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Abstract 
With the growing utilization of advanced machine-learning techniques, such as 

random forests, understanding the significance of spatial factors within these models is 
increasingly imperative. This study proposes a novel approach to develop spatially 
explicit classification random forest models by integrating spatially lagged variables, 
mirroring various spatial panel data econometric specifications. We assess the 
comparative performance of these models against traditional spatial and non-spatial 
regression methods to predict suicide mortality rates across 31 provinces in Iran, utilizing 
data from 2011 to 2021. Results reveal that the spatial random forest model, incorporating 
spatial lag parameters, achieves a remarkable accuracy of 89.19% in predicting suicide 
mortality levels, surpassing traditional spatial econometric models (46.51%) and non-
spatial random forest models (27.03%). While highlighting the effectiveness of spatial 
random forest models with spatial lag parameters, this study also recognizes the continued 
relevance of traditional spatial econometric models in predicting suicide mortality rates. 
These findings offer valuable insights into the interplay between spatial considerations 
and predictive modeling, providing essential guidance for researchers in selecting 
appropriate models for spatial data analysis. 
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Introduction 
Suicide mortality is a pressing public health concern, 

with devastating implications for individuals, families, 
and communities. In this profound challenge, accurate 
predictive models are essential to inform timely 
interventions and targeted preventive measures. The field 
of data science has responded to this need with the 
emergence of new machine-learning techniques, 
exemplified by the versatile random forest algorithm, 
capable of handling large and complex datasets (1, 2, 3). 
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These techniques offer promising avenues for predictive 
modeling and have garnered significant attention in 
various domains.  

However, as the scope of data science expands, so 
does the recognition of the critical role that spatial 
considerations play in the accuracy and applicability of 
predictive models. Spatial data, characterized by 
geographic and interdependencies, adds layer of 
complexity to the modeling process. Understanding the 
spatial context is pivotal for unraveling underlying 
patterns and relationships that contribute to suicide 
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mortality rates, as well as for identifying spatially 
varying risk factors and vulnerability (4, 5). 

Integrating spatial considerations into machine-
learning models is crucial for several reasons (6, 7). First, 
traditional machine-learning techniques, including 
random forests, have been predominantly developed for 
predictive applications, often leaving researchers with 
limited insights into the underlying explanatory 
relationships between variables. Consequently, these 
models are often regarded as “black boxes” that limit 
both the interpretation and the generalization of results, 
especially in spatial contexts where understanding spatial 
interactions is essential. 

Second, the spatial dimensions of the data demand 
specialized attention. Spatial econometrics, a well-
established branch of spatial statistics, has long been 
utilized to analyze spatially explicit data, accounting for 
spatial autocorrelation, spatial heterogeneity, and spatial 
dependence. Nevertheless, the recent surge of interest in 
machine-learning techniques has left open questions 
about the effectiveness of spatial econometrics compared 
to machine-learning models such as random forests. 

Despite the increasing application of machine-
learning techniques and spatial econometrics as separate 
approaches (8, 9, 10), there is still a lack of studies that 
systematically integrate the two for the prediction of 
suicide mortality, especially in the context of Iranian 
provinces. To address this gap, this paper introduces a 
hybrid framework that incorporates spatially lagged 
variables into random forest models, enabling a direct 
comparison with traditional spatial econometric 
approaches and advancing a novel methodology for 
spatially explicit predictive modeling. To the best of our 
knowledge, this is the first study to systematically 
integrate spatial econometric lags into random forests for 
predicting suicide mortality in Iranian provinces. 

This paper addresses these crucial issues by 
presenting a novel approach that bridges the gap between 
spatial econometrics and random forests. We propose 
constructing spatially explicit classification Random 
Forest models by thoughtfully incorporating spatially 
lagged variables. By emulation, we mean that the 
inclusion of different types of spatial lags—such as 
lagged dependent variables and lagged explanatory 
variables—allows the random forest to approximate the 
relationships captured by spatial panel data econometric 
models (e.g., SLM, SDM), without formally 
distinguishing between them in a strict econometric 
sense. This design enables us to test the comparative 
performance of these hybrid models against both 
traditional spatial econometric techniques and non-
spatial regression methods. The focus is on predicting 
suicide mortality rates across 31 provinces in Iran over 

eleven years (2011–2021), utilizing a comprehensive 
spatial panel dataset. 

This study addresses fundamental questions at the 
forefront of predictive modeling research. Our focus 
centers on comparing two distinct approaches: the 
predictive machine-learning models, exemplified by the 
random forest algorithm, and the traditional spatial 
econometric techniques. Moreover, we endeavor to 
ascertain whether spatially explicit random forest models 
possess the potential to outperform standard non-spatial 
random forest models when applied to the crucial task of 
predicting suicide mortality rates. By unraveling the 
answers to these pivotal questions, our research aims to 
provide valuable insights into the interplay between 
machine-learning techniques and spatial econometrics, 
opening new avenues for improved predictive modeling 
in spatially explicit contexts. 

