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Abstract 

Let G  be a locally compact non‐abelian group and H  be a compact subgroup 

of G  also let µ  be a G ‐invariant measure on the homogeneous space /G H . In 

this article, we extend the linear operator ( ) ( ):  /H c cT G G H→C C  as a bounded 

surjective linear operator for all pL ‐spaces with 1p ≥ . As an application of this 

extension, we show that each frame for ( )2L G  determines a frame for 

( )2 / ,L G H µ  and each frame for ( )2 / ,L G H µ  arises from a frame in ( )2L G  via 

the linear operator HT . 
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Introduction 

Essentially a homogeneous space X  of a locally 

compact group G  is a transitive G ‐space X . Due to 

Proposition 2.44 of [7], if G  is σ ‐compact then each 

transitive G ‐space can be considered as a quotient 

space /G H  for some closed subgroup H  of G . 

Although /G H  is not a group whenever H  is not 

normal, but the classical harmonic analysis on G  

carries over on homogeneous spaces. Theory of 

classical harmonic analysis on coset space /G H  was 

studied by several authors [7,14]. Many homogeneous 

spaces in mathematical physics such as the n

‐dimensional unit sphere, can be considered as a 

homogeneous space of the form /G H , where H  is a 

compact subgroup of G . 

Approximation theory in the function spaces of 

homogeneous spaces such as the Hilbert space 

( )2 / ,L G H µ  plays an important role in physics and 

also engineering. A useful functional analysis approach 

of the approximation theory is frame theory. In [6] 

Duffin and Schaeffer studied theory of frames for 

abstract Hilbert spaces. Frame theory can be considered 

as an advanced tool in wavelet theory, image and signal 

processing and approximation theory. For more on these 

applications we refer the readers to [2-4,9]. It is 

worthwhile to mentioned that the main technique of 

frame theory is to present any elements of the Hilbert 



Vol. 22  No. 4  Autumn 2011 Ghaani Farashahi and Kamyabi-Gol J. Sci. I. R. Iran 

356 

space as a infinite linear combination of the frame 

elements. Theory of multiresolution analysis (MRA) for 

abstract Hilbert spaces has many connections with the 

frame theory of Hilbert spaces. Theory of multireslution 

analysis for ( )2L G  where G  is a non‐abelian, type I 

and unimodular group was studied in [15], also in the 

special case of LCA groups see [10]. 

In this article, as a main result we show that the 

linear operator ( ) ( ):  /
H c c

T G G H→C C  can be 

extended to a bounded surjective operator for all p
L -

spaces with 1p ≥ . It is also shown that, in this case if 

µ  is a G ‐invariant measure on /G H  the linear 

operator ( ) ( )2 2: / ,
H

T L G L G H µ→  is a partially 

isometric operator. As an application, we will show that 

via the linear operator 
HT  each frame for ( )2L G  

determines a frame for ( )2 / ,L G H µ  and conversely 

each frame for ( )2 / ,L G H µ  arises from a frame in 

( )2L G  via the linear operator 
HT  also as an another 

application of this extension, we find an interesting 

relation about the admissibility conditions associated to 

the voice transforms related to the left regular 

representation of G  on ( )2L G  and the left regular 

representation of G  on ( )2 / ,L G H µ . 

Let X  be a locally compact Hausdorff space, 

( )c
XC  be the space of all continuous complex valued 

functions on X  with compact supports and also when 

µ  is a positive Radon measure on X , for each 

1 p≤ < ∞  the Banach space of all equivalence classes 

of µ ‐measurable complex valued functions 

:f X → C  such that 

: | ( ) | ,p p

p

X

f f x dx ∞<= ∫� �  

is denoted by ( ),pL X µ  which contains .
p

� � ‐dense 

subspace ( )c
XC . 

Let G  be a locally compact group with identity e  

and left Haar measure dx , H  a closed subgroup of G  

with the left Haar measure dh  and also let ∆G
 and ∆H

 

be the modular functions of G  and H  respectively. 

For 1p ≥  the notation ( )pL G  stands for ( ),pL G dx . 

