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Abstract

With the growing utilization of advanced machine-learning techniques, such as
random forests, understanding the significance of spatial factors within these models is
increasingly imperative. This study proposes a novel approach to develop spatially
explicit classification random forest models by integrating spatially lagged variables,
mirroring various spatial panel data econometric specifications. We assess the
comparative performance of these models against traditional spatial and non-spatial
regression methods to predict suicide mortality rates across 31 provinces in Iran, utilizing
data from 2011 to 2021. Results reveal that the spatial random forest model, incorporating
spatial lag parameters, achieves a remarkable accuracy of 89.19% in predicting suicide
mortality levels, surpassing traditional spatial econometric models (46.51%) and non-
spatial random forest models (27.03%). While highlighting the effectiveness of spatial
random forest models with spatial lag parameters, this study also recognizes the continued
relevance of traditional spatial econometric models in predicting suicide mortality rates.
These findings offer valuable insights into the interplay between spatial considerations
and predictive modeling, providing essential guidance for researchers in selecting
appropriate models for spatial data analysis.
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Introduction

Suicide mortality is a pressing public health concern,
with devastating implications for individuals, families,
and communities. In this profound challenge, accurate
predictive models are essential to inform timely
interventions and targeted preventive measures. The field
of data science has responded to this need with the
emergence of new machine-learning techniques,
exemplified by the versatile random forest algorithm,
capable of handling large and complex datasets (1, 2, 3).

These techniques offer promising avenues for predictive
modeling and have garnered significant attention in
various domains.

However, as the scope of data science expands, so
does the recognition of the critical role that spatial
considerations play in the accuracy and applicability of
predictive models. Spatial data, characterized by
geographic and interdependencies, adds layer of
complexity to the modeling process. Understanding the
spatial context is pivotal for unraveling underlying
patterns and relationships that contribute to suicide
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mortality rates, as well as for identifying spatially
varying risk factors and vulnerability (4, 5).

Integrating spatial considerations into machine-
learning models is crucial for several reasons (6, 7). First,
traditional machine-learning techniques, including
random forests, have been predominantly developed for
predictive applications, often leaving researchers with
limited insights into the underlying explanatory
relationships between variables. Consequently, these
models are often regarded as “black boxes” that limit
both the interpretation and the generalization of results,
especially in spatial contexts where understanding spatial
interactions is essential.

Second, the spatial dimensions of the data demand
specialized attention. Spatial econometrics, a well-
established branch of spatial statistics, has long been
utilized to analyze spatially explicit data, accounting for
spatial autocorrelation, spatial heterogeneity, and spatial
dependence. Nevertheless, the recent surge of interest in
machine-learning techniques has left open questions
about the effectiveness of spatial econometrics compared
to machine-learning models such as random forests.

Despite the increasing application of machine-
learning techniques and spatial econometrics as separate
approaches (8, 9, 10), there is still a lack of studies that
systematically integrate the two for the prediction of
suicide mortality, especially in the context of Iranian
provinces. To address this gap, this paper introduces a
hybrid framework that incorporates spatially lagged
variables into random forest models, enabling a direct
comparison with traditional spatial econometric
approaches and advancing a novel methodology for
spatially explicit predictive modeling. To the best of our
knowledge, this is the first study to systematically
integrate spatial econometric lags into random forests for
predicting suicide mortality in Iranian provinces.

This paper addresses these crucial issues by
presenting a novel approach that bridges the gap between
spatial econometrics and random forests. We propose
constructing spatially explicit classification Random
Forest models by thoughtfully incorporating spatially
lagged variables. By emulation, we mean that the
inclusion of different types of spatial lags—such as
lagged dependent variables and lagged explanatory
variables—allows the random forest to approximate the
relationships captured by spatial panel data econometric
models (e.g., SLM, SDM), without formally
distinguishing between them in a strict econometric
sense. This design enables us to test the comparative
performance of these hybrid models against both
traditional spatial econometric techniques and non-
spatial regression methods. The focus is on predicting
suicide mortality rates across 31 provinces in Iran over
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eleven years (2011-2021), utilizing a comprehensive
spatial panel dataset.

This study addresses fundamental questions at the
forefront of predictive modeling research. Our focus
centers on comparing two distinct approaches: the
predictive machine-learning models, exemplified by the
random forest algorithm, and the traditional spatial
econometric techniques. Moreover, we endeavor to
ascertain whether spatially explicit random forest models
possess the potential to outperform standard non-spatial
random forest models when applied to the crucial task of
predicting suicide mortality rates. By unraveling the
answers to these pivotal questions, our research aims to
provide valuable insights into the interplay between
machine-learning techniques and spatial econometrics,
opening new avenues for improved predictive modeling
in spatially explicit contexts.