By assessing the predictive accuracy and 
interpretability of these models, we provide findings that 
shed light on the relationship between spatial 
considerations and predictive modeling. We aim to 
provide essential guidance for researchers in selecting 
appropriate models for spatial data analysis, particularly 
in the context of suicide mortality prediction. Ultimately, 
this study advances the expanding literature on spatially 
explicit machine learning methods while providing 
direction for future research on their spatial implications 
and potential applications. 

As the importance of spatially aware data analysis 
grows, our study aims to inform suicide prevention 
strategies and underscore the significance of embracing 
spatial considerations in predictive modeling endeavors. 

The remainder of this paper proceeds as follows. 
Section 2 reviews the relevant literature on spatial 
econometrics and machine learning applications. Section 
3 describes the data collection and preparation process. 
Section 4 presents the estimation methodology, including 
integrating spatially lagged variables into random forest 
models. Section 5 reports the results, including model 
performance comparisons and interpretation of key 
findings. Finally, Section 6 concludes the paper, 
highlighting the main contributions, limitations, and 
directions for future research. 

 
Literature Review 

In machine learning, which finds diverse applications 
across various domains, including crime analysis, it is of 
utmost importance to establish foundational definitions 
and distinctions. Machine-learning methods, a subset of 
artificial intelligence (AI), are designed to learn from 
data and effectively predict outcomes for new, previously 
unseen data (11). These methods fall into two main 
categories: supervised and unsupervised techniques. 
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Supervised algorithms operate by learning the 
relationship between independent and dependent 
variables, which they then use to predict outcomes for 
new instances. This type of prediction enables the 
algorithm to generalize its learning from the training data 
to unseen data. Within the realm of supervised learning, 
we encounter a diverse array of techniques, ranging from 
conventional statistical methods such as linear and 
logistic regression to more advanced and sophisticated 
approaches such as support vector machines (SVM), 
decision trees, random forests, and neural networks (12). 

On the other hand, unsupervised algorithms generate 
predictions, often in the form of classifications, solely 
based on the underlying relationships among the 
provided independent variables. Examples of such 
techniques include clustering methods such as k-means 
and dimensionality reduction techniques such as 
principal component analysis (PCA) (12). These 
approaches are valuable for tasks where labeled data is 
absent, as the determining factor for their application is 
the absence of labeled data rather than clear relationships 
between variables. 

This categorization of machine-learning methods lays 
a solid foundation for understanding their respective 
applications and potential advantages in crime analysis 
and other domains. Combining traditional statistical 
techniques and cutting-edge machine-learning 
algorithms allows researchers and practitioners to tackle 
complex problems and make accurate predictions, 
thereby contributing to advancements in various fields of 
study. 

While these distinctions are well-suited for predictive 
applications, they can perplex those accustomed to using 
these statistical techniques for explanatory purposes. 
Additionally, some of the newer machine-learning 
algorithms, such as decision trees, random forests, and 
neural networks, do not explicitly measure the 
relationship between independent and dependent 
variables, leading to criticism and being labeled as "black 
box" methods. Consequently, the more critical 
distinction lies between primarily predictive machine-
learning techniques, such as random forests, which do not 
produce coefficients or explicit relationship measures 
between independent and dependent variables, and the 
more traditional explanatory machine-learning 
techniques, such as linear regression, that are familiar 
with generating such measures. However, it is worth 
noting that even predictive models such as random 
forests can still provide insights into explanatory 
features, as demonstrated in the application within this 
paper. 

Moreover, alongside applying existing predictive 
machine-learning methods to Spatial Criminology 

inquiries, scholars have recognized the importance of 
developing spatially explicit predictive models and 
methods (7, 13, 14). Singleton and Arribas-Bel (2019) 
succinctly emphasize that one of the most promising 
areas for Geographic Data Science to enhance core data 
science techniques is explicitly incorporating spatial 
information to improve the performance of predictive 
machine-learning models. Notably, a limited number of 
existing studies that have created spatially explicit 
prediction frameworks reveal that these methods tend to 
outperform non-spatial methods when applied to spatial 
datasets (13, 15, 16, 17). 

To gain deeper insights into the role of space in 
predictive machine-learning models, this paper 
systematically examines various spatial lags in a random 
forest model, compares random forest models to more 
conventional spatial econometric models, and evaluates 
the factors that contribute to enhanced predictive 
performance for either random forests or spatial 
econometric models. In the context of our research, we 
draw from these prior investigations and aim to shed light 
on the interplay between spatial considerations and 
predictive modeling. By doing so, our study will offer 
valuable guidance to researchers seeking to harness the 
potential of machine learning for spatial data analysis, 
specifically in predicting suicide mortality rates across 
provinces in Iran. The outcomes of this investigation will 
have implications for the development of improved 
public health policies and interventions in the region, 
thereby contributing to the broader body of knowledge in 
spatial data analysis and machine learning.  

