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Abstract 

We consider the queueing maximal covering location-allocation problem (QM-
CLAP) with an M/M/1 queueing system. We propose a new solution procedure 
based on decomposition of the problem into smaller sub-problems. We solve the 
resulting sub-problems both with a branch and bound algorithm and with the 
meta-heuristic GRASP. We also solve the entire model with GRASP. 
Computational results for these approaches are compared with the solutions 
obtained by CPLEX. Results show that using the new procedure in which sub-
problems were solved with Branch and bound is better. 
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Introduction 
The maximal covering location problem (MCLP) has 

been modeled as a binary integer program by Church 
and ReVelle [8]. This problem seeks to maximize the 
coverage of demand points with a given number of 
facilities. Some extensions and variants of this problem, 
including deterministic and probabilistic models, as well 
as its application in emergency facility location, are 
discussed in many review papers including those of 
ReVelle [33]; Schilling et al. [36], Marianov and 
ReVelle [23], Brotcorne et al. [7], Marianov and Serra 
[26]; and Goldberg [18]. ReVelle et al [34] presented a 
bibliography for some discrete location problems, 
including maximal covering location problem. 

The problem we are concerned with here, is what 
sometimes has been termed as location in congested 
systems. The setting for these problems is usually a 

queueing system representing a stochastic demand. 
The first location model in congested system and 

with stochastic demand is the stochastic queue median 
(SQM) model with an M/G/1 queueing system 
introduced by Berman et al [6]. Since then others have 
also tried to expand on this notion. Marianov and 
ReVelle [22] consider the queueing probabilistic 
location set covering problem with M/G/s/s queueing 
system. Later [23], they used an M/G/s/s queueing 
system for siting emergency facilities. 

Marianov and Serra [24] consider probabilistic 
maximal covering models with constraints on waiting 
time, and for queue length.  Wang et al [38] model the 
problem of locating automated teller machines (ATM's) 
as an M/M/1 queueing system with the assumption that 
customers travel to the closest open facility, and with 
constraints placed on maximum waiting times at 
facilities. An extension for this problem with M/M/k 
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queueing system is considered by Berman and Drezner 
[4]. Marianov and Serra [25] present a set covering 
formulation of the problem and extend the models to 
cover all population. They assume an M/M/m queueing 
system at each facility, and reduce the model to a linear 
programming problem. Marianov [21] considers 
location of multiple servers in an M/M/m queueing 
system. Silva and Serra [37] considered MCLP with 
M/M/1 queueing system and different priority levels. 
They formulate the problem and propose a heuristic 
procedure to solve this problem. 

A review of the models with stochastic demands and 
congestion at facilities is given by Berman and Krass 
[5]. A computational comparison for five maximal 
covering models, namely, the MCLP, the maximal 
expected covering location problem (MEXCLP), MCLP 
plus probabilistic response time (PR), MEXCLP plus 
PR, and MEXCLP plus PR and station specific busy 
time is presented in Erkut et al. [12]. 

Moeen Moghadas and Taghizadeh Kakhki [29] 
consider the maximal covering location-allocation 
problem with an M/M/k queueing system. In this model, 
k is unknown and additional constraints on the number 
of servers at each center as well as constraints on the 
total costs of establishing a center and locating servers 
are imposed. They [30] also consider the queueing 
maximal covering problem with an M/G/1 queueing 
system. In this problem a single mobile server resides at 
each center, and demands for service occur in time as a 
Poisson process. If the server is available, it is 
immediately dispatched to the demand point. After 
providing the service, the server returns to its base. If 
the server is busy, the customer waits in a queue with an 
M/G/1 system. 

In this paper we consider the queueing maximal 
covering location-allocation problem discussed in [24]. 
The objective is to choose the location of at most p 
service centers and allocate demand points to those 
centers so that the population covered is maximized. 
The servers are fixed and the customers must travel to 
centers to receive the service. If the server is busy, the 
customer enters a queue with an M/M/1 system. In 
addition, since one of the indicators of the service 
quality is considered to be the average waiting time in 
queue at service centers, therefore in this model demand 
points are assigned to centers so that the average 
waiting time in each center does not exceed a 
predetermined amount. Application of this model can be 
found in, for example, finding appropriate locations for 
health centers, such as hospitals, and emergency 
medical units, as well as determining the locations of 
banks, police stations, and post offices. 

