Lower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces

R. Lashkaripour^{*} and G. Talebi

Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran

Received: 2 December 2009 / Revised: 3 August 2011 / Accepted: 12 August 2011

Abstract

Let $H = (h_{n,k})_{n,k\geq 0}$ be a non-negative matrix. Denote by $L_{w,p,q}(H)$, the supremum of those L, satisfying the following inequality:

$$\left(\sum_{n=0}^{\infty} w_n \left(\sum_{k=0}^{\infty} h_{n,k} x_k\right)^q\right)^{\frac{1}{q}} \ge L \left(\sum_{k=0}^{\infty} w_k x_k^p\right)^{\frac{1}{p}},$$

where $x \ge 0$, $x \in l_p(w)$, and also $w = (w_n)$ is increasing, non-negative sequence of real numbers. If p = q, we used $L_{w,p}(H)$, instead of $L_{w,p,p}(A)$. The purpose of this paper is to establish a Hardy type formula for $L_{w,p,q}(H_\mu)$, where H_μ is Hausdorff matrix and $0 < q \le p < 1$. A similar result is also established for $L_{w,p,q}(H_\mu^t)$ where $-\infty < q \le p < 0$. In particular, we apply our results to the Cesaro matrices, Holder matrices and Gamma matrices. Our results also generalize some works due to R. Lashkaripour and D. Foroutannia [6]. Moreover, in this study we extend some results mentioned in [3] and [4].

Keywords: Lower bound; Weighted sequence space; Lower triangular matrix

Introduction

Let $p \in \mathbb{R} \setminus \{0\}$ and also let $l_p(w)$ denote the space of all real sequences $x = \{x_k\}_{k=0}^{\infty}$ such that

$$\left\|x\right\|_{w,p} \coloneqq \left(\sum_{k=1}^{\infty} w_k x_k^p\right)^{1/p} < \infty,$$

where $w = (w_n)_{n=0}^{\infty}$ is an increasing, non-negative sequence of real numbers with $w_0 = 1$. We write $x \ge 0$ *i* f $x_k \ge 0$ for all *k*. We also write $x \uparrow$ for the case that $x_0 \le x_1 \le ... \le x_n \le ...$ The symbol $x \downarrow$, is defined in a similar way. For $p,q \in \mathbb{R} \setminus \{0\}$, the lower bound involved here is the number $L_{w,p,q}$ (H), which is defined as the supremum of those *L* obeying the

2000 Mathematics Subject Classification: 26D15; 47A30; 40G05; 47D37; 46A45; 54D55.

^{*} Corresponding author, Tel.: :+98(541)2447166, Fax: :+98(541)2447166, E-mail: lashkari@hamoon.usb.ac.ir

following inequality:

$$\left(\sum_{n=0}^{\infty} w_n \left(\sum_{k=0}^{\infty} h_{n,k} x_k\right)^q\right)^{\frac{1}{q}} \ge L \left(\sum_{k=0}^{\infty} w_k x_k^p\right)^{\frac{1}{p}},$$
$$\left(x \ge 0, x \in l_p(w)\right),$$

where $H \ge 0$, that is $H = (h_{n,k})_{n,k\ge 0}$ is a non-negative matrix. We have

$$L_{w,p,q}\left(\mathbf{H}\right) \leq \parallel H \parallel_{w,p,q},$$

We are interested in the problem of finding the exact value of $L_{w,p,q}$ (H) for the cases: $H = H_{\mu}$ or $H = H_{\mu}^{t}$, where $d\mu$ is a Borel probability measure on [0,1], (.)^t denotes the transpose of (.) and H_{μ} = $(h_{n,k})_{n,k\geq 0}$ is the Hausdorff matrix associated with $d\mu$, defined by

$$h_{n,k} = \begin{cases} \binom{n}{k} \int_0^1 \theta^k (1-\theta)^{n-k} d\mu(\theta) & n \ge k \\ 0 & n < k \end{cases}$$

Clearly, $h_{n,k} = \binom{n}{k} \Delta^{n-k} \mu_k$ for $n \ge k \ge 0$, where

$$\mu_k = \int_0^1 \theta^k d \,\mu(\theta) \qquad (k = 0, 1, ...)$$

and $\Delta \mu_k = \mu_k - \mu_{k+1}$.

