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Abstract 
An abrupt global warming event has been recorded in many parts of the world 

in sediments of Latest Maastrichtian age between 65.45-65.10 Ma. This warm 
event was documented here at a section near Ziyarat-kola in Central Alborz based 
on analysis of planktonic foraminifera. An unusual abundance of normally large-
size species such as Globotruncana arca, Globigerinelloides subcarinatus, 
Pseudoguembelina hariaensis and Rugoglobigerina rugosa in small-size fraction 
(63-150) was recorded. A similar trend of increasing in relative abundance of 
some opportunist species such as Guembelitria spp. was also recorded. At the 
same time, Laeviheterohelix dentata a long ranging dominant species, decreases 
considerably reflecting a high stress environmental condition as warming. 
Palynological studies show an increase in fungal spore and in thermophilic species 
confirming the result gained from foraminiferal analysis. 
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Introduction 

Recently most studies of Maastrichtian planktonic 
foraminiferal populations that aimed to describe the 
nature of important changes occurred in climate, 
weathering, sea level, and nature of the mass extinction 
focused in extraordinary details on the K-T transition 
that represents at best a few thousands years [1,2,32,30]. 
During Maastrichtian, a global cooling trend that began 
in the late Campanian was temporarily interrupted by a 
short warm event between 65.45 and 65.10 Ma. During 
this period intermediate and surface waters warmed by 

3-4°C experienced by isotopic records [5,7,9,25,26,36, 
45,48,46,24]. Climate changes have an extensive effect 
on planktonic foraminifera population, which are known 
to be extremely sensitive to changes in the physical and 
chemical properties of their surrounding waters [28]. 
Study of the Late Maastrichtian warm period in the 
Ziyarat-kola section provides some information for 
better understanding of planktonic population dynamics 
during the worldwide climatic changes. In this study, we 
examine responses of planktonic foraminifera and 
palynomorphs populations to the rapid climatic 
changes in the Late Maastrichtian. 
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Material and Method 

Location, Lithology and Procedures 

The section studied is located eight km south of 
Ziyarat-kola village, south of Behshahr in northern flank 
of Central Alborz Mountains. At this locality (E: 53° 40′ 
10″, N: 36° 30′ 51″) the section consists about 200m 
thickness of monotonous grey-green to light grey marl 
(Fig. 1). The very high rate of sediment accumulation in 
the studied area created a great potential for accurately 
evaluating the timing of environmental changes during 
the late Maastrichtian. A total of 85 samples were 
collected from the section, which were soaked in water 
with diluted hydrogen peroxide, washed through 63µm, 
150µm and 250µm sieves, and dried until clean 
foraminiferal residues were recovered. About 200-300 
individuals were picked up for each sample in two size 
fractions (63-150µm and >150µm) and mounted on dark 
cardboard slides for identification. These two size 
fractions were analyzed in order to obtain statistically 
significant representatives of the small and large groups. 
At the same time, the quantitative study of two 
populations splitted reduces the bias in first and last 
appearances due to the Signor-Lipps effect [43]. Species 
identifications are based on [8, 29, 39, 40, 33, 34]. 

Changes in Relative Abundance 

63-150µm Size Fraction 
During the cool climate intervals (both before and 

after the warm event) population of small species is 
dominated by Hedbergella spp., Globigerinelloides 
asperus, Laeviheterohelix dentata and Heterohelix 
globulosa. Within this group, L. dentata is the most 
abundant (~30%) in cool climate. and distinct decrease 
during warm period in Ziyarat-kola area (Fig. 2) [2,3] 
records the same planktonic foraminiferal quantitative 
data. Several species of planktonic foraminifera such as 
Pseudoguembelina hariaensis, R. rugosa, Globigeri-
nelloides subcarinatus and Globotruncana arca which 
usually occur in >150µm size fraction are observed 
abnormally in 63-150µm size fraction (Fig. 2, Plate 1). 
Morphological features of the dwarfed specimen are 
similar or identical to normal sized adults, as indicated 
by the fully developed shape of chambers and apertures 
and the presence of a complete set of chambers and 
surface ornamentations. These dwarfed specimens 
decrease to only 7% of population in the upcoming cool 
period. 