In what follows we first discuss a mathematical 

formulation of the problem; then in section two we 
propose a new solution procedure which is based on 
relaxation and decomposition of the problem into 
smaller sub-problems. In sections three and four we use 
the meta-heuristic GRASP to solve these sub-problems 
and the entire problem. Finally, computational results 
are presented in section five. 

1- Model Formulation 

The model presented by Marianov and Serra [24], 
the queueing maximal covering location-allocation 
model (QM-CLAP), with the average waiting time at a 
center constrained to be less than a given time, is as 
follows: 

)   
i

i ij
i I j N

P Max a x
∈ ∈
∑∑  

.                     ,ij js t x y i I j J≤ ∀ ∈ ∈  (1) 

                 1       
i

ij
j N

x i I
∈

≤ ∀ ∈∑  (2) 

                 j
j J

y p
∈

≤∑  (3) 

                               j jW j Jτ≤ ∀ ∈  (4) 

{ }                , 0,1      ,ij jx y i I j J∈ ∀ ∈ ∈  (5) 

where, 
I : The set of all existing demand points (incident 

locations) ( I m= ) 
J : The set of all possible locations of new facilities 

(centers) ( J n= ) 

iN : The set of demand points in a pre-specified 
neighborhood of  i ; i.e., { : ( , ) }iN j J d i j R= ∈ ≤ , 
where R  is the covering radius, and ( , )d i j  is the 
distance between node i  and candidate center j  

jy : is 1 if a new facility is located at site  j J∈ ; 
and 0, otherwise 

ijx : is 1 if a call from point i  is answered by facility 
(center)  j ; and 0, otherwise 

ia : Population at demand point i  
p : The maximum number of new facilities (centers) 

( )p n<  

jW : Average waiting time at facility (center) j  

jτ : Maximum allowable waiting time at center  j . 
The objective maximizes the population covered. 

Constraints (1) ensure that a point is being served only 
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by an established facility at  j . Constraints (2) 
guarantee that each point i  is to be allocated to at most 
one service center  j ; Constraint (3) establishes at most 
 p  new facilities, and (4) ensure that the average 
waiting time at each center j  does not exceed a 
predetermined amount   jτ  . 

The above model is in fact a modification of the well 
known p-median problem, with constraint set (4) added, 
and with the objective being maximization of 
population covered. 

To state the problem properly, however, we need an 
explicit form expressing the average waiting time, jW , 
in terms of the variables ijx  and   jy .  This in turn, is 
system dependent. 

If we assume that the arriving calls from a demand 
point i  have a Poisson distribution with intensity   if , 
then the arrival rate at each center  j ,   jλ , can be 

calculated by 
: i

j i ij
i I j N

f xλ
∈ ∈

= ∑  (see e.g.  Marianov and 

Serra [24]). '  : 'ii I j N∈ ∈  presents the set of all 
demand points i  which are in a given neighborhood of 
candidate facility  j . 

If the stability condition ( )jλ µ<  holds; then the 

waiting time is equal to  
( )

j
j

j

W
λ

µ µ λ
=

−
 and the 

constraints (4) can be replaced by; 
2

 : 1
i

j
i ij

i I j N j

f x
µ τ
µτ∈ ∈

≤
+∑  (4′) 

where μ is the service rate. We also assume an infinite 
capacity queue and a FIFO discipline. μ and   jτ  are 
fixed  and  are assumed to be equal  for all candidate 
centers. 

Therefore the model with M/M/1 queueing system is 
as follows: 

 

)      
i

i ij
i I j N

P Max a x
∈ ∈
∑∑  

( ) ( ) ( )'                           .       1 3 ,  4    (5)s t and−  

This problem is known to be NP-complete 
(Marianov and Serra [24]) and can only be solved using 
software packages such as CPLEX, for small problems. 
Other solution methods and heuristics such as greedy, 
lagrangian relaxation, column generation and heuristic 
concentration have also been used to solve simpler 
version of this problem; i.e., the maximal covering 

location problem (see e.g. Resende [32], Marianov and 
Serra [26], Pereira et al [31], ReVelle et al [35]).  