 

Materials and Methods 
Data Collection and Preparation 

Suicide mortality data in Iran come from reports 
published by the Iranian Forensic Medicine Organization 
(IFMO), which operates under the Iranian Judicial 
Authority (5). The IFMO keeps a comprehensive suicide 
registry and conducts autopsies for all recorded suicide 
cases (4). Suicide rates per 100k individuals for each 
province and socio-demographic and economic data for 
all 31 provinces were obtained from the Statistical Center 
of Iran. 

 The data encompass 2011 to 2021, representing the 
most recent available data. The variables collected 
include unemployment rate (X1), labor force 
participation rate (X2), natural log of population aged 15 
and over (X3), consumer price index or CPI (X4), literacy 
rate among individuals aged six and older (X5), and 
natural log of gross domestic product or GDP (X6). 
These variables will be used to identify factors 
influencing suicide mortality rates per 100k populations 
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(y) using an econometric model that considers spatial 
correlations. The explanatory variables X1 to X6 are 
available for each of the 31 provinces, allowing for a 
comprehensive, province-specific analysis and 
modeling. 

The study employs panel data covering 31 provinces 
over 11 years. This panel data structure enables the 
analysis of individual provinces over time and cross-
sectional variations among provinces. It provides a robust 
framework for examining spatial and temporal dynamics, 
enhancing the understanding of the factors influencing 
suicide mortality rates in Iran. 

Table 1 provides a descriptive overview of the 
independent variables used in the study. The dataset used 
in our experiment comprises a total of 341 instances. To 
enable prediction, a new attribute called 'suicide 
category' was added to the dataset. Converting the target 
(class) attribute to a nominal type was necessary for 
prediction purposes.  As all the original characteristics in 
the dataset were numeric, the new nominal attribute 
'suicide category' was introduced to facilitate prediction. 

The 'suicide category' attribute categorizes cases 
based on the percentage of suicide mortality. Instances 
with 'suicide rates per 100k individuals' below 33% fall 
into the 'Low' category in the 'suicide category' attribute. 

Those with 'suicide rates per 100k individuals' equal 
to or greater than 33% but less than 66% were labeled as 
'Medium'. Finally, instances with 'suicide rates per 100k 
individuals' equal to or greater than 66% were 
categorized as 'High' in the 'suicide category'. The values 
for the 'suicide category' attribute were meticulously 
calculated for all 341 instances and cross-checked 
multiple times by all authors to ensure accuracy and 
eliminate any potential errors. 

Since the analysis is conducted at the provincial level, 
spatial proximity may induce correlations among the 
residuals. The incorporation of spatial considerations is 
crucial to account for potential spatial dependencies and 
patterns in the data, allowing for a more accurate and 
comprehensive analysis of suicide mortality across the 
Iranian provinces. Spatial autocorrelation analysis is a 
vital aspect of understanding the patterns and dynamics 
of suicide mortality rates across geographical regions. 

To explore spatial dependencies of the 31 Iranian 
provinces, we employ the queen-contiguity weight 
matrix (18). This matrix is specifically tailored to the 
polygonal nature of our data and provides a 
comprehensive definition of neighborhood relationships. 
It captures spatial connectivity based on shared vertices 
between neighboring spatial units. In our dataset, 
provinces can be considered as polygonal areas with 
irregular shapes, and the queen-contiguity matrix 
efficiently captures spatial relationships between these 
areas. Specifically, for each province, neighboring 
provinces that share at least one common vertex are 
considered connected. This definition ensures that spatial 
interactions are accounted for not only through shared 
boundaries but also through shared vertices, providing a 
more complete representation of spatial relationships. 

For transparency and reproducibility, we explicitly 
document the rationale for our methodological decisions. 
First, the queen-contiguity specification captures spatial 
interactions among provinces effectively and follows 
best practices in regional health research (18, 19), 
ensuring comparability with prior studies. Second, 
random forest hyperparameters were systematically 
optimized through repeated cross-validation—rather 
than arbitrarily selected—focusing on the number of 
trees, maximum tree depth, and minimum sample size at 
terminal nodes (2, 20). This process balanced predictive 
accuracy with the need to mitigate overfitting. Finally, 
during data preprocessing, spatially lagged variables 
derived from econometric specifications were generated 
and incorporated directly into the random forest training 
process (6, 21). This integration preserved the predictive 
flexibility of machine learning while explicitly modeling 
spatial spillover effects. By documenting these 
methodological choices and their rationale, we enhance 
the reproducibility of the study and provide a transparent 
roadmap for future research using similar spatial panel 
datasets. 

