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Abstract 

Based on recent studies by Guy Jumarie [1] which defines probability density 
of fractional order and fractional moments by using fractional calculus (fractional 
derivatives and fractional integration), this study expands the concept of 
probability density of fractional order by defining the fractional probability 
measure, which leads to a fractional probability theory parallel to the classical 
one. According to the probability principles in classical probability theory and the 
definition  of  probability  density  of  fractional  order  by  Guy Jumarie,  at  first,  the  
fractional probability principles are discussed. Then the fractional probability 
space ( , , )F PaW  is introduced. Consequently, the fractional probability measure 

: [ ,1]P Fa ® o , 1a< <o  is  explained.  Moreover,  validity  of  the  classical  
"probability measure continuity" theorem ( (lim ( )) lim ( ( ))n nn n

P X P Xw w
®¥ ®¥

= ) for 

the fractional probability measure Pa  is verified, which results in "Fatou Lemma" 
and some theorems in convergence concept. 
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Introduction 
The probability density of fractional order ( )P xa ,

( )P xa ³ o  { } : ( , ) ( )( ) ,
x

x

P x X x F x x P d a
a x x

¢

¢ ¢< £ = = ò  

has been defined by using fractional calculus (fractional 
derivatives and fractional integration) [2-8], by Guy 
Jumarie in 2007[1] which can be considered as the first 
step in expanding a fractional probability theory. Two 
classical probability principles ( ( ) 1p W =  and  for  any  
i j¹ , i jA A =ÆI , ( ) ( )i i

ii

P A P A=åU ) [11, 12] are 

validated for a fractional probability measure, for 
instance, the uniform fractional probability density 
function, which can be explained by the probability 
density of fractional order [1]. Furthermore, the 
fractional probability principles are evaluated. These 
evaluations also result in the fractional probability space 
( , , )F PaW . 

Having defined the fractional probability measure, 
its properties in regards to the corresponding properties 
of classical probability measure [11, 12] are studied. 
One important theorem in the classical probability 
theory is the probability measure continuity  
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( (lim ( )) lim ( ( ))n nn n
P X P Xw w

®¥ ®¥
= ) [11, 12], which plays 

a great role in proving other theorems in the probability 
theory. The problem here is to verify whether this 
theorem is satisfied in the fractional probability space 
( , , )F PaW  or  not.  Is  it  possible  to  set  (lim ( ))nn

P Xa w
®¥

 

lim ( ( ))nn
P Xa w

®¥
= ? 

Furthermore, definition of fractional moments by 
Guy Jumarie is mentioned and properties of 
mathematical expectation of fractional order are 
evaluated. 

In following section, dominated, bounded, and 
monotone convergence theorems in fractional 
probability space are stated. Subsequently "Fatou 
Lemma"  is  proved  by  the  means  of  the  results  of  
probability measure continuity in the fractional 
probability space ( , , )F PaW . 

Probability Principles 
Definition 1 (Classical probability principles) [11, 12]. 
Given a sample space W  and an associated s -field F , 
a probability measure is a set function : [ ,1]P F ® o  
that satisfies 

1.  ( )p A ³ o  for all A FÎ  

2.  ( ) 1p W =  

3.  for all iA FÎ , if Ais are pairwise disjoint, then 

11

( ) ( )i i
ii

P A P A
==

=åU  

Probability Density of Fractional Order 
Definition 2 [1] Let X  denote a real-valued random 
variable with the probability density ( )P xa , ( )P xa ³ o . 
X  is referred to as a random variable with fractional 
probability density of order a , 1a< <o . Whenever 
one has 

{ } : ( , ) ( )( ) ,
x

x

P x X x F x x P d a
a x x

¢

¢ ¢< £ = = ò  

with normalizing condition 

( )( ) 1P x dx a
a

+¥

-¥
=ò . 

Example 1 (Uniform probability density function of 
fractional order a ) [1] 

According to Definition 2 and normalizing condition 
( )( ) 1P x dx a

a

+¥

-¥
=ò , for a uniform random a -variable 

X  on the interval [ , ]a b , one has 

1( ) ,
( )

P x a x b
b aa a= £ £
-

 

Fractional Probability Measure 
If it is assumed that the fractional probability density 
( )P xa  is a fractional probability measure, according to 

the corresponding classical probability principles  
( ( )p A for all A F³ Îo  and ( ) 1p W = ), in Definition 

2 the expressions ( )P xa ³ o  and ( )( ) 1P x dx a
a

+¥

-¥
=ò  

can be considered as two initial principles of fractional 
probability measure. Therefore, the first principle of 
fractional probability measure can be defined as 

( )P xa ³ o  and  the  second  principle  can  be  defined  as  

( ) ( )( ) 1p P x dx a
a a

+¥

-¥
W = =ò . 