In ([6], Corollary 4.3.3) the author obtained $L_{w,p}(C(1)^t) = p, 0 , where <math>C(1) = (c_{n,k})_{n,k \ge 0}$ is the Cesaro matrix defined by:

$$c_{n,k} = \begin{cases} \frac{1}{n+1} & 0 \le k \le n \\ 0 & ow. \end{cases}$$

This is analogue of Copson results [5, Eq(1.1)](see also[7], Theorem 344) for weighted sequence space $l_p(w)$ and has been generalized by D. Foroutannia. He extended it in ([6], Theorem 2.7.17 and Theorem 2.7.19) to those summability matrices H, whose rows are increasing or decreasing. Also, he gave upper bounds or lower bounds to $L_{w,p}(H)$ for such H. For the case of Hausdorff matrices, the related result with 0 have been established in [6, Theorem 4.3.2] and Theorem 4.3.7], where the author prove that

$$L_{w,p}(H_{\mu}^{t}) = \int_{0}^{1} \theta^{-1/p^{*}} d\mu(\theta) \quad (0$$

and

$$L_{w,p}(H_{\mu}) = \int_{0}^{1} \theta^{-1/p} d\mu(\theta) \quad (-\infty where $\frac{1}{p} + \frac{1}{p^{*}} = 1.$$$

The exact value of $L_{w,p}(H_{\mu})(0 and <math>L_{w,p}(H_{\mu}^{t})(-\infty have not been found yet. In This paper, we shall fill in this gap. The details are described below.$

Results

1. Lower Bounds for Hausdorff Matrices

The purpose of this section is to prove that

$$L_{w,p,q}(H_{\mu}) \ge \int_{(0,1]} \theta^{-1/q} \ d \ \mu(\theta) \ (0 < q \le p \le 1)$$
(1-1)

and

$$L_{w,p,q}(H_{\mu}^{t}) \geq \int_{(0,1]} \theta^{-1/p^{*}} d\mu(\theta) (-\infty < q \le p < 0), (1-2)$$

(see Theorem 1.4 and Theorem 1.5).

Lemma 1.1. Let 0 and let A be a lower triangular matrix with non-negative entries. If

$$\sup_{n\geq 0}\sum_{k=0}^n a_{n,k}=R\,,$$

and

$$\inf_{k \ge 0} \sum_{n=k}^{\infty} a_{n,k} = C > 0,$$
then $||Ax||_{w,p} \ge L ||x||_{w,p}$ with
$$L \ge R^{\frac{1}{p^*}} C^{\frac{1}{p}}.$$
(1-3)

Proof. Since (w_n) is increasing, we have $||Ax||_{w,p} \ge ||Ax||_{p,p}$. The desire inequality now is a consequence of ([2], Proposition 7.4). \Box

For $\alpha \ge 0$, let $E(\alpha) = (e_{n,k}(\alpha))_{n,k} \ge 0$ denote the Euler matrix, defined by:

$$e_{n,k} = \begin{cases} \binom{n}{k} \alpha^{k} (1-\alpha)^{n-k} & n \ge k \\ 0 & n < k \end{cases}.$$

(cf. [1, p.410]). For $\Omega \subset (0,1]$, we have

$$\int_{\Omega} e_{n,k}(\theta) d \mu(\theta) = \mu(\Omega) \times \int_{0}^{1} e_{n,k}(\theta) d \nu(\theta),$$

where $dv = \frac{\chi_{\Omega}}{\mu(\Omega)} d\mu$ is a Borel probability measure

on [0,1] with $\nu(\{0\}) = 0$. Hence the second part of ([2], Proposition 19.2) can be generalized in the following way.

Lemma 1.2. Let $0 , <math>\Omega \subseteq [0,1]$ and $d\mu$ be any Borel probability measure on [0,1].

If
$$\mu(\{0\}) = 0$$
 or $\Omega \subset (0,1]$, then
$$\left\| \left\{ \int_{\Omega} e_{n,k}(\theta) d \, \mu(\theta) \right\}_{n=k}^{\infty} \right\|_{w,p} \text{ increases with } k .$$

Proof. Applying Lemma 1.1 and ([2], Proposition 19.2), we have the statement. \Box

Lemma 1.3. Let $0 . Then <math>L_{w,p}(E(\alpha)) \ge \alpha^{-1/p}$ for $0 < \alpha \le 1$.