For x G∈  and also a function :f G → C , the left 

translation xL f  of f  by x  is defined by 

( ) ( )1

x
L f y f x y

−=  and also the right translation 
xR f  

of f  by x  is defined via ( ) ( )x
R f y f xy=  for 

y G∈ . Also, the left coset space /  G H  is considered 

as a homogeneous space that G  acts on it from the left 

and : /q G G H→  is the surjective canonical mapping. 

More precisely we consider /G H  as the left coset 

space of the closed subgroup G . Proposition 2.48 of [7] 

implies that ( )/
c

G HC  consists of all functions ( )H
T f , 

where ( )c
f G∈C  and 

( )( ) ( )
H

H

T f xH f xh dh= ∫  (1) 

Let µ  be a Radon measure on /G H  and x G∈ . 

The translation 
xµ  of µ  is defined by ( )x

Eµ

( )xEµ= , for all Borel subsets E  of /G H . The 

measure µ  is called G ‐invariant if 
xµ µ= , for all 

x G∈ . It is well known that, the homogeneous space 

/G H  admits a G ‐invariant measure µ  if and only if 

∆ | ∆G H H= , which satisfies the following generalized 

Mackey‐Bruhat formula, 

( )( ) ( ) ( )
/

. 
H

G H G

T f xH d xH f x dxµ =∫ ∫  (2) 

The formula (2) is also known as the Weil’s formula 

(see [7]). If µ  is a G ‐invariant measure on /G H , 

then the surjective linear erator ( ):  
H c

T G →C

( )/
c

G HC  is bounded in 1
L ‐norms that is for all 

( )c
f G∈C  we have ( ) 1 1

.
H

T f f≤� � � �  Due to the 

boundedness, it can be extended to a bounded surjective 

linear operator from ( )1L G  onto ( )1 / ,L G H µ . 

Results 

Throughout this article, we assume that H  is a 

compact subgroup of a non‐abelian locally compact 

group G  with a normalized Haar measure dh . First we 

find a generalized notation of the linear operator 
HT  for 

other p
L ‐function spaces, with 1p > . It should be 

mentioned that when H  is a compact subgroup of a 

locally compact group G , automatically we have 

∆ | ∆ 1G H H= =  and therefore, existence of a G

‐invariant measure on /G H  is guaranteed. 

 

Proposition 2.1. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . The linear operator 
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( ) ( ): /
H c c

T G G H→C C  has an extension to a 

bounded linear operator from ( )pL G  onto 

( )/ ,pL G H µ , for each 1p ≥ . 

 

Proof. We show that each ( )c
f G∈C  we have 

( )H p p
T f f≤� � � � . Using compactness of H  and also 

the Weil’s formula (2) we get 

( ) ( )( ) ( )
/

 | |p p

H p H

G H

T f T f xH d xHµ= ∫� �  

                    

( ) ( )
/

p

G H H

f xh dh d xHµ= ∫ ∫  

                    

( ) ( )
/

p

G H H

f xh dh d xHµ
 

≤  
 

∫ ∫  

                    

( ) ( )
/

| |p

G H H

f xh dh d xHµ
 

≤  
 

∫ ∫  

                    

( ) ( )
/

| |
p

G H H

f xh dh d xHµ
 

=  
 

∫ ∫  

                    

( )( ) ( )

( )

/

| |

| | .

p

H

G H

p p

p

G

T f xH d xH

f x dx f

µ=

= =

∫

∫ � �

 

Now since HT  is bounded in p
L ‐norms and also it 

maps ( )c
GC  onto ( )/

c
G HC , we can extend 

HT  into 

a bounded linear operator from ( )pL G  onto 

( )/ ,pL G H µ . □ 

 

Remark 2.2. Throughout this article, we still denote the 

extended linear operator in Proposition 3.1 by  HT . 

From now on, for all 1p ≥  by 

( ) ( ): / ,p p

H
T L G L G H µ→  we mean the mentioned 

extension of the bounded linear operator 

( ) ( ):  /
H c c

T G G H→C C  according to Proposition 2.1. 