By assessing the predictive accuracy and
interpretability of these models, we provide findings that
shed light on the relationship between spatial
considerations and predictive modeling. We aim to
provide essential guidance for researchers in selecting
appropriate models for spatial data analysis, particularly
in the context of suicide mortality prediction. Ultimately,
this study advances the expanding literature on spatially
explicit machine learning methods while providing
direction for future research on their spatial implications
and potential applications.

As the importance of spatially aware data analysis
grows, our study aims to inform suicide prevention
strategies and underscore the significance of embracing
spatial considerations in predictive modeling endeavors.

The remainder of this paper proceeds as follows.
Section 2 reviews the relevant literature on spatial
econometrics and machine learning applications. Section
3 describes the data collection and preparation process.
Section 4 presents the estimation methodology, including
integrating spatially lagged variables into random forest
models. Section 5 reports the results, including model
performance comparisons and interpretation of key
findings. Finally, Section 6 concludes the paper,
highlighting the main contributions, limitations, and
directions for future research.

Literature Review

In machine learning, which finds diverse applications
across various domains, including crime analysis, it is of
utmost importance to establish foundational definitions
and distinctions. Machine-learning methods, a subset of
artificial intelligence (AI), are designed to learn from
data and effectively predict outcomes for new, previously
unseen data (11). These methods fall into two main
categories: supervised and unsupervised techniques.
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Supervised algorithms operate by learning the
relationship between independent and dependent
variables, which they then use to predict outcomes for
new instances. This type of prediction enables the
algorithm to generalize its learning from the training data
to unseen data. Within the realm of supervised learning,
we encounter a diverse array of techniques, ranging from
conventional statistical methods such as linear and
logistic regression to more advanced and sophisticated
approaches such as support vector machines (SVM),
decision trees, random forests, and neural networks (12).

On the other hand, unsupervised algorithms generate
predictions, often in the form of classifications, solely
based on the underlying relationships among the
provided independent variables. Examples of such
techniques include clustering methods such as k-means
and dimensionality reduction techniques such as
principal component analysis (PCA) (12). These
approaches are valuable for tasks where labeled data is
absent, as the determining factor for their application is
the absence of labeled data rather than clear relationships
between variables.

This categorization of machine-learning methods lays
a solid foundation for understanding their respective
applications and potential advantages in crime analysis
and other domains. Combining traditional statistical
techniques and  cutting-edge  machine-learning
algorithms allows researchers and practitioners to tackle
complex problems and make accurate predictions,
thereby contributing to advancements in various fields of
study.

While these distinctions are well-suited for predictive
applications, they can perplex those accustomed to using
these statistical techniques for explanatory purposes.
Additionally, some of the newer machine-learning
algorithms, such as decision trees, random forests, and
neural networks, do not explicitly measure the
relationship between independent and dependent
variables, leading to criticism and being labeled as "black
box" methods. Consequently, the more critical
distinction lies between primarily predictive machine-
learning techniques, such as random forests, which do not
produce coefficients or explicit relationship measures
between independent and dependent variables, and the
more  traditional  explanatory = machine-learning
techniques, such as linear regression, that are familiar
with generating such measures. However, it is worth
noting that even predictive models such as random
forests can still provide insights into explanatory
features, as demonstrated in the application within this
paper.

Moreover, alongside applying existing predictive
machine-learning methods to Spatial Criminology
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inquiries, scholars have recognized the importance of
developing spatially explicit predictive models and
methods (7, 13, 14). Singleton and Arribas-Bel (2019)
succinctly emphasize that one of the most promising
areas for Geographic Data Science to enhance core data
science techniques is explicitly incorporating spatial
information to improve the performance of predictive
machine-learning models. Notably, a limited number of
existing studies that have created spatially explicit
prediction frameworks reveal that these methods tend to
outperform non-spatial methods when applied to spatial
datasets (13, 15, 16, 17).

To gain deeper insights into the role of space in
predictive machine-learning models, this paper
systematically examines various spatial lags in a random
forest model, compares random forest models to more
conventional spatial econometric models, and evaluates
the factors that contribute to enhanced predictive
performance for either random forests or spatial
econometric models. In the context of our research, we
draw from these prior investigations and aim to shed light
on the interplay between spatial considerations and
predictive modeling. By doing so, our study will offer
valuable guidance to researchers seeking to harness the
potential of machine learning for spatial data analysis,
specifically in predicting suicide mortality rates across
provinces in Iran. The outcomes of this investigation will
have implications for the development of improved
public health policies and interventions in the region,
thereby contributing to the broader body of knowledge in
spatial data analysis and machine learning.