Proof. We have $\sum_{k=0}^{\infty} e_{n,k}(\alpha) = l(n \ge 0)$ and $\sum_{n=0}^{\infty} e_{n,k}(\alpha) = \alpha^{-1}(k \ge 0)$. Applying Lemma 1.1 to the case that R = 1 and $C = \alpha^{-1}$ we deduce that $L_{w,p}(E(\alpha)) \ge \alpha^{-1/p}$ for 0 . For <math>p = 1 from Fubini's theorem and monotonocity of (w_n) , we deduce that

$$\|E(\alpha)x\|_{w,1} = \sum_{n=0}^{\infty} w_n \left(\sum_{k=0}^{\infty} e_{n,k}(\alpha)x_k\right)$$
$$\geq \sum_{k=0}^{\infty} w_k \left(\sum_{n=0}^{\infty} e_{n,k}(\alpha)\right)x_k$$
$$= \alpha^{-1} \|x\|_{w,1} \qquad (x \ge 0)$$

which gives the desired inequality. This completes the proof. \square

Now, we try to establish (1-1) and its related properties. For $x \ge 0$, we have $H_{\mu}x = \int_0^1 E(\theta)x \, d\,\mu(\theta)$. Hence Lemma 1.3 enables us to estimate the value of $L_{w,p,q}(H_{\mu})$. Our results are stated below.

Theorem 1.4. We have

$$L_{w,p,q}(H_{\mu}) \ge \int_{(0,1]} \theta^{-1/q} d\mu(\theta) \quad (0 < q \le p \le 1).$$
 (1-4)

Moreover, for $0 < q < p \le 1$, (1-4) is an equality if and only if $\mu(\{0\}) + \mu(\{1\}) = 1$ or the right side of (1-4) is infinity.

Proof. Consider (1-4), let $x \ge 0$, $||x||_{w,p} = 1$. Then $||x||_{w,q} \ge ||x||_{w,p} = 1$. Applying Minkowski's inequality and Lemma 1.3, we obtain

$$\begin{aligned} \left| H_{\mu} x \right\|_{W,q} &= \left\| \int_{0}^{1} E(\theta) x \, d \, \mu(\theta) \right\|_{W,q} \\ &\geq \int_{(0,1]} \left\| E(\theta) x \right\|_{W,q} \, d \, \mu(\theta) \\ &\geq \left(\int_{(0,1]} \theta^{-1/q} \, d \, \mu(\theta) \right) \left\| x \right\|_{W,q} \\ &\geq \int_{(0,1]} \theta^{-1/q} \, d \, \mu(\theta) \end{aligned}$$

This leads us to (1-4).

Obviously, (1-4) is an equality if its right side is infinity. For the case that $\mu(\{0\}) + \mu(\{1\}) = 1$, we have

$$\begin{split} \left\| H_{\mu} e_{1} \right\|_{w,q} &= \left(\sum_{n=1}^{\infty} w_{n} h_{n,1}^{q} \right)^{\frac{1}{q}} \\ &= \left(\sum_{n=1}^{\infty} w_{n} \left(\binom{n}{1} \int_{0}^{1} \theta (1-\theta)^{n-1} d \mu(\theta) \right)^{q} \right)^{\frac{1}{q}} \\ &= \mu(\{1\}) = \int_{(0,1]} \theta^{-1/q} d \mu(\theta), \quad (1-5) \end{split}$$

where $e_1 = (0, 1, 0, 0, ...)$. This follows that

$$L_{w,p,q}\left(H_{\mu}\right) \leq \int_{(0,1]} \theta^{-1/q} d \mu(\theta)$$

and consequently, (1-4) is an equality.

Consequently, let $0 < q < p \le 1$ and assume that $\mu(\{0\}) + \mu(\{1\}) \ne 1$ and also that

$$\int_{(0,1]} \theta^{-1/q} d\mu(\theta) < \infty,$$

then $\mu((0,1)) \neq 0$. Since 0 < q < 1, we have

$$\sum_{n=0}^{\infty} (1-\theta)^n < \sum_{n=0}^{\infty} (1-\theta)^{nq} . \qquad \theta \in (0,1)$$
 (1-6)

Applying (1-6), Minkowski's inequality and monotonicity of w we have:

$$\int_{(0,1]} \theta^{-1/q} d\mu(\theta) = \int_{(0,1]} \left(\sum_{n=0}^{\infty} (1-\theta)^n \right)^{\frac{1}{q}} d\mu(\theta)$$

$$< \int_{(0,1]} \left(\sum_{n=0}^{\infty} (1-\theta)^{nq} \right)^{\frac{1}{q}} d\mu(\theta)$$

$$\leq \left\| \left\{ \int_{(0,1]} (1-\theta)^n d\mu(\theta) \right\}_{n=0}^{\infty} \right\|_q \qquad (1-7)$$

$$\leq \left\| \left\{ \int_{(0,1]} (1-\theta)^n d\mu(\theta) \right\}_{n=0}^{\infty} \right\|_{w,q}.$$