In spatial econometrics, selecting the appropriate 
model specification is crucial, and an empirical 
specification test is a valuable tool for this purpose. The 
specificity-to-generality approach is commonly 
employed, starting with a basic non-spatial model and 

 
Table 1. Overview of Descriptive Statistics for Dependent and Independent Variables 

Variable Minimum Mean Maximum SD Skewness Kurtosis 
X1 5.80 11.20 21.70 3.07 0.90 4.16 
X2 32.30 41.38 50.20 3.62 -0.28 3.01 
X3 12.38 14.13 16.46 0.77 0.12 2.63 
X4 39.20 139.40 401.00 97.43 1.18 3.26 
X5 70.80 84.49 92.90 4.36 -0.62 3.52 
X6 10.30 11.77 14.39 0.85 0.59 3.23 
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testing for misspecifications arising from omitted 
autocorrelation. To address this issue, Anselin et al. 
(1996) introduced the Lagrange multiplier (LM) tests, 
which offer robustness against alternative sources of 
spatial dependence. 

Spatial dependencies refer to the interdependence and 
interaction of observations in space, where the values of 
neighboring observations can influence each other. 
Neglecting this spatial autocorrelation can lead to biased 
and inefficient parameter estimates in the model. The LM 
test focuses on spatial autocorrelation in the residuals of 
a non-spatial econometric model, such as the Ordinary 
Least Squares (OLS) model. Its fundamental idea is to 
examine whether the residuals exhibit a systematic 
spatial pattern. A significant result in the LM test 
indicates that the model is mis-specified and fails to 
account for spatial dependencies in the data. 

By conducting the LM test, we can identify the 
presence and extent of spatial autocorrelation. Significant 
spatial autocorrelation indicates that a spatial 
econometric model is more appropriate for the data. This 
implies that neighboring observations interact, so the 
model explicitly considers their spatial relationships. 
Including of geographical attributes in the model is one 
way to address significant and positive spatial 
autocorrelation. 

Table 2 presents Lagrange multiplier diagnostics for 
spatial dependence. The Lagrange Multiplier test for 
error spatial dependence (LMerr) examines spatial 
autocorrelation in the residuals of a non-spatial 
econometric model. In contrast the Lagrange Multiplier 
test for lag spatial dependence (LMlag) focuses on spatial 
autocorrelation in the dependent variable. The Robust 
Lagrange Multiplier test for error spatial dependence 
(RLMerr) and the Robust Lagrange Multiplier test for lag 
spatial dependence (RLMlag) offer robust versions of 
these diagnostics, enhancing reliability in detecting 
spatial autocorrelation. Additionally, the Spatial 
Autoregressive Moving Average (SARMA) model, as 
discussed in Haining (2003), incorporates spatial 
autocorrelation, spatial heterogeneity, and spatial 
dependence in the modeling process. By applying these 
Lagrange multiplier tests, we can detect and correct 
spatial autocorrelation in the data, thereby ensuring the 

validity of our spatial econometric models (22, 23). 
The test results reveal that LMerr, LMlag, and 

RLMerr tests show highly significant P-values (below 
the 0.05 significance level), indicating strong evidence of 
spatial autocorrelation in the residuals and the dependent 
variable. Additionally, RLMlag exhibits a P-value 
smaller than 0.05, suggesting the presence of spatial 
autocorrelation in the dependent variable. The SARMA 
model further supports the significant spatial 
autocorrelation in the data. 

In conclusion, the LM tests are crucial in identifying 
spatial autocorrelation and supporting the inclusion of 
spatial lag terms in the econometric model. By explicitly 
considering spatial relationships among observations, we 
can ensure a more accurate and robust analysis, which is 
vital for understanding and addressing spatial patterns in 
the data. 
 
Estimation Methodology 

This study aims to compare the predictive accuracy 
of traditional spatial econometric models with random 
forest models for predicting suicide mortality levels in 
the provinces of Iran. To achieve this, we employed eight 
distinct model specifications: spatial lag (autoregressive) 
(SAR), spatially lagged 𝐗 (SLX), spatial Durbin (SDM), 
random forests (RF), random forests with the spatial lag 
of 𝐲 included (RFSAR), random forests with spatial lags 
of both 𝐗 and 𝐲 included (RFSDM), and random forests 
with only the spatial lag of 𝐗 included (RFSLX). Each 
model provides distinctive insight into the relationship 
between spatial dependencies and suicide mortality. In 
the subsequent sections, we delve into the comprehensive 
estimation details of these models to uncover their 
strengths and limitations in predicting suicide mortality 
levels. 

Spatial Econometric Models: Spatial econometric 
models capture spatial dependence in the data-generating 
process, recognizing that objects in proximity exhibit 
stronger relationships than those farther apart, a concept 
known as Tobler's First Law of Geography (24). These 
models extend the Ordinary Least Squares (OLS) 
approach by incorporating a spatial weights matrix (𝐖) 
that represents the spatial relationships between 
observations directly into the model estimation process 

 
Table 2. Lagrange Multiplier Diagnostics for Spatial Dependence 

Test Statistic P-value 
LMerr 417.06 < 2.2e-16 
LMlag 247.38 < 2.2e-16 
RLMerr 176.3 < 2.2e-16 
RLMlag 6.6259 0.01005 
SARMA 423.68 < 2.2e-16 
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(19, 22). The placement of the spatial weights matrix in 
the standard linear regression equation can vary based on 
theoretical or data-driven considerations, resulting in 
different model specifications that account for spatial 
autocorrelation. 