Materials and Methods
Data Collection and Preparation

Suicide mortality data in Iran come from reports
published by the Iranian Forensic Medicine Organization
(IFMO), which operates under the Iranian Judicial
Authority (5). The IFMO keeps a comprehensive suicide
registry and conducts autopsies for all recorded suicide
cases (4). Suicide rates per 100k individuals for each
province and socio-demographic and economic data for
all 31 provinces were obtained from the Statistical Center
of Iran.

The data encompass 2011 to 2021, representing the
most recent available data. The variables collected
include unemployment rate (X1), labor force
participation rate (X2), natural log of population aged 15
and over (X3), consumer price index or CPI (X4), literacy
rate among individuals aged six and older (X5), and
natural log of gross domestic product or GDP (X6).
These variables will be used to identify factors
influencing suicide mortality rates per 100k populations
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(y) using an econometric model that considers spatial
correlations. The explanatory variables X1 to X6 are
available for each of the 31 provinces, allowing for a
comprehensive,  province-specific  analysis  and
modeling.

The study employs panel data covering 31 provinces
over 11 years. This panel data structure enables the
analysis of individual provinces over time and cross-
sectional variations among provinces. It provides a robust
framework for examining spatial and temporal dynamics,
enhancing the understanding of the factors influencing
suicide mortality rates in Iran.

Table 1 provides a descriptive overview of the
independent variables used in the study. The dataset used
in our experiment comprises a total of 341 instances. To
enable prediction, a new attribute called 'suicide
category' was added to the dataset. Converting the target
(class) attribute to a nominal type was necessary for
prediction purposes. As all the original characteristics in
the dataset were numeric, the new nominal attribute
'suicide category' was introduced to facilitate prediction.

The 'suicide category' attribute categorizes cases
based on the percentage of suicide mortality. Instances
with 'suicide rates per 100k individuals' below 33% fall
into the 'Low' category in the 'suicide category' attribute.

Those with 'suicide rates per 100k individuals' equal
to or greater than 33% but less than 66% were labeled as
'Medium'. Finally, instances with 'suicide rates per 100k
individuals' equal to or greater than 66% were
categorized as 'High' in the 'suicide category'. The values
for the 'suicide category' attribute were meticulously
calculated for all 341 instances and cross-checked
multiple times by all authors to ensure accuracy and
eliminate any potential errors.

Since the analysis is conducted at the provincial level,
spatial proximity may induce correlations among the
residuals. The incorporation of spatial considerations is
crucial to account for potential spatial dependencies and
patterns in the data, allowing for a more accurate and
comprehensive analysis of suicide mortality across the
Iranian provinces. Spatial autocorrelation analysis is a
vital aspect of understanding the patterns and dynamics
of suicide mortality rates across geographical regions.
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To explore spatial dependencies of the 31 Iranian
provinces, we employ the queen-contiguity weight
matrix (18). This matrix is specifically tailored to the
polygonal nature of our data and provides a
comprehensive definition of neighborhood relationships.
It captures spatial connectivity based on shared vertices
between neighboring spatial units. In our dataset,
provinces can be considered as polygonal areas with
irregular shapes, and the queen-contiguity matrix
efficiently captures spatial relationships between these
areas. Specifically, for each province, neighboring
provinces that share at least one common vertex are
considered connected. This definition ensures that spatial
interactions are accounted for not only through shared
boundaries but also through shared vertices, providing a
more complete representation of spatial relationships.

For transparency and reproducibility, we explicitly
document the rationale for our methodological decisions.
First, the queen-contiguity specification captures spatial
interactions among provinces effectively and follows
best practices in regional health research (18, 19),
ensuring comparability with prior studies. Second,
random forest hyperparameters were systematically
optimized through repeated cross-validation—rather
than arbitrarily selected—focusing on the number of
trees, maximum tree depth, and minimum sample size at
terminal nodes (2, 20). This process balanced predictive
accuracy with the need to mitigate overfitting. Finally,
during data preprocessing, spatially lagged variables
derived from econometric specifications were generated
and incorporated directly into the random forest training
process (6, 21). This integration preserved the predictive
flexibility of machine learning while explicitly modeling
spatial spillover effects. By documenting these
methodological choices and their rationale, we enhance
the reproducibility of the study and provide a transparent
roadmap for future research using similar spatial panel
datasets.