>150µm Size Fraction 
The larger size (>150µm) planktonic foraminifera 

fraction dominated in warm period includes 
Globotruncana arca, Globigerinelloides subcarinatus, 
Pseudotextularia intermedia, P. hariaensis, P. elegans 
(Fig. 3). Within this group, the most faunal changes 
during the warm event include a marked increase in P. 
hariaensis, G .arca and P. elegans from 5% to over 
10% and occasionally up to 25% showing an optimal 
condition for this species. In addition, a decline is 
recorded in Rugoglobigerina penny, R. rugosa, 
Globotruncanita stuartiformis, Globotruncana dupeu-
blei, Planoglobulina brazoensis, and Rosita spp. but 
decreasing R. rugosa is dominant (from ~25% to ~3%) 
(Fig. 3). The end Cretaceous climate cooling before the  

 

 

Figure 1.  Location map of the studied area in the Behshahr, 
North of Iran. 
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Figure 2.  Abundances of Planktonic foraminifera species in the smaller size fraction (63-150µm) the Late Maastrichtian. Gray band 
marks the warm event associated with the abnormal appearances of dwarfed specimens. 
 

 
K-T boundary is accompanied by major increase in 
larger plankton foraminifera (>150µm) such as R. 
rugosa (15%) and minor increases in R. pennyi (4%), P. 
brazoensis (8%) and G. stuartiformis (3%). 

Diversity Trends 

Planktonic foraminifera have been differentiated into 
two major groups, ecological specialists and ecological 
generalists [19, 20, 22, 38]: 

1- Ecological specialists restricted to tropical and 
subtropical waters and with typically large and highly 
ornamented tests (e.g. globotruncanids, rugoglobigeri-
nids, racemiguembelinids, and planoglobulinids). They 
are deep dwellers (in or bellow thermocline) and 
generally disappeared at or near the K-T boundary. 

2- Ecological generalists characterized by smaller, 
sparsely ornamented, biserial and trochospiral test 
morphologies and with wide geographic distributions 
across latitudes (e.g. heterohelicids, globotruncanellids 
and guembelitrids). Statistical analyses in Ziyarat-kola 
section show that the ecological specialists population 
decreased in warm period of Late Maastrichtian (Fig. 4). 
Diversity shows the highest amount in >150µm fraction 
during the maximum cooling (before and after of warm 
event). Whereas during the warm period in the >150µm 
size fraction diversity averages decreased (Fig. 4). 

While its decrease at abundance percentage in cool 
water planktonic foraminiferal index such as 
heterohelicidae and Rugoglobigerina is other reason that 
confirms warm event [49]. In the 63-150µm size 
fraction, maximum diversity recorded corresponds to 
the warm interval and reflects appearance of dwarfed 
specimens. In addition, adult tests with larger and more 
complex morphologies have lesser tolerance limit to 
environmental stresses than juvenile forms. In contrast, 
younger species are generally abundant, small and 
simple morphologies and tolerate a wide range of stress 
environments. These factors resulted in increase in 
dwarfed species and juveniles in the warm interval [1]. 

[44] Believed that in stress conditions (warm period) 
asexual reproduction in plankton foraminifera change to 
sexual productivity, which causes smaller size of the 
tests. 

Dwarfing 

Macleod et al. quantified the test size reduction of 
Heterohelix navarroensis, Guembelitria cretacea and 
Heterohelix globulosa in late Maastrichtian and early 
Danian considerably reflecting the high stress 
environmental conditions. Dwarfing is the most striking 
response to the abrupt warming and occurred in various 
species of different morphologies and lineages (e.g. 
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Figure 3.  Abundances of Planktonic foraminifera species in the larger size fraction (>150µm) the Late Maastrichtian. Gray band 
marks the warm event. Note the marked increase of Pseudoguembelina hariaensis, Globotruncana arca and Pseudotextularia 
elegans in the warm interval. An opposite trend is recorded by some of species that decline in response to warming include in the 
tropical affiliated and Rugoglobigerina rugosa and several keeled globotruncanids. 