The most basic linear regression (OLS) specification 
is: 𝐲 = 𝐗𝛃 + 𝐮.          (1) 

In this study, the dependent variable (𝒚) represents 
the suicide mortality rate recorded from 2011 to 2021. 
The independent variables (𝐗) encompass 𝐗𝟏 to 𝐗𝟔. The 
estimated regression coefficients for these variables take 
the notation 𝛃, and the error term takes the notation 𝐮. 

If spatial dependence exists in the underlying data, the 
OLS regression coefficients will be biased and/or the 
error term will be enlarged; in either case, this results in 
an imprecise estimation of the underlying relationships 
between the variables. 

Spatial dependence can be explicitly modeled in a 
variety of ways. The spatial autoregressive (SAR) or 
spatial lag model inserts a parameter that captures spatial 
autocorrelation in the dependent variable, that is, 𝐲 = 𝛒𝐖𝐲 + 𝐗𝛃 + 𝐮,          (2) 

where 𝐖 is a spatial weights matrix that captures the 
spatial neighborhood of each observation. The weight 
matrix represents the spatial relationships between 31 
observations (provinces) over the course of 11 years, 
considering the proximity of each observation to the 
other 30 provinces. Additionally, the spatial 
autoregressive parameter, represented by 𝝆, captures the 
influence of spatial spillover effects on the dependent 
variable. By incorporating 𝝆 in the model, we can 
analyze how the attributes of the neighboring provinces 
influence the dependent variable's values and gain 
insights into the spatial patterns and dynamics present in 
the dataset. 

Another approach to modeling spatial dependence is 
to not to incorporate spatially lagged covariates in the 
equation. The spatial lag specification (SLX) for 𝐗  is 
defined as follows: 𝐲 = 𝐗𝛃 + 𝐖𝐗𝛉 + 𝐮.           (3) 

In this model, 𝜽 represents a vector of spatial 
spillover parameters. Beyond considering the direct 
effects of covariates, the model considers the additional 
influence from neighboring units' covariates, capturing 
the indirect spillover effects. 

A noteworthy aspect of the model is its incorporation 
of spatial effects for each covariate, which the 𝜽 vector 
encompasses. This feature enables the exploration of the 
spatial relationships and dependencies among the 
covariates, providing a comprehensive understanding of 
how neighboring units' characteristics contribute to the 
overall model dynamics. 

In contrast, the Spatial Durbin Model (SDM) 
combines the spatial spillover specification of the 
covariates with the spatial autoregressive term of the 
dependent variable, yielding: 𝐲 = 𝛒𝐖𝐲+ 𝐗𝛃 + 𝐖𝐗𝛉 + 𝐮.          (4) 

In practice, selecting the most appropriate model 
specification can be difficult, particularly when strong 
theoretical justifications are absent (25, 26). The primary 
objective of this paper is to assess the performance of 
traditional model specifications compared to random 
forest regressors. We evaluate the models based on 
prediction accuracy under two distinct testing scenarios 
and perform the estimation using R version 4.2.2. 

Random Forests: Random forests, an ensemble 
learning technique, stand as a formidable tool in 
predictive modeling, amalgamating insights from 
multiple decision trees to refine predictions. At its core 
lies the Classification and Regression Tree (CART) 
training algorithm, which orchestrates the intricate dance 
of data partitioning and criterion optimization (12). 

Decision trees, the elemental units of random forests, 
wield the power to address classification and regression 
tasks. In this study, we primarily focus on predicting 
nominal outcomes classified as 'Low', 'Medium', and 
'High'. This focus naturally directs our analysis toward 
classification tree methods. 

CART operates as a nonlinear function, sculpting the 
data landscape through a series of splits aimed to 
minimize impurity measures such as the Gini index or 
entropy (27). These criteria are commonly used in 
classification trees to maximize the purity of the resulting 
subsets after each split, which is crucial for accurate 
classification tasks. 

Random forest harnesses the wisdom of crowds, 
leveraging the law of large numbers to refine predictions. 
By assembling an ensemble of decision trees, typically 
around 1,000, trained on random subsets of the data with 
replacement, random forest mitigate overfitting and 
enhance generalization capacity. The amalgamation of 
predictions from these individual trees through averaging 
yields a robust final prediction (28). 

To promote diversity and independence among 
individual predictors, random forests restrict each tree’s 
access to explanatory variables. By considering only a 
random subset of variables at each split, the classifier 
encourages diversity among predictors, which enhances 
the ensemble’s overall predictive performance (2, 12). 