In spatial econometrics, selecting the appropriate
model specification is crucial, and an empirical
specification test is a valuable tool for this purpose. The
specificity-to-generality ~ approach is  commonly
employed, starting with a basic non-spatial model and

Table 1. Overview of Descriptive Statistics for Dependent and Independent Variables

Variable Minimum Mean Maximum SD Skewness Kurtosis
X1 5.80 11.20 21.70 3.07 0.90 4.16
X2 32.30 41.38 50.20 3.62 -0.28 3.01
X3 12.38 14.13 16.46 0.77 0.12 2.63
X4 39.20 139.40 401.00 97.43 1.18 3.26
X5 70.80 84.49 92.90 4.36 -0.62 3.52
X6 10.30 11.77 14.39 0.85 0.59 3.23
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testing for misspecifications arising from omitted
autocorrelation. To address this issue, Anselin et al.
(1996) introduced the Lagrange multiplier (LM) tests,
which offer robustness against alternative sources of
spatial dependence.

Spatial dependencies refer to the interdependence and
interaction of observations in space, where the values of
neighboring observations can influence each other.
Neglecting this spatial autocorrelation can lead to biased
and inefficient parameter estimates in the model. The LM
test focuses on spatial autocorrelation in the residuals of
a non-spatial econometric model, such as the Ordinary
Least Squares (OLS) model. Its fundamental idea is to
examine whether the residuals exhibit a systematic
spatial pattern. A significant result in the LM test
indicates that the model is mis-specified and fails to
account for spatial dependencies in the data.

By conducting the LM test, we can identify the
presence and extent of spatial autocorrelation. Significant
spatial autocorrelation indicates that a spatial
econometric model is more appropriate for the data. This
implies that neighboring observations interact, so the
model explicitly considers their spatial relationships.
Including of geographical attributes in the model is one
way to address significant and positive spatial
autocorrelation.

Table 2 presents Lagrange multiplier diagnostics for
spatial dependence. The Lagrange Multiplier test for
error spatial dependence (LMerr) examines spatial
autocorrelation in the residuals of a non-spatial
econometric model. In contrast the Lagrange Multiplier
test for lag spatial dependence (LMIag) focuses on spatial
autocorrelation in the dependent variable. The Robust
Lagrange Multiplier test for error spatial dependence
(RLMerr) and the Robust Lagrange Multiplier test for lag
spatial dependence (RLMlag) offer robust versions of
these diagnostics, enhancing reliability in detecting
spatial autocorrelation. Additionally, the Spatial
Autoregressive Moving Average (SARMA) model, as
discussed in Haining (2003), incorporates spatial
autocorrelation, spatial heterogeneity, and spatial
dependence in the modeling process. By applying these
Lagrange multiplier tests, we can detect and correct
spatial autocorrelation in the data, thereby ensuring the

validity of our spatial econometric models (22, 23).

The test results reveal that LMerr, LMlag, and
RLMerr tests show highly significant P-values (below
the 0.05 significance level), indicating strong evidence of
spatial autocorrelation in the residuals and the dependent
variable. Additionally, RLMlag exhibits a P-value
smaller than 0.05, suggesting the presence of spatial
autocorrelation in the dependent variable. The SARMA
model further supports the significant spatial
autocorrelation in the data.

In conclusion, the LM tests are crucial in identifying
spatial autocorrelation and supporting the inclusion of
spatial lag terms in the econometric model. By explicitly
considering spatial relationships among observations, we
can ensure a more accurate and robust analysis, which is
vital for understanding and addressing spatial patterns in
the data.

Estimation Methodology

This study aims to compare the predictive accuracy
of traditional spatial econometric models with random
forest models for predicting suicide mortality levels in
the provinces of Iran. To achieve this, we employed eight
distinct model specifications: spatial lag (autoregressive)
(SAR), spatially lagged X (SLX), spatial Durbin (SDM),
random forests (RF), random forests with the spatial lag
of'y included (RFSAR), random forests with spatial lags
of both X and y included (RFSDM), and random forests
with only the spatial lag of X included (RFSLX). Each
model provides distinctive insight into the relationship
between spatial dependencies and suicide mortality. In
the subsequent sections, we delve into the comprehensive
estimation details of these models to uncover their
strengths and limitations in predicting suicide mortality
levels.