From (1-7) we can find β satisfying $0 < \beta < 1$ such that

$$\int_{(0,1]} \theta^{-1/q} d \mu(\theta) < \beta \left\| \left\{ \int_{(0,1]} (1-\theta)^n d \mu(\theta) \right\}_{n=0}^{\infty} \right\|_{W,q}.$$
(1-8)

We claim that

$$L_{w,p,q}\left(H_{\mu}\right) \geq \min\left(\beta^{\frac{q-p}{p}} \int_{(0,1]} \theta^{-1/q} d\mu(\theta),\right)$$

$$\beta \left\| \left\{ \int_{(0,1]} (1-\theta)^{n} d\mu(\theta) \right\}_{n=0}^{\infty} \right\|_{w,q} \right\}.$$
(1-9)

Let $x \ge 0$, with $||x||_{w,p} = 1$. We divide the proof into two cases: $x_{k_0} \ge \beta$ for some k_0 or $x_k < \beta$ for all k. For the first case, it follows from Lemma 1.2 that

$$\left\| H_{\mu} x \right\|_{w,q} \geq x_{k_0} \left(\sum_{n=0}^{\infty} w_n h_{n,k_0}^q \right)^{\frac{1}{q}}$$
$$\geq \beta \left\| \left\{ \int_{(0,1]} e_{n,k_0}(\theta) d \mu(\theta) \right\}_{n=k_0}^{\infty} \right\|_{w,q}$$
$$\geq \beta \left\| \left\{ \int_{(0,1]} e_{n,0}(\theta) d \mu(\theta) \right\}_{n=0}^{\infty} \right\|_{w,q}$$

$$= \beta \left\| \left\{ \int_{(0,1]} (1-\theta)^n d\, \mu(\theta) \right\}_{n=0}^{\infty} \right\|_{W,q}$$

As for the second case, we have $x_k^q \ge \beta^{q-p} x_k^p$ for all k. This implies

$$\sum_{k=0}^{\infty} w_{k} x_{k}^{q} \geq \beta^{q-p} \sum_{k=0}^{\infty} w_{k} x_{k}^{p} = \beta^{q-p}.$$

Applying (1-4), we deduce that

$$\|H_{\mu}x\|_{W,q} \geq \left(\int_{(0,1]} \theta^{-1/q} d\mu(\theta)\right) \|x\|_{W,p}$$
$$\geq \beta^{\frac{q-p}{p}} \int_{(0,1]} \theta^{-1/q} d\mu(\theta).$$

Hence, no matter which case occurs, $||H_{\mu}x||_{w,q}$ is always greater than or equal to the minimum stated at the right side of (1-9). This leads us to (1-9). It is clear that $\beta^{\frac{q-p}{q}} > 1$. Putting (1-8) and (1-9) together, we have

$$L_{w,p,q}(H_{\mu}) > \int_{(0,1]} \theta^{-1/q} d\mu(\theta).$$

This completes the proof. \Box

For $-\infty < q \le p < 0$, we have $0 < p^* \le q^* < 1$ where $\frac{1}{p} + \frac{1}{p^*} = 1$ and $\frac{1}{q} + \frac{1}{q^*} = 1$. Applying ([8], Proposition 2.7), $L_{w,p,q}(H_{\mu}^t) = L_{w,q^*,p^*}(H_{\mu})$. Putting this with Theorem 1.4, we get the following result.

Theorem 1.5. Let
$$\frac{1}{p} + \frac{1}{p^*} = 1$$
. Then
 $L_{w,p,q}(H_{\mu}^t) \ge \int_{(0,1]} \theta^{-1/p^*} d\mu(\theta) (-\infty < q < p \le 0).$ (1-10)

Moreover, for $-\infty < q < p \le 0$, (1-10) is an equality if and only if $\mu(\{0\}) + \mu(\{1\}) = 1$ or the right side of (1-10) is infinity.