Random forest's versatility extends beyond its 
robustness to noisy data and resilience to outliers. It 
offers interpretability through feature importance 
rankings, allowing users to understand the contribution 
of each variable to the prediction process. Furthermore, 
its scalability makes it suitable for large datasets and 
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parallel processing environments, ensuring efficient 
computation (28). 

In our analysis, we embarked on a journey through 
four distinct random forest (RF) specifications to unravel 
the nuances of spatial factors in predictive modeling. The 
baseline model ("RF") mirrored the covariates utilized in 
the preceding spatial econometric models. Furthermore, 
we introduced the "RFSAR" model, which was 
engineered to emulate the spatial autoregressive (SAR) 
model by integrating the spatially lagged dependent 
variable. The "RFSDM" model extended its reach to 
encompass spatial lags of the dependent and independent 
variables, striving to mirror the spatial Durbin model 
(SDM). Lastly, the "RFSLX" model focused solely on 
the spatial lags of independent variables, akin to the 
spatial lag of the 𝐗 model. By scrutinizing RF models 
through various spatial lenses, we unravel valuable 
insights into the intricate dance between spatial dynamics 
and predictive prowess, enriching our understanding and 
honing our predictive capabilities (15, 29, 30). 

It is essential to clarify the distinction between 
incorporating spatiality in our random forest models and 
traditional spatial models. In our approach, spatially 
lagged variables were engineered as features and 
included in the RF training process to provide spatial 
context. This approach enables the model to indirectly 
capture spatial spillover effects, using the flexibility of 
machine learning to identify nonlinear relationships 
between neighboring provinces and suicide mortality 
rates. However, unlike conventional spatial models—
such as spatial regression or spatial survival models—
spatial dependence in RF is not intrinsic to the model’s 
theoretical formulation or computational mechanics (31). 
In traditional spatial models, the likelihood or covariance 
structure explicitly incorporates spatial relationships, 
modeling spatial autocorrelation as an integral part of the 
estimation process. In contrast, our feature-engineered 
approach relies on the predictive power of RF to learn 
from spatially informative inputs, providing a practical 
but conceptually distinct mechanism for incorporating 
spatiality into predictive modeling. This distinction 
highlights the complementary nature of our hybrid 

framework: it combines the flexibility and nonlinear 
modeling capabilities of random forests with explicit 
spatial information, without requiring a fully parametric 
spatial dependence structure. 

Overall, when constructing the hybrid random forest 
models, we incorporate spatial dependence directly at the 
data level. Specifically, spatially lagged variables were 
generated using the queen-contiguity weight matrix and 
added as input features to the dataset before model 
training (18). We did not modify the random forest 
algorithm, and we kept the tree-splitting criteria, such as 
the Gini index, unchanged (3). As a result, spatial 
spillover effects are captured indirectly through feature 
selection, rather than being explicitly included in the 
objective function. This approach maintains the 
robustness and reproducibility of the original random 
Forest framework, while enabling the model to 
incorporate spatial information effectively. Researchers 
have successfully applied similar strategies to enrich 
random forest models with spatially derived features in 
geoscience, environmental, and climate prediction tasks 
(15, 16, 30, 32), which further supports the validity of this 
method. 

 

Results 
In this study, we applied three spatial econometric 

models—SAR, SLX, and SDM—together with four data 
mining models—RF, RFSAR, RFSLX, and RFSDM—to 
classify provinces based on suicide mortality rates. These 
models classify outcomes into three categories: Low, 
Medium, and High. We applied these models to predict 
suicide mortality levels, categorizing each observation as 
Low, Medium, or High. This rigorous approach ensured 
a thorough assessment of the models' classification 
ability. 

Table 3 provides a comprehensive evaluation of the 
models' performance across various metrics, facilitating 
comparison and identification of superior models in 
terms of accuracy, precision, sensitivity, F-score, and 
specificity. Notably, RFSDM emerged as the standout 
model based on these criteria. 

 
Table 3. Performance Metrics Calculated on the Entire Dataset: A Comparative Analysis of Prediction Models for Suicide Mortality 
Levels 
Model Accuracy Precision Sensitivity F-score Specificity 
SAR 0.3659 0.3750 0.2727 0.3158 0.4737 
SLX 0.4651 0.4500 0.4286 0.4390 0.5000 
SDM 0.4651 0.4211 0.4000 0.4103 0.5217 
RF 0.2703 0.0769 0.4000 0.1290 0.2500 
RFSAR 0.8250 0.4615 1 0.6316 0.7941 
RFSLX 0.8684 0.4444 1 0.6154 0.8529 
RFSDM 0.8919 0.4286 1 0.6000 0.8824 
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Accuracy measures the overall correctness of the 
model's predictions, calculated as the ratio of correctly 
predicted instances to the total number of cases. For 
example, the RFSLX model achieved an accuracy of 
0.8684, indicating it correctly predicted 86.84% of cases . 

Precision assesses the proportion of accurate 
optimistic predictions out of all optimistic predictions 
made by the model. Higher precision values signify 
fewer false positives. The RFSDM model demonstrated 
a precision of 0.4286, indicating 42.86% of predicted 
positive instances were true positives. 