Spatial Econometric Models: Spatial econometric
models capture spatial dependence in the data-generating
process, recognizing that objects in proximity exhibit
stronger relationships than those farther apart, a concept
known as Tobler's First Law of Geography (24). These
models extend the Ordinary Least Squares (OLS)
approach by incorporating a spatial weights matrix (W)
that represents the spatial relationships between
observations directly into the model estimation process

Table 2. Lagrange Multiplier Diagnostics for Spatial Dependence

Test Statistic P-value
LMerr 417.06 <2.2e-16
LMlag 247.38 <2.2e-16
RLMerr 176.3 <2.2e-16
RLMlag 6.6259 0.01005
SARMA 423.68 <2.2e-16
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(19, 22). The placement of the spatial weights matrix in
the standard linear regression equation can vary based on
theoretical or data-driven considerations, resulting in
different model specifications that account for spatial
autocorrelation.

The most basic linear regression (OLS) specification
is:

y=XB+u. ¢Y)

In this study, the dependent variable (y) represents
the suicide mortality rate recorded from 2011 to 2021.
The independent variables (X) encompass X1 to X6. The
estimated regression coefficients for these variables take
the notation 3, and the error term takes the notation u.

If spatial dependence exists in the underlying data, the
OLS regression coefficients will be biased and/or the
error term will be enlarged; in either case, this results in
an imprecise estimation of the underlying relationships
between the variables.

Spatial dependence can be explicitly modeled in a
variety of ways. The spatial autoregressive (SAR) or
spatial lag model inserts a parameter that captures spatial
autocorrelation in the dependent variable, that is,

y =pWy+XB+u, (2)

where W is a spatial weights matrix that captures the
spatial neighborhood of each observation. The weight
matrix represents the spatial relationships between 31
observations (provinces) over the course of 11 years,
considering the proximity of each observation to the
other 30 provinces. Additionally, the spatial
autoregressive parameter, represented by p, captures the
influence of spatial spillover effects on the dependent
variable. By incorporating p in the model, we can
analyze how the attributes of the neighboring provinces
influence the dependent variable's values and gain
insights into the spatial patterns and dynamics present in
the dataset.

Another approach to modeling spatial dependence is
to not to incorporate spatially lagged covariates in the
equation. The spatial lag specification (SLX) for X is
defined as follows:

y =XB + WX0 + u. 3

In this model, @ represents a vector of spatial
spillover parameters. Beyond considering the direct
effects of covariates, the model considers the additional
influence from neighboring units' covariates, capturing
the indirect spillover effects.

A noteworthy aspect of the model is its incorporation
of spatial effects for each covariate, which the 8 vector
encompasses. This feature enables the exploration of the
spatial relationships and dependencies among the
covariates, providing a comprehensive understanding of
how neighboring units' characteristics contribute to the
overall model dynamics.
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In contrast, the Spatial Durbin Model (SDM)
combines the spatial spillover specification of the
covariates with the spatial autoregressive term of the
dependent variable, yielding:

y = pWy + X + WX0 + u. 4

In practice, selecting the most appropriate model
specification can be difficult, particularly when strong
theoretical justifications are absent (25, 26). The primary
objective of this paper is to assess the performance of
traditional model specifications compared to random
forest regressors. We evaluate the models based on
prediction accuracy under two distinct testing scenarios
and perform the estimation using R version 4.2.2.

Random Forests: Random forests, an ensemble
learning technique, stand as a formidable tool in
predictive modeling, amalgamating insights from
multiple decision trees to refine predictions. At its core
lies the Classification and Regression Tree (CART)
training algorithm, which orchestrates the intricate dance
of data partitioning and criterion optimization (12).

Decision trees, the elemental units of random forests,
wield the power to address classification and regression
tasks. In this study, we primarily focus on predicting
nominal outcomes classified as 'Low', 'Medium', and
'High'. This focus naturally directs our analysis toward
classification tree methods.

CART operates as a nonlinear function, sculpting the
data landscape through a series of splits aimed to
minimize impurity measures such as the Gini index or
entropy (27). These criteria are commonly used in
classification trees to maximize the purity of the resulting
subsets after each split, which is crucial for accurate
classification tasks.

Random forest harnesses the wisdom of crowds,
leveraging the law of large numbers to refine predictions.
By assembling an ensemble of decision trees, typically
around 1,000, trained on random subsets of the data with
replacement, random forest mitigate overfitting and
enhance generalization capacity. The amalgamation of
predictions from these individual trees through averaging
yields a robust final prediction (28).

To promote diversity and independence among
individual predictors, random forests restrict each tree’s
access to explanatory variables. By considering only a
random subset of variables at each split, the classifier
encourages diversity among predictors, which enhances
the ensemble’s overall predictive performance (2, 12).

Random forest's versatility extends beyond its
robustness to noisy data and resilience to outliers. It
offers interpretability through feature importance
rankings, allowing users to understand the contribution
of each variable to the prediction process. Furthermore,
its scalability makes it suitable for large datasets and
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parallel processing environments, ensuring -efficient
computation (28).