 
 

biserial, trochospiral and keeled globotruncanids). It is a 
typical reaction to environmental stress conditions and 
is likely the result of increased reproduction rates. [11] 
recorded dwarfing of planktonic foraminifera species 
during the latest Maastrichtian and early Danian in Iran. 
In the studied area, dwarfing occurs in such species  
G. subcarinatus, P. hariaensis, R. rugosa and G. arca 
(Fig. 2). 

Opportunist Species 

Guembelitria spp. is interpreted as ecological 
opportunist (Pl. 2). They have been reportedly abundant 
in shallow neritic environments of the Maastrichtian 
from Denmark [41, 18], Kazakhstan [37], Tunisia [15-
17]. Abundance of Guembelitria is also observed in 
uppermost Maastrichtian of the deeper outer shelf- 
upper bathyal of northern Tethys, e.g. Bulgaria [4] and 
Egypt [20]. 

At times of low species diversity and abundance, 
Guembelitria species tend to produce opportunistic 
blooms, as it is well known for the K-T boundary of 
Kabir Kuh in Iran [11]. High abundances of the 
ecological opportunist, Guembelitria characterize crisis 
in warm realms. The persistent relatively high 

abundances of Guembelitria spp. in shallow near shore 
areas suggest a high tolerance for salinity, nutrients and 
temperature fluctuations. At times of ecological stresses, 
ecological specialists disappeared, ecological generalists 
and opportunists thrived. The environmental conditions 
in which Guembelitria thrived occurred in shallow and 
deep-water environments, near shore and in the open 
marine oceans, at high and low latitude [19, 23]. 
Guembelitria blooms are therefore not specific to 
temperature, water depths or salinity but seems occur 
during times of low productivity, eutrophic waters and 
disruption of normal water mass stratification. In 
Ziyarat-kola section, noticeable increase in number of 
Guembelitria spp. confirms the global warming event 
(Fig. 2). 

Palynological Evidences 

An increase in thermophile fungal spores (>25%) 
which are related to warm and humid climate [14], 
along side with abundance of spore species Cycadopites 
crassimarginis produced by Ginkgoals, Bennetitales and 
Cycadales recorded in sample No.35 confirm the warm 
humid climates [42]. 
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Figure 4.  Planktonic foraminifera species diversity in the small (63-150µm) and large (>150µm) size fractions. Gray band marks the 
warming event. Increase in species diversity in the smaller size fraction during the warm interval is largely due to the presence of 
dwarfed specimens of species that are typically found only in the larger size fraction. In the >150 µm size fraction and in ecological 
specialists a decreasing trend is visible. 

 
 

Results and Discussion 

The upper Maastrichtian of low to middle latitudes 
was generally assigned to Abathamphalus mayaroensis 
Zone, 66.8 to 65 Ma [8, 39]. In the late Maastrichtian 
(during the last 500ky of the Maastrichtian), extreme 
and rapid climate fluctuations prevailed. Stable isotope 
data reveals that deep waters warmed rapidly by 3-4°C 
between 65.45 and 65.10 Ma followed by accelerated 
cooling during the last 100ky preceding the K-T 
boundary [25, 26, 45, 12, 6, 35, 37]. The cause of this 
global warming event is believed to be greenhouse 
warming due to a major pulse in Deccan Volcanism 
between 65.4 and 65.2 Ma. [13, 10, 47]. In fact, the end 
Cretaceous mass extinction began during the last 450 ky 
of the Maastrichtian and accelerated during the last 
100ky of the Maastrichtian [21]. Salinity fluctuations 
indicate that during the short term global warming, high 
latitude deep-water production was significantly 
reduced and warm, saline, deep-waters flooded the 
ocean basins [19]. The observed changes in relative 
abundances of species, suggest a more complex and 