Thus, for all 1p ≥  we can fix the notation ( ),p G HJ  

as follows 

( ) ( ) ( ){ }, : : 0p p

H
G H f L G T f= ∈ =J  (3) 

which is a closed subspace of ( )pL G . When 2p = , 

2
( , )G H

⊥
J  stands for the standard orthogonal 

completion of ( )2 ,G HJ  in ( )2L G . Since the linear 

operator  HT  commutes with the left action of G  we 

deduce that ( ),p G HJ  and also ( , )
p

G H
⊥

J  are 

invariant under left translation by elements of G . 

In the next theorem we illustrate a worthwhile 

property of the linear operator 
HT  when 2p = . We 

recall that, when H  and K  are Hilbert spaces, a 

bounded linear operator :T →H K  is called a partially 

isometric operator if and only if Tx x=� � � �K H
 for all 

ker( )x T
⊥∈ . 

 

Theorem 2.3. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . The adjoint operator 
* 2 2

: ( / , ) ( )
H

T L G H L Gµ →  of the bounded linear 

operator ( ) ( )2 2: / ,
H

T L G L G H µ→  is given via 

*
( ) :

q

H
Tψ ψ ψ=� , where 

( ) ( )( ) : ,q x q x xHψ ψ ψ= =�  

for all x G∈  and also 
HT  is a partially isometric 

operator. 

 

Proof. Let µ  be a G ‐invariant measure on /G H  and 

( )/ ,pL G Hψ µ∈  also let :
q

qψ ψ= � . Then, qψ  

belongs to ( )2L G . Because, due to the Weil’s formula 

and also compactness of H  we have 

2

2 | ( ) |q q

G

x dxψ ψ= ∫� �  

          

2| | ( )q

G

x dxψ= ∫  

          

( )( ) ( )2

/

| |q

H

G H

T xH d xHψ µ= ∫  

          

( ) ( )2

/

| |q

G H H

xh d xHψ µ= ∫ ∫  

          

( ) ( )2

/

| |q

G H H

xh d xHψ µ= ∫ ∫  

          

( ) ( )2

/

| |
G H H

q xh d xHψ µ= ∫ ∫ �  
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( ) ( )2

/

| |
G H H

xhH d xHψ µ= ∫ ∫  

          

( ) ( )2

/

| |
G H H

xH d xHψ µ= ∫ ∫  

          

( ) ( )2

2

/

| | .
G H H

xH dh d xHψ µ ψ
 

= = 
 

∫ ∫ � �  

Now again using the Weil’s formula, for each 

( )c
f G∈C  we have 

( ) ( ) ( ) ( )22

*

/ ,
, ,

H H L G HL G
T f T f

µ
ψ ψ=  

                      ( ) ( )( ) ( )
/

H

G H

xH T f xH d xHψ µ= ∫  

                      ( ) ( )( ) ( )
/

H

G H

xH T f xH d xHψ µ= ∫  

                      ( ) ( )( ) ( )
/

q

H

G H

x T f xH d xHψ µ= ∫  

                      ( )( ) ( )
/

.q

H

G H

T f xH d xHψ µ= ∫  

                      ( ) ( ) ( )2, .q q

L G

G

x f x dx fψ ψ= =∫  

Thus, by continuity we achieve ( ) ( )2

* ,
H L G

T fψ

( )2,q

L G
fψ=  for all ( )2f L Gε . Hence, that ( )* q

H
T ψ ψ= . 

A straightforward calculation implies ( )*

H H
T T ψ ψ=  

for all ( )2 / ,L G Hψ µ∈ , which guarantees that 

*

H H H H
T T T T= . By Theorem 2.3.3 of [12], 

HT  is a 

partial isometric operator. □ 

As an immediate consequence of Theorem 2.3 we 

have the following corollary. 

 

Corollary 2.4. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . The following statements 

hold. 

(1) ( ){ }2( , ) : / , .p qG H L G Hψ ψ µ⊥ = ∈J  

(2) For all 2
( , )f G H

⊥∈J  and also each h H∈  we 

have 
hR f f= . 

(3) For all ( )2 / ,L G Hψ µ∈  we have 
2 2

qψ ψ=� � � � . 

