regarding the 
K-S and S-W tests. Therefore, our method has better 
performance of Box-Cox transformation.  

Table 3 presents normality test results for the 
Mortality Rate (MR) and Case Fatality Rate (CCR) of 
COVID-19 data across the USA, South Korea, and 
Norway. The original data exhibits strong deviations 
from normality, as indicated by extremely small p-values 
in both the Kolmogorov-Smirnov (K-S) and Shapiro-
Wilk (S-W) tests, confirming significant non-normality. 
Applying the Box-Cox transformation yields minor 
improvements in a few cases (e.g., the S-W test for MR 
in the USA: 3.23×10-6), but in general, normality is not 
achieved, as many values remain exceptionally low. This 
suggests that the Box-Cox transformation is insufficient 
for properly normalizing the data. On the other hand, the 
proposed transformation method in the paper 
significantly enhances normality for MR in the USA, 
where K-S and S-W tests return p-values of 0.9912 and 
0.7046, respectively. However, for CCR in South Korea 
and Norway, the transformation does not substantially 
improve normality, with many p-values remaining near 
zero. This indicates that while the method is effective in 
certain cases, its performance varies across datasets and 
variables, necessitating further investigation. 

 

Results 
The normality of data and its distribution is crucial for 

many statistical analyses, as it simplifies the statistical 
modeling process. In this article, recognizing the 
importance of normalization conversions and their 
application in various scientific fields, we have 
introduced a new and straightforward normalization 
conversion method for both parametric and non-
parametric continuous data. Our approach outperforms 
conventional methods such as the Yeo-Johnson 
transformation and Box-Cox transformation and 

overcomes their limitations. Additionally, we have 
introduced a new empirical distribution function that 
allows the proposed conversion to be used for non-
parametric data. Unlike conventional empirical 
distribution functions, this new definition is continuous, 
enabling us to normalize non-parametric data. 

 
Conclusion 

To further strengthen the study, additional validation 
should be conducted by comparing the proposed 
transformation with other techniques such as Yeo-
Johnson and log transformations, along with 
supplementary normality tests like the Anderson-Darling 
test. Visualizing the distributions through histograms, 
density plots, and Q-Q plots would provide intuitive 
confirmation of normality improvements. Moreover, 
evaluating the impact of normalization on downstream 
statistical analyses, such as regression modeling and 
hypothesis testing, would demonstrate its practical 
benefits. Expanding the application to other 
epidemiological datasets and periods would help assess 
its generalizability. Finally, a deeper theoretical 
discussion on why the proposed transformation 
outperforms Box-Cox, particularly in terms of skewness 
and kurtosis reduction, would provide a stronger 
mathematical justification for its effectiveness.  

Moreover, to further validate the findings, the 
proposed transformation should be compared with 
alternative techniques such as Yeo-Johnson or log 
transformations, and additional normality tests like the 
Anderson-Darling test should be conducted. Visualizing 
the distributions through histograms, Q-Q plots, and 
density plots would provide clearer insights into the 
effectiveness of each transformation. Evaluating the 
impact of normality improvements on subsequent 
statistical analyses, such as predictive modeling and 
hypothesis testing, would help establish its practical 
benefits. Additionally, applying the method to a broader 
range of countries and datasets would assess its 
generalizability. Finally, a theoretical discussion on why 

Table 3. Normality tests for original and transformed MR and CCR of COVID-19 data. 
 Country USA South Korea Norway 
 variable MR CCR MR CCR MR CCR 

Original data K-S < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ 
S-W < 2× 10ିଵ଺ < 2× 10ିଵ଺ 8× 10ିଵସ < 2× 10ିଵ଺ 8× 10ିଵସ < 2× 10ିଵ଺ 

Transformed 
data by 
Box-Cox 

K-S < 2.2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ < 2× 10ିଵ଺ 

S-W 3.23× 10ି଺ < 2× 10ିଵ଺ 4.87× 10ି଻ 1.12× 10ିଵ଴ < 2× 10ିଵ଺ < 2× 10ିଵ଺ 

Transformed 
data by method 
of paper 

K-S 0.9912 0.431 8.69× 10ି଼ < 2× 10ିଵ଺ 3.5× 10ିହ < 2× 10ିଵ଺ 

S-W 0.7046 0.5023 3.27× 10ି଼ < 2× 10ିଵ଺ 2.9× 10ି଺ < 2× 10ିଵ଺ 
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the transformation is more effective for MR than CCR, 
possibly exploring the influence of skewness and 
kurtosis, would strengthen the study’s conclusions. 
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