variable species response to climate warming. The 
species which are typically of large size (>150µm) show 
significant changes in relative abundance during the 
climate warming. Species with decrease abundances 
include the R. rugosa, P. brazoensis and G. 
stuartiformis and keeled globotruncanids (such as 
Rosita spp.) (Fig. 2). In contrast, some species 
populations remained apparently increased by the warm 
event as indicated by their continual dominance (e.g. P. 
hariaensis, G. arca and P. elegans). These species are 
typical components of mid-latitude planktonic 
foraminiferal assemblages [25]. The dominant presence 
of mentioned above species during the warm event at 
Ziyarat-kola, indicates that warming did not cause a 
massive retreat of the local mid-latitude population. A 
well-stratified water mass is a key factor for the 
existence of diverse plankton communities. Such 
conditions generally exist at low latitudes, where a 
warm layer overlies cooler and denser thermocline 
water mass that separate niches for surface and deeper 
planktonic dwellers. Warming of surface waters during 
the late Maastrichtian caused the water mass 
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Plate 1.  A: SEM illustrations of normal-sized adult and dwarfed planktonic foraminifera. Scale bar = 100 µm 
Globotruncana arca (Cushman) (1-3), Rugoglobigerina rugosa (Plummer) (4, 5), Globigerinelloides subcarinatus (Brönnimann) (6, 
7), Pseudoguembelina hariaensis Nederbragt(8-9). 
1, 2. Normal-sized adult specimen (sample 11) 3. Dwarfed specimens (sample 43) 
4. Normal-sized adult specimen (sample 10) 5. Dwarfed specimen (sample 35) 
6. Normal-sized adult specimen (sample 2) 7. Dwarfed specimens (sample 69) 
8. Normal-sized adult specimen (sample 11) 9. Dwarfed specimen (sample 37) 
B: SEM illustrations of planktonic foraminifera. Scale bar = 100 µm 

1a, 1b, 2. Abathomphalus mayaroensis (Bolli), 3. Globotruncanita stuartiformis (Dalbiez), 4. Guembelitria sp. (Cushman), 5. 
Heterohelix globulosa, (Ehrenberg) 6. Laeviheterohelix dentata (Suleymanov) 7. Planoglobulina brazoensis (Martin) 8. 
Pseudotextularia elegans (Rzehak) 9. Pseudotextularia nuttalli (voorwijk) 10. Fungal spores 11. Cycadopites crassimarginis 
(Dejersey). 
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stratification significantly reduced [26,7]. The reduction 
in upper water mass stratification is probably 
responsible for destroying the niches of planktonic 
dwellers and caused a sharp drop in the diversity of 
large planktonic foraminiferal population. 

The triserials forms can live in environment with 
variable or extreme condition as exemplified by 
Guembelitria cretacea that survived the Cretaceous 
/Tertiary boundary event [33]. In Ziyarat- kola area 
increasing of Guembelitria, indicates crisis conditions in 
warm realm. 

The present study suggests that several factors 
affected marine planktons during climate changing. 
Changes in water mass stratification, latitudinal and 
vertical migration, species competition and dwarfing 
may all have contributed to assemblage changes 
associated with climate warming. 

The global climate-warming event between 65.45 
and 65.10 Ma resulted in major changes in the structure 
of marine ecosystem during the Late Maastrichtian. The 
warming event was recorded in planktonic foraminifera 
and palynological content in Ziyarat-kola section during 
the Late Maastrichtian. The factors that confirm this 
event are as follows: 

1) Increase in relative abundance of G. arca, P. 
hariaensis and P. elegans and decrease in P. brazoensis, 
G. dupeublei, and especially R. rugosa. 

2) Dwarfism which is resulted from high stress 
environmental condition in which juvenile forms 
dominate as they are more tolerant than adult forms and 
from reproductive mode change from asexual to sexual 
caused high diversity in 63-150µm fraction. 

3) Statistical analyses show decrease in ecological 
specialist with large and highly ornamented tests, which 
are sensitive against environmental factors. 

4) Decrease in cool water species such as 
Heterohelicids and Rugoglobigerina. 

5) Significant increase in opportunist species such as 
Guembelitria cretacea, which indicate unstable and 
high stress environmental condition. 

6) Increase in relative abundance of fungal spores 
(>25%) and presence of spore species Cycadopites 
crassimarginis produced by plant, which grow in warm 
climate. 
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Appendix A.  Relative percent abundances of planktonic foraminifera in the size fraction >150µm (x<1). 
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Appendix B.  Relative percent abundances of planktonic foraminifera in the 63-150µm size fraction (x<1). 
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Appendix C.  Relative abundance species diversity and relative percent abundances species ecological specialist in the size fraction 
>150µm and 63-150µm. 
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