(4) For all 2
, ( , )f g G H

⊥∈J  we have ( ) ,
H

T f

( ) ( ) ( )2 2/ ,
,

H L G H L G
T g f g

µ
= . 

 

We can also identify the structure of orthogonal 

projections onto ( )2 ,G HJ  and 2
( , )G H

⊥
J  as 

follows. 

 

Corollary 2.5. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H  also let 
( )2 ,G H

P
J

 and 

2 ( , )G H
P ⊥J

 be the orthogonal projections onto the closed 

subspaces ( )2 ,G HJ  and 2
( , )G H

⊥
J , respectively. 

Then, for all ( )2f L G∈  and also for a.e. x G∈  we 

have 

( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

2

( , )

,

,

. 

HG H

HG H

P f x T f xH

P f x f x T f xH

⊥ =

= −

J

J

 (4) 

 

Proof. Let ( )2 f L G∈ . Obviously we have 

( ) ( )
q q

H Hf T f f T f= + − . Due to Corollary 3.4 we 

have ( ) 2 ( , )
q

HT f G H
⊥∈J  and also 

( )( ) ( )( )) (
q q

H H H H HT f T f T f T T f− = −  

( ) ( ) 0.
H H

T f T f= − =  

Now, since decomposition of each ( )2f L G∈  as a 

sum of two elements in ( )2 ,  G HJ  and 2
 ( , )G H

⊥
J  is 

unique, we get ( ) ( )2 ( , )

q

HG H
P f T f⊥ =
J

 and 

( ) ( )2 ,G H
P f
J

( )
q

Hf T f= − . □ 

 

Remark 2.6. Let �
H

T  be the restriction of the linear 

operator 
HT  to the closed subspace 2

( , )G H
⊥

J . Then, 

� ( )2 2: ( , ) / ,HT G H L G H µ⊥ →J  is a bijective bounded 

linear operator and so there exists a bounded operator 

( ) ( )† 2 2: / ,
H

T L G H L Gµ →  such that ( )†

H H
T T ψ ψ= , 

for all ( )2 / ,L G Hψ µ∈  and also ( )†

H H
T T f f=  for all 

2
 ( , )f G H

⊥∈J . 

In the sequel as an application, we will find a 

characterization for frames associate to the Hilbert 

space ( )2 / ,L G H µ , where H  is a compact subgroup 

of a locally compact group G  and µ  is a G ‐invariant 
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measure on /G H . We recall that a sequence { }n
f  in a 

Hilbert space H  is called a Bessel sequence with Bessel 

bound B  for H , if for each f ∈H  we have 

2 2

,
.

n

n

f f Bf≤∑ H H  (5) 

A Bessel sequence { }n
f  with the Bessel bound B  is 

called a frame with frame pair bound ( ),A B  for H , if 

each f ∈H  satisfies 

22 2

,
.

n

n

Af f f Bf≤ ≤∑H H H  (6) 

Using Corollary 5.3.2 of [5] we can deduce that, 

each frame for ( )2L G  determines a frame for 

( )2 / ,L G H µ  via the linear operator HT . 

 

Theorem 2.7. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H  also let { }n
f  be a frame 

for ( )2L G  with frame pair bound ( ),A B . Then, 

( ){ }:n H nT fψ =  is a frame for ( )2 / ,L G H µ  with 

frame pair bound ( ),A B . 

 

Proof. Due to Remark 2.6 and also Theorem 3.3 we 

have †
1H HT T= = . Now Corollary 5.3.2 of [5] implies 

that ( ){ }H nT f  is a frame for ( )2 / ,L G H µ  with frame 

bounds ( , )A B . □ 

Next theorem can be considered as a converse of 

Theorem 2.7. But first we show that each Bessel 

sequence for ( )2 / ,L G H µ  arises from a Bessel 

sequence in ( )2  L G  via Theorem 2.7. 

 

Proposition 2.8. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . Every Bessel sequence 

for ( )2 / ,L G H µ  arises from a Bessel sequence in 

( )2  L G  via Theorem 2.7. 