The third principle of classical probability measure, 
for all iA FÎ ,  if  Ais are pairwise disjoint, then 

11

( ) ( )i i
ii

P A P A
==

=åU , is verified for the uniform 

probability density of fractional order a  

1( ) ,
( )

P x a x b
b aa a= £ £
-

 

Here two disjoint events are defined as 
1 2[ , ) , [ , ]A a c A c b= = , then 

1( ) ( )
( )

c

a

P a x c dx
b a

a
a a< < =

-ò  

( )
( )
c a
b a

a

a

-
=

-
 

1( ) ( )
( )

b

c

P c x b dx
b a

a
a a< < =

-ò  

( )
( )
b c
b a

a

a

-
=

-
 

( ) 1P a x ba < < =  

In fact it should be proved that 

( ) ( )1
( ) ( )
c a b c
b a b a

a a

a a

- -
£ +

- -
 

or 

( ) ( ) ( )b a c a b ca a a- £ - + -  
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which is clear by referring to Minkovski’s inequality [9, 
11, 12]. Therefore, 

( ) ( ) ( )P a x b P a x c P c x ba a a< < < < < + < <  

It is concluded that the third principle of classical 
probability measure is not satisfied in fractional 
probability space. So, the principles of fractional 
probability measure can be described as follows: 

Principles of Fractional Probability Measure 
Given a sample space W  and an associated s -field 

F , a fractional probability measure of order a ,
1a< <o , is a set function : [ ,1] , 1P Fa a® < <o o  

that satisfies 

1.  ( )P Aa ³ o  for all A FÎ  

2.  ( ) 1Pa W =  

3.  for all iA FÎ , even if Ais are pairewise disjoint, 
then 

11

( ) ( )i i
ii

P A P Aa a
==

£åU  

 
Definition 3 (fractional probability space). A fractional 
probability space is a triple ( , , )F PaW  where; 
· W  is the sample space corresponding to outcomes 

of some experiment. 
· F  is the s -algebra of subsets of W . These subsets 

are called events. 
· : [ ,1] , 1P Fa a® < <o o  is a fractional probability 

measure. 
Fractional probability space indicates three points; 
First, events are considered as subsets of W . 
Second, it is clarified that each particular subset is 

considered as an event only if it is a member of F . 
Third, fractional probability of events is counted by 

the means of the fractional probability measure 
: [ ,1]P Fa ® o , 1a< <o . 

 
Theorem 1 (fractional probability measure properties). 
Let ( , , )F PaW  be a fractional probability space, then 
one has 

a) ( )pa Æ = o  

b) If ,A B  are two events that A BÌ , then 
( ) ( )P A P Ba a£  

c) 1 ( ) ( ) 1cP A P Aa a- £ £  

Proof a) since W = W ÆU  and W Æ =ÆI , Assuming 

part b is true, one has 

( ) ( ) ( ) ( )P P P Pa a a aW £ W Æ £ W + ÆU  

1 ( ) 1 ( )P Pa a£ W Æ £ + ÆU  

1 ( ) 1 ( )P Pa a£ W £ + Æ  

According to the press theorem, it shall be 

1 ( ) 1Pa+ Æ =  

So, 

( )Pa Æ = o . 

b) According to the assumption A BÌ , 

( )B A B A= -U  

( ) ( ( ))P B P A B Aa a= -U  

And according to the third principle of fractional 
probability measure, one has 

( ) ( ) ( )P B P B A P Aa a a- - £ . 

Now there would be two forms; 

( ) ( ) ( ) ( )P B P B A P B P Aa a a a- - £ £  

or 

( ) ( ) ( ) ( )P B P B A P A P Ba a a a- - £ £  

An example is set to refute the first one 

( ) ( ) ( ) ( )P B P B A P B P Aa a a a- - £ £  

As it is derived from a uniform random a -variable 
X  on the interval [ , ]a b , one has 

1( ) ,
( )

P x a x b
b aa a= £ £
-

 

Here, we set a sample space as [ ,1]o  ( [ ,1]W = o ) and 
two events as 

1[ , ) , [ ,1]
3

A B= =o o  that A BÌ , then 

( ) 1 , 1P x xa = £ £o  

1
31 1( ) ( ) ( ) ( )