2. Particular Cases

In the following, we present several special cases of Theorems 2.1 and 2.2. Let $d\mu(\theta) = \alpha (1-\theta)^{\alpha-1} d\mu(\theta)$, where $\alpha > 0$. Then $H\mu$ reduces to the Cesaro matrix

 $C(\alpha)$ (see [1, p.410]). For 0 , we have

$$\int_{(0,1]} \theta^{-1/q} d \mu(\theta) = \alpha \int_{(0,1]} \theta^{-1/q} (1-\theta)^{\alpha-1} d \theta = \infty.$$

Similarly

$$\int_{(0,1]} \theta^{-1/p^*} d \mu(\theta) = \infty. \qquad (-\infty$$

Applying (1-4) and (1-10), we get the following results.

Corollary 2.1. Let $\alpha > 0$. Then $L_{w,p,q}(C(\alpha)) = \infty$ for $0 < q \le p \le 1$. Also we have $L_{w,p,q}(C(\alpha)^t) = \infty$ for $-\infty < q \le p < 0$.

Next, consider the case $d \mu(\theta) = \frac{\left|\log \theta\right|^{\alpha-1}}{\Gamma(\alpha)} d\theta$,

where $\alpha > 0$. For this case, H_{μ} reduces to the

Holder matrix $H(\alpha)$ (see [1, p.410]). We have

$$\int_{(0,1]} \theta^{-1/q} d \,\mu(\theta) = \infty \qquad (0 < q \le 1),$$

and

$$\int_{(0,1]} \theta^{-1/p^*} d\mu(\theta) = \infty \qquad (-\infty$$

Hence, the following is a consequence of (1-4) and (2-10).

Corollary 2.2. Let $\alpha > 0$. Then $L_{w,p,q}(H(\alpha)) = \infty$ for $0 < q \le p \le 1$. Also, we have $L_{w,p,q}(H(\alpha)^t) = \infty$ for $-\infty < q \le p < 0$.

The third special case that we consider is $d \mu(\theta) = \alpha \theta^{\alpha-1} d\theta$, where $\alpha > 0$. Then H_{μ} becomes the Gamma matrix $\Gamma(\alpha)$)(see [1, p.410]). We have

$$\int_{(0,1]} \theta^{-1/q} d\mu(\theta) = \alpha \int_{(0,1]} \theta^{-1/q + \alpha - 1} d\mu(\theta)$$
$$= \begin{cases} \infty & \alpha \le 1/q \\ \frac{\alpha}{\alpha - 1/q} & \alpha > 1/q. \end{cases}$$
(2-1)

Applying Theorem 1.4, we get the following corollary.

Corollary 2.3. Let $\alpha > 0$ and $0 < q \le p \le 1$. Then $L_{w,p,q}(\Gamma(\alpha)) = \infty$, for $\alpha \le 1/q$. Also, $L_{w,p,q}(\Gamma(\alpha)) \ge \frac{\alpha}{\alpha - 1/q}$ for $\alpha > 1/q$.

Replace q in (2-1) by p^* . Then Theorem 1.5 gives the following consequence.

Corollary 2.4. Let
$$\alpha > 0$$
, $-\infty < q \le p < 0$ and
 $\frac{1}{p} + \frac{1}{p^*} = 1$. Then $L_{w,p,q} \left(\Gamma(\alpha)^t \right) = \infty$, for $\alpha \le 1/p^*$.
Also, $L_{w,p,q} \left(\Gamma(\alpha)^t \right) \ge \frac{\alpha}{\alpha - 1/q}$ for $\alpha > 1/p^*$.

References

- Bennett, G. Inequality complimentary to Hardy, Quart. J. Math. Oxford(2), 49: 395-432 (1998).
- 2. Bennett, G. Factorizing the classical inequalities, Mem. Amer. Math. Soc.(120), 576: 1-130 (1996).
- Chang-Pao Chen, Kuo-Zhong Wang, Lower bounds of Copson type for Hausdorff matrices, Linear Algebra Appl. 420: 208-217 (2007).
- Chang-Pao Chen, Kuo-Zhong Wang, Lower bounds of Copson types for Hausdorff matrices II, Linear Algebra Appl. 422: 563-573 (2007).
- Chang Pao Chen, Kuo-Zhong Wang, Lower bounds of Copson type for the transpose of lower triangular matrices, J. Math. Ann. Appl. 341: 1284-1294 (2008).
- 6. Foroutannia, D. Upper bound and lower bound for matrix operators on weighted sequence spaces, Doctoral Dissertation, (Zahedan, 2007).
- 7. Hardy, G. H., Littelwood, J. E. and Polya, G. Inequalities, 2nd ed., Cambridge University press, Cambridge, 1967.
- 8. Lashkaripour, R. and Talebi, G. Lower bound of Copson type for the transpose of matrices on weighted sequence spaces, preprint.