In our analysis, we embarked on a journey through
four distinct random forest (RF) specifications to unravel
the nuances of spatial factors in predictive modeling. The
baseline model ("RF") mirrored the covariates utilized in
the preceding spatial econometric models. Furthermore,
we introduced the "RFSAR" model, which was
engineered to emulate the spatial autoregressive (SAR)
model by integrating the spatially lagged dependent
variable. The "RFSDM" model extended its reach to
encompass spatial lags of the dependent and independent
variables, striving to mirror the spatial Durbin model
(SDM). Lastly, the "RFSLX" model focused solely on
the spatial lags of independent variables, akin to the
spatial lag of the X model. By scrutinizing RF models
through various spatial lenses, we unravel valuable
insights into the intricate dance between spatial dynamics
and predictive prowess, enriching our understanding and
honing our predictive capabilities (15, 29, 30).

It is essential to clarify the distinction between
incorporating spatiality in our random forest models and
traditional spatial models. In our approach, spatially
lagged variables were engineered as features and
included in the RF training process to provide spatial
context. This approach enables the model to indirectly
capture spatial spillover effects, using the flexibility of
machine learning to identify nonlinear relationships
between neighboring provinces and suicide mortality
rates. However, unlike conventional spatial models—
such as spatial regression or spatial survival models—
spatial dependence in RF is not intrinsic to the model’s
theoretical formulation or computational mechanics (31).
In traditional spatial models, the likelihood or covariance
structure explicitly incorporates spatial relationships,
modeling spatial autocorrelation as an integral part of the
estimation process. In contrast, our feature-engineered
approach relies on the predictive power of RF to learn
from spatially informative inputs, providing a practical
but conceptually distinct mechanism for incorporating
spatiality into predictive modeling. This distinction
highlights the complementary nature of our hybrid

framework: it combines the flexibility and nonlinear
modeling capabilities of random forests with explicit
spatial information, without requiring a fully parametric
spatial dependence structure.

Overall, when constructing the hybrid random forest
models, we incorporate spatial dependence directly at the
data level. Specifically, spatially lagged variables were
generated using the queen-contiguity weight matrix and
added as input features to the dataset before model
training (18). We did not modify the random forest
algorithm, and we kept the tree-splitting criteria, such as
the Gini index, unchanged (3). As a result, spatial
spillover effects are captured indirectly through feature
selection, rather than being explicitly included in the
objective function. This approach maintains the
robustness and reproducibility of the original random
Forest framework, while enabling the model to
incorporate spatial information effectively. Researchers
have successfully applied similar strategies to enrich
random forest models with spatially derived features in
geoscience, environmental, and climate prediction tasks
(15, 16, 30, 32), which further supports the validity of this
method.

Results

In this study, we applied three spatial econometric
models—SAR, SLX, and SDM—together with four data
mining models—RF, RFSAR, RFSLX, and RESDM—to
classify provinces based on suicide mortality rates. These
models classify outcomes into three categories: Low,
Medium, and High. We applied these models to predict
suicide mortality levels, categorizing each observation as
Low, Medium, or High. This rigorous approach ensured
a thorough assessment of the models' classification
ability.

Table 3 provides a comprehensive evaluation of the
models' performance across various metrics, facilitating
comparison and identification of superior models in
terms of accuracy, precision, sensitivity, F-score, and
specificity. Notably, RFSDM emerged as the standout
model based on these criteria.

Table 3. Performance Metrics Calculated on the Entire Dataset: A Comparative Analysis of Prediction Models for Suicide Mortality

Levels

Model Accuracy Precision Sensitivity F-score Specificity
SAR 0.3659 0.3750 0.2727 0.3158 0.4737
SLX 0.4651 0.4500 0.4286 0.4390 0.5000
SDM 0.4651 0.4211 0.4000 0.4103 0.5217
RF 0.2703 0.0769 0.4000 0.1290 0.2500
RFSAR 0.8250 0.4615 1 0.6316 0.7941
RFSLX 0.8684 0.4444 1 0.6154 0.8529
RFSDM 0.8919 0.4286 1 0.6000 0.8824
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Accuracy measures the overall correctness of the
model's predictions, calculated as the ratio of correctly
predicted instances to the total number of cases. For
example, the RFSLX model achieved an accuracy of
0.8684, indicating it correctly predicted 86.84% of cases.

Precision assesses the proportion of accurate
optimistic predictions out of all optimistic predictions
made by the model. Higher precision values signify
fewer false positives. The RFSDM model demonstrated
a precision of 0.4286, indicating 42.86% of predicted
positive instances were true positives.