3 3
P A P x dx a a
a a= £ < = =ò

o

o  

( ) ( ) 1P B Pa a= W =  

As it is clearly observed 
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11 ( ) ( ) ( )
3

P B P Aa
a a³ Þ ³  

So the first form ( ) ( ) ( )P B P B P B Aa a a£ - -  
( )P Aa£  is refuted. Therefore, one only has 

( ) ( ) ( ) ( )P B P B A P A P Ba a a a- - £ £  

And it is proved that 

( ) ( )A B P A P Ba aÌ Þ £ . 

c) cA AW = U , according to the third principle of 
fractional probability measure, 

1 ( ) ( )cP P A Aa a= W = U  

( ) ( )cP A P Aa a£ + . 

And according to the part (b), 

( ) ( ) ( ) ( )cA P P A P A Pa a a aÌ WÞ W - £ £ W  

Since ( ) 1Pa W = , we have 

1 ( ) ( ) 1cP A P Aa a- £ £ . 

Continuity of Fractional Probability Measure 

Theorem 2 Let ( , , )F PW  be  a  probability  space,  then  
one has 

(lim ( )) lim ( ( ))n nn n
P X P Xw w

®¥ ®¥
= . [11, 12] 

According to fractional probability principles, it is 
declared, by giving an example, that the theorem of 
continuity of probability measure ( (lim ( ))nn

P X w
®¥

lim ( ( ))nn
P X w

®¥
= ) is not satisfied for fractional 

probability. 
 
Example 2 let ([ , ], ([ , ]), )a a PaBo o  be a fractional 
probability space. So that 

( ([ , ])) , 1 , 1P l a a aa a
a a- -= = > < <o o  

The sequence of functions nX  on [ , ]ao  is set as 

( ) , [ , ]nX a
n
w

w w= Î o  

For any n , nX  is a fractional random variable or 
random a -variable. As follows 

lim ( )nn
X aw w

®¥
= £ £o o  

(lim ( )) ( )

( )

nn
P X P

P a a

a a

a
a

w

w
®¥

-

=

= £ £ =

o

o

 

( ( )) ( )nP X P
na a
w

w =  

Based on the fractional probability density of w , 
( )Pa w  and using transformation of fractional 

probability density, fractional probability function 
(fractional probability density) of the random a -

variable nX , ( )P
na
w , is calculated as bellow 

( ) ,

( ) 1
a

P a a

a d

a
a

a a

w w

w

-

-

= £ £

=ò
o

o

 

( )nX
n
w

w =  

( ( )) , ( )n n
dd X d nd X
n
w

w w= =  

( )( ) 1, ( )

a
n

n n n
aP nX ndX X
n

a
a w= £ £ò

o

o  

Since ( )nP nX a a
a

-= , one has 

( ) 1, ( )

a
n

n n
aa n dX X
n

a a a w- = £ £ò
o

o  

So, 

( ( ))nP X n aa a
a w -= . 

lim ( ( )) limnn n

nP X
a

a

a aw
®¥ ®¥

= = ¥  

So, it is observed that (lim ( ))nn
P Xa w

®¥
 

lim ( ( ))nn
P Xa w

®¥
¹ ; and it is concluded that the 

continuity of probability measure is not satisfied in a 
fractional probability space. 

Properties of Mathematical Expectation of 
Fractional Order 

Definition 4 [1] For any k positive integer, kth moment 
of fractional order a , 1a< <o , of random variable X  
is defined by the expression 

{ }: ( )( )k k
k

R

m E X x P x dxa a a
a a= = ò  

First moment of fractional order a , 
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{ }: ( )( )
R

m E X x P x dxa a a
a a= = ò  

Which is the expected value of fractional order a  
and fractional variance of order a  results  from  the  
expression 

2 2
2: ( )m ma a as = -  

 
Theorem 3 

a) ( ) ( )E aX a E Xa
a a= , ( )E b ba

a = . 

b) If 1( )g x ³ o , for all x , then 1( ( ))E g Xa ³ o . 

c) If 1 2( ) ( )g x g x³ , for all x , then 

1 2( ( )) ( ( ))E g X E g Xa a³ . 

d) If 1( )a g x b£ £ , for all x , then 

1( ( ))a E g x ba a
a£ £ . 

e) ( ) ( ) ( )E aX bY a E X b E Ya a
a a a+ £ +  

Proof e) First, it is proved that 

( ) ( ) ( )E X Y E X E Ya a a+ £ +  

According to Definition 4 one has 

( ) ( )E X Y x y d pa a
a + = +ò  

So it is sufficient to prove 

( )x y x ya a a+ £ +  

or equally 
1

( )x y x ya a a+ £ +  

Since 1a< £o , therefore, 1 1
a
> .  Now  if  we  set  

1 n
a
=  and ,x z y la a= = , binominal approximation 

( )
n

n k n k

k

n
z l z l

k
-

=

æ ö
+ = ç ÷

è ø
å
o

 can be used. 