Sensitivity, also known as recall or actual accurate 
rate, measures the proportion of accurate optimistic 
predictions from all actual positive instances, indicating 
how well the model identifies positive instances. The 
RFSAR model displayed a sensitivity of 1, accurately 
identifying all positive instances. 

The F-score, the harmonic mean of precision and 
sensitivity, evaluates the balance between these metrics. 
A higher F-score indicates better performance in 
handling false positives and false negatives. For instance, 
the RFSAR model achieved an F-score of 0.6316, 
indicating balanced performance. 

Specificity measures the proportion of accurate 
pessimistic predictions from all actual negative instances, 
indicating how well the model identifies negative 
instances. Higher specificity values suggest fewer false 
positives. For example, the RFSDM model demonstrated 
specificity values of 0.8824, correctly identifying 
88.24% of negative cases. 

In summary, these performance metrics, calculated 
on the entire dataset, provide valuable insights into the 
predictive capabilities of each model, aiding in informed 
decision-making and model selection for predicting 
suicide mortality levels. 

The confusion matrix and the out-of-bag (OOB) error 
plot are pivotal evaluation tools for assessing the 
performance of a random forest model in classification 
tasks. While the confusion matrix provides a detailed 
breakdown of the model's predictions for each class, 
aiding in assessing accuracy, precision, sensitivity, 
specificity, and other metrics, the OOB error plot 
visualizes the OOB error rate. This rate, estimating the 
model's prediction error on unseen data, is plotted against 
the number of trees in the random forests. This allows us 
to gauge the model's overall performance and identify the 
optimal number of trees. In Figure 1, the x-axis 
represents the number of trees, and the y-axis represents 
the OOB error rate, which exhibits a notable decrease 
with an increasing number of trees. 

However, the OOB error rate eventually stabilizes, 
around 0.09 or 9% after approximately 30 trees, 
indicating diminishing returns beyond this point. Thus, 

the OOB error plot assists in determining the optimal 
number of trees for our random forest model (RFSDM), 
striking a balance between capturing patterns and 
avoiding overfitting. 

By selecting an appropriate number of trees, typically 
around 30 in our case, we ensure that our RFSDM model 
performs well on unseen data while minimizing 
computational complexity. In conclusion, analyzing the 
OOB error rate trend provides useful insights into model 
performance and supports more informed research 
decisions. 

Table 4 displays the confusion matrices for the six 
models utilized in this study to forecast suicide mortality 
levels categorized as Low, Medium, and High. The 
evaluation of each model’s performance compares its 
predicted outcomes with the actual observations. 

The table delineates the instances classified into each 
level for the corresponding model's predictions, along 
with the total counts of correct and incorrect predictions 
made by each model. The analysis examines the SAR, 
SLX, SDM, RF, RFSAR, RFSLX, and RFSDM models 
and carefully documents their correct and incorrect 
predictions. These confusion matrices provide invaluable 
insights into the efficacy of each model, facilitating an 
assessment of their accuracy and error rates. 

Upon comparison of these models' performance, it is 
evident that RFSDM surpasses the others in predicting 
suicide mortality levels, demonstrating superior accuracy 
and overall predictive performance. Specifically, the 
model correctly predicts 92 instances: 30 in the Low 
category, 29 in the Medium category, and 33 in the High 
category. However, it erroneously predicts 12 cases 
across all levels. 

Table 5 illustrates the cross-tabulation of the RFSDM 
Model's predictions with the actual suicide mortality 
levels within the dataset. The table cells contain various 

 
Figure 1. Out-of-Bag (OOB) Error Rate Trend for RFSDM. 
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information, including the number of observations (N), 
the Chi-square contribution, the proportion of 
observations relative to the row total (N / Row Total), the 
proportion of observations relative to the column total (N 
/ Col Total), and the proportion of observations relative 
to the overall total (N / Table Total). 

The cross table encompasses a total of 104 
observations from the dataset. It is important to 
emphasize that these 104 instances constitute a 
comprehensive evaluation of the model's performance 
across all categories and provinces, ensuring a thorough 
assessment of the predictive accuracy and effectiveness 
of the random forest models in predicting suicide 

mortality levels in the Iranian provinces. The cross table 
is structured with rows representing the predicted suicide 
mortality levels by the model and columns denoting the 
actual suicide mortality levels. Additionally, the 
rightmost column showcases the row totals, indicating 
the total number of observations for each predicted 
suicide mortality level. Furthermore, the bottom row 
provides the column totals, representing the cumulative 
number of observations for each suicide mortality level. 