 

Proof. Let { }n
ψ  be a Bessel sequence for ( )2 / ,L G H µ  

with Bessel bound B . For each n  let 

( )* .: q

n H n n
f T ψ ψ==  

Then, for each n  we have ( )H n n
T f ψ=  and also 

2
( , )nf G H

⊥∈J . Now, we show that { }n
f  is a Bessel 

sequence for ( )2L G  with Bessel bound B . Indeed, if 

( )2f L G∈  is given, then 

( ) ( )2 2

2 2

, ,q

n nL G L G
n n

f f fψ=∑ ∑  

                     ( )
( )2

2
* ,H n L G

n

T fψ=∑  

                     
( )2

2

/ ,
, ( )

n H L G H
n

T f
µ

ψ=∑  

                     ( ) ( ) ( )2 2

2 2

/ ,
.H L G H L G

BT f Bf
µ

≤ ≤  □ 

In the next theorem we prove that each frame for 

( )2 / ,L G H µ  arises from a frame for 2
( , )G H

⊥
J . 

 

Theorem 2.9. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . Every frame for 

( )2 / ,L G H µ  arises from a frame for 2
( , )G H

⊥
J  via 

Theorem 2.7. 

 

Proof. Let { }n
ψ  be a frame for ( )2 / ,L G H µ  with 

frame bound pair ( , )A B . Proposition 2.8 guarantee that 

{ }q

n
ψ  is a Bessel sequence for ( )2L G  with Bessel 

bound B  and so that it is a Bessel sequence for 
2
( , )G H

⊥
J . Now we show that { }q

n
ψ  admits a lower 

frame bound and so that it is a frame for 2
( , )G H

⊥
J . 

Using Corollary 2.4 for all ( )2f L G∈  we have 

( ) ( ) ( )( )
( )

22 2
2

2
2

( , ) ( , ) / ,
HL GG H G H L G H

AP f AT P f
µ

⊥ ⊥=
J J

 

      
( ) ( )2

2

/ ,H L G H
AT f

µ
=  

      
( ) ( )2

2

/ ,
,

n H L G H
n

T f
µ

ψ≤∑  

      
( )2

2
* ( ),

H n L G
n

T fψ=∑  

      
( ) ( )2 2 2

2 2

( , )
, , ( ) .q q

n nL G G H L G
n n

f P fψ ψ ⊥= =∑ ∑ J
 □ 

In the following corollary, we show that if { }n
ψ  is a 

frame for ( )2 / ,L G H µ , then { }q

n
ψ  is a frame for the 

Hilbert space ( )2L G  if and only if H  is the identity 
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group. 

Corollary 2.10. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . If { }n
ψ  is a frame for 

( )2 / ,L G H µ , then { }q

n
ψ  is a frame for the Hilbert 

space ( )2L G  if and only if H  is the identity group. 

 

Proof. If H  be the identity group, it is clear that the 

result holds. Now, let { }n
ψ  be a frame for 

( )2 / ,L G H µ  with frame bounds 0 A B< ≤ < ∞  such 

that { }q

n
ψ  be also a frame for ( )2L G  with frame 

bounds ( , )C D . Then, for each ( )2f L G∈  we have 

( ) ( ) ( ) ( )2 2 2 2

2
2

, ,
( ) , ( ) 0q

nG H L G G H L G
n

CP f P fψ≤ =∑J J
 

which implies that ( )2 , {0}G H =J  and equivalently 

H  is the identity group. □ 

In spite of Corollary 2.10, we can still find a frame 

for ( )2L G  in which { }n
ψ  arises from it via Theorem 

2.7. 

 

Corollary 2.11. Let H  be a compact subgroup of a 

locally compact group G  and also let µ  be a G

‐invariant measure on /G H . Every frame for 

( )2 / ,L G H µ  arises from a frame for ( )2L G  via 

Theorem 2.7. 