Sensitivity, also known as recall or actual accurate
rate, measures the proportion of accurate optimistic
predictions from all actual positive instances, indicating
how well the model identifies positive instances. The
RFSAR model displayed a sensitivity of 1, accurately
identifying all positive instances.

The F-score, the harmonic mean of precision and
sensitivity, evaluates the balance between these metrics.
A higher F-score indicates better performance in
handling false positives and false negatives. For instance,
the RFSAR model achieved an F-score of 0.6316,
indicating balanced performance.

Specificity measures the proportion of accurate
pessimistic predictions from all actual negative instances,
indicating how well the model identifies negative
instances. Higher specificity values suggest fewer false
positives. For example, the RESDM model demonstrated
specificity values of 0.8824, correctly identifying
88.24% of negative cases.

In summary, these performance metrics, calculated
on the entire dataset, provide valuable insights into the
predictive capabilities of each model, aiding in informed
decision-making and model selection for predicting
suicide mortality levels.

The confusion matrix and the out-of-bag (OOB) error
plot are pivotal evaluation tools for assessing the
performance of a random forest model in classification
tasks. While the confusion matrix provides a detailed
breakdown of the model's predictions for each class,
aiding in assessing accuracy, precision, sensitivity,
specificity, and other metrics, the OOB error plot
visualizes the OOB error rate. This rate, estimating the
model's prediction error on unseen data, is plotted against
the number of trees in the random forests. This allows us
to gauge the model's overall performance and identify the
optimal number of trees. In Figure 1, the x-axis
represents the number of trees, and the y-axis represents
the OOB error rate, which exhibits a notable decrease
with an increasing number of trees.

However, the OOB error rate eventually stabilizes,
around 0.09 or 9% after approximately 30 trees,
indicating diminishing returns beyond this point. Thus,
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Figure 1. Out-of-Bag (OOB) Error Rate Trend for RESDM.

the OOB error plot assists in determining the optimal
number of trees for our random forest model (RFSDM),
striking a balance between capturing patterns and
avoiding overfitting.

By selecting an appropriate number of trees, typically
around 30 in our case, we ensure that our RFSDM model
performs well on unseen data while minimizing
computational complexity. In conclusion, analyzing the
OOB error rate trend provides useful insights into model
performance and supports more informed research
decisions.

Table 4 displays the confusion matrices for the six
models utilized in this study to forecast suicide mortality
levels categorized as Low, Medium, and High. The
evaluation of each model’s performance compares its
predicted outcomes with the actual observations.

The table delineates the instances classified into each
level for the corresponding model's predictions, along
with the total counts of correct and incorrect predictions
made by each model. The analysis examines the SAR,
SLX, SDM, RF, RFSAR, RFSLX, and RFSDM models
and carefully documents their correct and incorrect
predictions. These confusion matrices provide invaluable
insights into the efficacy of each model, facilitating an
assessment of their accuracy and error rates.

Upon comparison of these models' performance, it is
evident that RFSDM surpasses the others in predicting
suicide mortality levels, demonstrating superior accuracy
and overall predictive performance. Specifically, the
model correctly predicts 92 instances: 30 in the Low
category, 29 in the Medium category, and 33 in the High
category. However, it erroneously predicts 12 cases
across all levels.

Table 5 illustrates the cross-tabulation of the RFSDM
Model's predictions with the actual suicide mortality
levels within the dataset. The table cells contain various
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Table 4. Confusion Matrix using the Seven Models

Model Level Low Medium High Correct  Incorrect
SAR Low 9 6 13 33 71
Medium 10 15 12
High 16 14 9
SLX Low 11 9 9 36 68
Medium 11 11 12
High 12 15 14
SDM Low 12 8 9 37 67
Medium 11 11 12
High 12 15 14
RF Low 8 2 0 56 48
Medium 24 25 12
High 3 8 23
RFSAR Low 27 6 0 86 18
Medium 7 26 2
High 0 3 33
RFSLX Low 29 4 0 90 14
Medium 5 28 2
High 0 3 33
RFSDM Low 30 3 0 92 12
Medium 4 29 2
High 0 3 33
Table 5. Confusion Matrix: Predicted vs. Suicide Mortality Levels
Categories Low Medium High Row Total
30 3 0
34211 5.916 11.106 33
Low 0.909 0.091 0.000
0.882 0.086 0.000 0.317
0.288 0.029 0.000
4 29 2 35
4.841 25.178 8.118
Medium 0.114 0.829 0.057 0337
0.118 0.829 0.057 ’
0.038 0.279 0.019
0 3 33
11.769 6.858 36.001 36
High 0.000 0.083 0.917
0.000 0.086 0.943 0.346
0.000 0.029 0.317
34 35 35
Column Total 0327 0337 0337 104

information, including the number of observations (N),
the Chi-square contribution, the proportion of
observations relative to the row total (N / Row Total), the
proportion of observations relative to the column total (N
/ Col Total), and the proportion of observations relative
to the overall total (N / Table Total).