To interpret the table, we scrutinize the values within 
each cell. For example, in the first row, the model 
predicts 30 instances as Low, three as Medium, and none 
as High. The row total, up to 33, signifies the total 

Table 4. Confusion Matrix using the Seven Models 
Model Level Low Medium High Correct Incorrect 
SAR Low 9 6 13 33 71 

Medium 10 15 12 
High 16 14 9 

SLX Low 11 9 9 36 68 
Medium 11 11 12 

High 12 15 14 
SDM Low 12 8 9 37 67 

Medium 11 11 12 
High 12 15 14 

RF Low 8 2 0 56 48 
Medium 24 25 12 

High 3 8 23 
RFSAR Low 27 6 0 86 18 

Medium 7 26 2 
High 0 3 33 

RFSLX Low 29 4 0 90 14 
Medium 5 28 2 

High 0 3 33 
RFSDM Low 30 3 0 92 12 

Medium 4 29 2 
High 0 3 33 

 
Table 5. Confusion Matrix: Predicted vs. Suicide Mortality Levels 

Categories Low Medium High Row Total 

Low 

30 
34.211 
0.909 
0.882 
0.288 

3 
5.916 
0.091 
0.086 
0.029 

0 
11.106 
0.000 
0.000 
0.000 

33 
 

0.317 

Medium 

4 
4.841 
0.114 
0.118 
0.038 

29 
25.178 
0.829 
0.829 
0.279 

2 
8.118 
0.057 
0.057 
0.019 

35 
 

0.337 
 

High 

0 
11.769 
0.000 
0.000 
0.000 

3 
6.858 
0.083 
0.086 
0.029 

33 
36.001 
0.917 
0.943 
0.317 

36 
 

0.346 

Column Total 34 
0.327 

35 
0.337 

35 
0.337 104 
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number of predictions made for the Low category.  
The Chi-square contribution values in Table 5 reflect 

each cell's impact on the overall Chi-square statistic, a 
metric assessing the model's goodness of fit. This 
measure evaluates how well the model fits the data when 
predicting suicide mortality levels across the categories 
of Low, Medium, and High. 

These values indicate how much each cell contributes 
to the overall Chi-square statistic, which measures the 
discrepancy between the observed and expected 
frequencies in the data.  

Similarly, we can interpret the other rows and 
columns to gauge the model's performance in predicting 
suicide mortality levels. Overall, the table furnishes 
invaluable insights into the model's accuracy and 
predictive prowess, revealing the degree of alignment 
between the model's predictions and the actual data. 

 
Conclusion 

In this study, we advanced the predictive modeling of 
suicide mortality across Iranian provinces by comparing 
traditional spatial econometric models (SAR, SLX, and 
SDM) with random forest–based methods. We also 
introduced a hybrid framework that integrates spatially 
lagged features into random forests. This framework 
combines the strengths of both approaches: the predictive 
accuracy of random forests in capturing complex 
nonlinear interactions among covariates (2, 12) and the 
interpretability of spatial econometric models in 
uncovering structured spatial dependencies and spillover 
effects (21, 33). The strong performance of the RFSDM 
model shows that embedding spatial information into 
machine learning improves prediction accuracy while 
preserving interpretability that supports evidence-based 
decision-making (15, 32). 

Our findings extend the literature on suicide 
prediction by demonstrating the value of spatially 
informed machine learning. While earlier studies focused 
mainly on socio-demographic and environmental 
correlates of suicide (34, 35, 36), our hybrid approach 
uncovers additional spatial patterns and risk structures 
that remain hidden in purely econometric models (22) or 
non-spatial machine learning models (28). These 
findings underscore the importance of incorporating 
spatial context into predictive modeling, especially when 
neighboring regions influence outcomes. 

The practical implications for public health policy are 
substantial. By accurately identifying high-risk provinces 
and anticipating spatial spillovers in suicide risk, 
policymakers can allocate mental health resources more 
efficiently and design targeted, region-specific 
prevention strategies. The hybrid framework serves as a 
decision-support tool by predicting suicide risk and 

guiding intervention planning, thereby enhancing the 
effectiveness of evidence-based prevention programs in 
Iran and potentially in other regions (World Health 
Organization, 2021; 37). 

Despite these contributions, the study has several 
limitations. Aggregating data at the provincial level may 
obscure intra-provincial variability, and the choice and 
availability of predictor variables may influence model 
performance. Additionally, temporal dynamics were not 
explicitly incorporated in the current analysis. Future 
research should explore richer covariates, test alternative 
spatial machine learning algorithms, integrate dynamic 
spatial models, and extend the framework to other health 
outcomes (7, 30). Addressing these avenues will refine 
spatially explicit predictive modeling and enhance its 
applicability for public health decision-making. 

In summary, this study makes three key 
contributions: (i) development of a hybrid RF–spatial 
econometric framework that balances predictive 
accuracy and interpretability; (ii) demonstration that 
incorporating spatial lags into machine learning 
substantially improves suicide risk prediction; and (iii) 
provision of actionable insights for public health policy, 
enabling targeted, data-driven suicide prevention 
strategies. These contributions highlight the value of 
combining traditional spatial modeling with modern 
machine learning approaches for health outcomes 
research. 
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