 

Proof. Let { }n
ψ  be a frame for ( )2 / ,L G H µ . Using 

Theorem 2.9, the sequence { }q

n
ψ  is a frame for 

2
( , )G H

⊥
J . Now let { }n

g  be an arbitrary frame for 

( )2 ,G HJ , for instance it can be an ONB for 

( )2 ,G HJ . According to Theorem 3.2 of [13], 

sequence { } { }q

n n
g ψ∪  is a frame for ( )2L G  with 

{ } { }( ) { }q

H n n n
T g ψ ψ=∪ . □ 

We can also use the preceeding results to justify 

admissibility condition for the left regular representation 

of G  on the Hilbert space ( )2 / ,L G H µ . A continuous 

unitary representation ( ), ππ H  of a locally compact 

group G  is a homomorphism π  from G  into the 

group ( )πU H , the group of all unitary operators on the 

Hilbert space πH , which is continuous with respect to 

the strong (or weak) operator topology (see [7]). Let 

( ), ππ H  be a continuous unitary representation of G  

and πζ ∈H . The voice transform of πξ ∈H  generated 

by the representation π  and also the parameter ζ  is the 

complex valued function defined on G  via 

( ) ( ), .x V x x
πζ ξ ξ π ζ→ =
H

 

The voice transform ( ):
b

V Gζ π →H C  is a bounded 

linear operator. But in general setting the voice 

transform is not square integrable. The continuous 

unitary representation ( ), ππ H  is called square 

integrable if for some non‐zero vector πζ ∈H  we have 

( )2V L Gζ ζ ∈  and in this case the vector ζ  is called 

admissible (see [15]). It is worthwhile to remember that 

many standard transformations in signal possessing can 

be deduced by the voice transform, for instance the 

affine wavelet transform or the Gabor transform are in 

fact special voice transforms [8, 14]. It should be noted 

that the term "Voice transform" in many references 

replaced by the "Continuous wavelet transform 

(CWT)"(see [1]). 

We recall that the left regular representation 

( )( )2:
G

G L G→ U�  of a locally compact group G  is 

defined by 

( ) ( ) [ ]( ) ( )1 .
G x

x f y L f y f x y−= =  �  (7) 

for all ( )2f L G∈ . Also a function (vector) ( )2f L G∈  

is called G� ‐admissible if and only if the function 

2 ( )
,

x L G
x L f f�  belongs to ( )2L G . If H  is a closed 

subgroup of G  and also µ  is a G ‐invariant measure 

on /G H , the left regular representation of G  on the 

Hilbert space ( )2 / ,L G H µ  via 
/ :G H G →�

( )( )2 / ,L G H µU  is defined by 

( ) ( ) [ ]( ) ( )1

/ .
G H x

x yH L yH x yHψ ψ ψ −= =  �  (8) 

for all ( )2 / ,L G Hψ µ∈ . A function (vector) 

( )2 / ,L G Hϕ µ∈  is called /G H� ‐admissible if and only 

if the function given by 2 ( / , )
,

x L G H
x L

µ
ϕ ϕ�  belongs to 

( )2L G  (see [11]). 

In the following theorem we show that for 
2
( , )f G H

⊥∈J , G� ‐admissibility of f  is equivalent 

to the /G H� ‐admissibility of ( )H
T f . 
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Theorem 2.12. Let H  be a compact subgroup of a 

locally compact group G , µ  be a G ‐invariant 

measure on /G H  and 2
( , )f G H

⊥∈J .Then, ( )H
T f  

is 
/G H� ‐admissible if and only if f  is 

G� ‐admissible. 

 

Proof. Let 2
( , )f G H

⊥∈J . Since 2
( , )G H

⊥
J  is a left 

invariant subspace of ( )2L G  we get 
xL f ∈

2
( , )G H

⊥
J  for all x G∈ . Using Corollary 2.4 and the 

fact that left translations commute 
HT , we have 

( ) ( )2 2

2 2

/ ,
, ( ), ( )

x H x HL G L G H

G G

L f f dx T L f T f dx
µ

=∫ ∫  

                            ( ) ( )2

2

/ ,
, ( ) ,

x H H L G H

G

L T f T f dx
µ

= ∫  

which implies that ( )H
T f  is 

/G H� ‐admissible if and 

only if f  is 
G� ‐admissible. □ 

 

Corollary 2.13. Let H  be compact subgroup of a 

locally compact unimodular group G  and also let µ  

be a G ‐invariant measure on /G H . Then, every 

( ) ( )1 1/ , / ,L G H L G Hϕ µ µ∈ ∩  is 
/G H� ‐admissible. 