The cross table encompasses a total of 104
observations from the dataset. It is important to
emphasize that these 104 instances constitute a
comprehensive evaluation of the model's performance
across all categories and provinces, ensuring a thorough
assessment of the predictive accuracy and effectiveness
of the random forest models in predicting suicide
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mortality levels in the Iranian provinces. The cross table
is structured with rows representing the predicted suicide
mortality levels by the model and columns denoting the
actual suicide mortality levels. Additionally, the
rightmost column showcases the row totals, indicating
the total number of observations for each predicted
suicide mortality level. Furthermore, the bottom row
provides the column totals, representing the cumulative
number of observations for each suicide mortality level.

To interpret the table, we scrutinize the values within
each cell. For example, in the first row, the model
predicts 30 instances as Low, three as Medium, and none
as High. The row total, up to 33, signifies the total
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number of predictions made for the Low category.

The Chi-square contribution values in Table 5 reflect
each cell's impact on the overall Chi-square statistic, a
metric assessing the model's goodness of fit. This
measure evaluates how well the model fits the data when
predicting suicide mortality levels across the categories
of Low, Medium, and High.

These values indicate how much each cell contributes
to the overall Chi-square statistic, which measures the
discrepancy between the observed and expected
frequencies in the data.

Similarly, we can interpret the other rows and
columns to gauge the model's performance in predicting
suicide mortality levels. Overall, the table furnishes
invaluable insights into the model's accuracy and
predictive prowess, revealing the degree of alignment
between the model's predictions and the actual data.

Conclusion

In this study, we advanced the predictive modeling of
suicide mortality across Iranian provinces by comparing
traditional spatial econometric models (SAR, SLX, and
SDM) with random forest-based methods. We also
introduced a hybrid framework that integrates spatially
lagged features into random forests. This framework
combines the strengths of both approaches: the predictive
accuracy of random forests in capturing complex
nonlinear interactions among covariates (2, 12) and the
interpretability of spatial econometric models in
uncovering structured spatial dependencies and spillover
effects (21, 33). The strong performance of the RFSDM
model shows that embedding spatial information into
machine learning improves prediction accuracy while
preserving interpretability that supports evidence-based
decision-making (15, 32).

Our findings extend the literature on suicide
prediction by demonstrating the value of spatially
informed machine learning. While earlier studies focused
mainly on socio-demographic and environmental
correlates of suicide (34, 35, 36), our hybrid approach
uncovers additional spatial patterns and risk structures
that remain hidden in purely econometric models (22) or
non-spatial machine learning models (28). These
findings underscore the importance of incorporating
spatial context into predictive modeling, especially when
neighboring regions influence outcomes.

The practical implications for public health policy are
substantial. By accurately identifying high-risk provinces
and anticipating spatial spillovers in suicide risk,
policymakers can allocate mental health resources more
efficiently and design targeted, region-specific
prevention strategies. The hybrid framework serves as a
decision-support tool by predicting suicide risk and
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guiding intervention planning, thereby enhancing the
effectiveness of evidence-based prevention programs in
Iran and potentially in other regions (World Health
Organization, 2021; 37).

Despite these contributions, the study has several
limitations. Aggregating data at the provincial level may
obscure intra-provincial variability, and the choice and
availability of predictor variables may influence model
performance. Additionally, temporal dynamics were not
explicitly incorporated in the current analysis. Future
research should explore richer covariates, test alternative
spatial machine learning algorithms, integrate dynamic
spatial models, and extend the framework to other health
outcomes (7, 30). Addressing these avenues will refine
spatially explicit predictive modeling and enhance its
applicability for public health decision-making.

In summary, this study makes three key
contributions: (i) development of a hybrid RF—spatial
econometric framework that balances predictive
accuracy and interpretability; (ii) demonstration that
incorporating spatial lags into machine learning
substantially improves suicide risk prediction; and (iii)
provision of actionable insights for public health policy,
enabling targeted, data-driven suicide prevention
strategies. These contributions highlight the value of
combining traditional spatial modeling with modern
machine learning approaches for health outcomes
research.
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