1
1 11

( ) ( ) ( )

(*)

kk

k
x y x y

k
y x

a
a a a aa aa

-

=

æ ö
ç ÷+ = ç ÷ç ÷
è ø

= + +

å
o

 

(*) is a positive expression. So, 
1

( )x y x ya a a+ ³ +  

or 

( )x y x ya a a+ ³ +  

Then by integrating of both sides of inequality with 
respect to d pa , one has 

( ) ( )

( )

( ) ( ) ( )

x y d p x y d p

x d p y d p x y d p

E X E Y E X Y

a a a a a

a a a a a a

a a a

+ ³ +

+ ³ +

+ ³ +

ò ò
ò ò ò  

So, 

( ) ( ) ( )E aX bY a E X b E Ya a
a a a+ £ + . 

Fatou’s Lemma in Fractional Probability Space 
Theorem 4 (Dominated convergence theorem) If 
lim . .nn

X X a e
®¥

=  or merely in fractional probability 

measure on W  and : . .nn X Y a e on" £ W , with 

Y d Pa

W
< ¥ò , then by assuming (lim )nn

P Xa ®¥
£  

lim ( )nn
P Xa®¥

, one has 

(lim ) (lim ) lim ( )n n n nn n n
X P X d x X P X d xa a

a aW W®¥ ®¥ ®¥
£ò ò  

( ) lim ( )n nn
XP X d x X P X d xa a

a aW W®¥
£ò ò . (**) 

As a result, 

( ) lim ( ) ( )n nn
X P X d x X P X d xa a a a

a aW W®¥
£ò ò . 

So, 

( ) lim ( )nn
E X E Xa a®¥

£  

or 

(lim ) lim ( )n nn n
E X E Xa a®¥ ®¥

£ . 

 
Theorem 5 (Bounded convergence theorem) If 
lim . .nn

X X a e
®¥

=  or merely in fractional probability 

measure on W  and there exists a constant M  such that 
: . .nn X M a e on" £ W , by assuming (lim )nn

P Xa ®¥
£  

lim ( )nn
P Xa®¥

, then (**) is true. 

 
Theorem 6 (Monotone convergence theorem) If 

nX ³ o  and . .nX X a e on­ W  or merely in fractional 
probability measure on W , by assuming 

(lim ) lim ( )n nn n
P X P Xa a®¥ ®¥

£ , then (**) is again true 
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provided that +¥  is  allowed  as  a  value  for  either  
member. 
 
Theorem 7 (Fatou’s lemma) If . .nX a e on³ Wo  or 
merely in fractional probability measure on W , then by 
assuming (lim ) lim ( )n nn n

P X P Xa a®¥ ®¥
£ , one has 

(lim ) (lim ) lim ( ) ( )n n n nX P X d x X P X d xa a a a
a aW W

£ò ò  

or 

(lim ) lim ( )n nE X E Xa a£  

Proof. If infn kk n
Y X

³
=  then lim limn nn

X Y
®¥

= , n nX Y³ , 
nY ³ o . 

So, limn nY X­ . 
According to Monotone convergence theorem 7.3, 

one has 

lim ( ) (lim )n nn n
E Y E Ya a®¥ ®¥

³  

So, 

lim ( ) (lim )n nn
E Y E Xa a®¥

³  

Since ( ) ( )n nE X E Ya a³ , then 

lim ( ) lim ( ) (lim )n n nn
E X E Y E Xa a a®¥

³ ³ . 

Results and Discussion 
In this study, some basic definitions such as 

"fractional probability space ( , , )F PaW " and "fractional 
probability measure Pa " were proposed, in order to 
expand a probability theory of fractional order 

completely parallel to the classical probability theory. 
Also validities of some theorems such as "continuity of 
fractional probability measure" and "fractional 
probability measure properties" were discussed. 

In future it would be of interest to study some other 
theorems of Convergence concept. 
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