 

Proof. Using unimodularity of G  and due to Theorem 

10.2 of [15], each f  in ( ) ( )1 2L G L G∩  is G�

‐admissible and so that each function in 

( )1 2 ( , )L G G H ⊥∩J  is a 
G� ‐admissible vector. Now, if 

( ) ( )1 1/ , / ,L G H L G Hϕ µ µ∈ ∩  is arbitrary. Invoking 

Corollary 2.4, we achieve that ( )1q L Gϕ ∈ ∩

2
( , )G H

⊥
J . Then, Theorem 2.12 implies that 

( )q

H
Tϕ ϕ=  is a 

/G H� ‐admissible vector. □ 

As an immediate consequence we have the following 

corollary for compact groups. 
 

Corollary 2.14. Let H  be compact subgroup of a 

compact group G  and also let µ  be a G ‐invariant 

measure on /G H . Then, every ( )1 / ,L G Hϕ µ∈ ∩

( )1 / ,L G H µ  is 
/G H� ‐admissible. 

Acknowledgements 

The authors would like to thank the referees for their 

valuable comments and remarks. We also would like to 

thank Prof. Feichtinger for stimulating discussions and 

pointing out various references to us. 

References 

1. Arefijamal, A. and Kamyabi-Gol, R. A Characterization of 

Square Integrable Representations Associated with CWT. 

J. Sci. Islam. Repub. Iran. 18(2): 159-166 (2007). 

2. Benedetto, J. and Powell, A. and Yilmaz, O. Sigm-Delta 

quantization and finite frames. IEEE Trans. Inform. 

Theory 52: 1990-2005 (2006). 

3. Bolcskel, H. and Hlawatsch, F. and Feichtinger, H. G. 

Frame-theoretic analysis of oversampled filter banks. 

IEEE Trans. Signal Process. 46: 3256-3268 (1998). 

4. Candas, E.J. and Donoho, D.L. New tight frames of 

curvelets and optimal representations of objects with 

piecewise C2‐singularities. Comm. Pure. Appl. Math. 56: 

216‐266 (2004). 

5. Christensen, Ole. Frames and Bases. An Introductory 

Course, Birkhäuser (2008). 

6. Duffin, R.J. and Shaeffer, A.C. A class of non-harmonic 

Fourier series. Trans. Amer. Math. Soc. 72: 341-366 

(1952). 

7. Folland, G.B. A Course in Abstract Harmonic Analysis, 

CRC press, (1995). 

8. Fuhr, H. Abstract Harmonic Analysis of Continuous 

Wavelet Transforms (Lecture Notes in Mathematics), 

Springer (2005). 

9. Heath, R. W. and Paulraj, A.J. Linear dispersion codes for 

MIMO systems based on frame theory. IEEE Trans. 

Signal Process. 50: 2429-2441 (2002). 

10. Kamyabi-Gol, R. A. and Raisi Tousi, R. Some equivalent 

multiresolution conditions on locally compact abelian 

groups, Proc. Indian Acad. Sci. Math. Sci. 120(3): 317-

331 (2010). 

11. Kamyabi-Gol, R. and Tavallaei, N. Wavelet transforms 

via generalized quasi-regular representations. Appl. 

Comput. Harmon. Anal. 26: 291–300 (2009). 

12. Murphy, G.J. C*-Algebras and Operator theory. Academic 

Press, INC, (1990). 

13. Pati, Y. C. Frames generated by subspace addition. 

Technical research report, (2006). 

14. Reiter, H. and Stegeman, J. D. Classical Harmonic 

Analysis. 2nd Ed, Oxford University Press, New York, 

(2000). 

15. Wong, M. W. Wavelet Transforms and Localization 

Operators. Operator Theory Advances and Applications, 

(2002). 

16. Yang, Q. Multiresolution analysis on non-abelian locally 

compact groups. PhD Thesis, (1999). 