A GRASP type heuristic for the priority queueing 
covering location problem (PQCLP) for an M/M/1 
system has been proposed by Silva and Serra [37]. Their 
first model with one priority in fact, corresponds to the 
problem considered here. 

Galvao and Morabito [17] considered the use of 
hypercube queueing model in the solution of 
probabilistic location problems. Correa et al [10] 
proposed a constructive genetic algorithm for the model 
presented by Marianov and Serra [24]. In another study 
Correa et al [9] considered clustering search (CS) for 
this problem. They reported results of different methods 
applied to this problem and indicated CS got better 
results than others heuristics. Correa et al [11] present 
the QM-CLAP as a covering graph and then partition 
the graph using the graph partitioning heuristic METIS 
of Karypis and Kumar (1998) which results in a block 
diagonal structure representation of the QM-CLAP. A 
Dantzig-Wolfe decomposition procedure is then 
applied. 

2- Heuristic Algorithm 

In this section we propose a new heuristic algorithm 
to solve the problem  P . The idea for our proposed 
algorithm comes from the solution methods suggested 
in the literature for the capacitated p-median problem 
(see e.g., Baldacci et al [2], Lorena and Senne [20]).  

To motivate the discussion, suppose that in an 
iterative fashion, we have determined the location of 

1k −  centers and want to determine the location of the 
thk  center ( ) k p≤  from among the candidate 

locations. Then, if we remove the demand points 
covered by the previous 1k −  centers, constraints (2) 
would be satisfied for any new facility. In addition if we 
ignore the constraints (1) and (3), and consider them 
only implicitly, then the problem can be decomposed 
into smaller knapsack sub-problems, which is then 
solved for each candidate facility  j , as follows: 

 :

  )     
i

j j i ij
i I j N

Knap F Max a x
∈ ∈

= ∑  

2

 :

.        
1

i

j
i ij

i I j N j

s t f x
µ τ
µτ∈ ∈

≤
+∑  

{ }    0,1       ,ijx i I j J∈ ∀ ∈ ∈  

where,  I  is the set of demand points not covered by 
the 1k −  previous centers. 
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Now suppose that we want to choose at most p  
centers from among n  candidate locations. We start 
with   1k = , solve 1n k− +  knapsack sub-problems to 
find the optimal solution * j ; delete all the nodes 
assigned to *j  from I ; Add *j  to * J ,  the set of 
selected facilities; Increment  k , and continue until 
k p>  , or all the nodes are covered.  This procedure is 
outlined in Fig. (1). 

 (  ,   )SolveKnap j I , solves the knapsack sub-
problem jKnap  for a candidate center  j , and if a 

demand point ( )i i I∈  is assigned to  j ; then it is 

added to *  jI . ( )* *     ,    ,      Update j J I  is the procedure for 

updating two sets *J  and  I . 
Notice that this procedure can be easily extended to 

solve the more general case of fixed charge facilities; 
i.e., when the objective is: 

 :

  
i

i ij j j
i I j N j J

Max a x c y
∈ ∈ ∈

−∑ ∑  

where  jc  is the cost of establishing a facility at site  j . 
Note also that a simple upper bound for the knapsack 

sub-problems can be easily obtained using Dantzig’s 
theorem (see Martello and Toth [28] or Kellerer et al 
[19]) which can then be used as a starting solution for a 
branch and bound procedure, as has been done here.  

Note also that when the calling rate is constant, we 
would have a special case of a knapsack problem; i.e., a 
subset sum problem (SSP), which is classified by 
Martello et al. [27] as the type of knapsack problems 
with bounded coefficients for which LP and ILP 
solutions are sufficiently close, and hence, can be solved 
“very fast”. 

In addition to the above procedure, we have tried to 
solve this problem using a GRASP type procedure. This 
procedure is also used by Silva and Serra [37] for their 
priority queueing model. There are, however, a few 
differences between our implementation and theirs, 
which will be explained in section 5. 

3- GRASP Procedure for Solving Sub-Problem Knapj 

The heuristic procedure GRASP (Greedy 
Randomized Adaptive Search Procedure) has been 
developed in late 1980’s by Feo and Resende ([13], 
[14]). It consists of a construction phase and a local 
search phase. In the construction phase, a solution is 
built using a greedy function and randomization. The 
local search phase, then finds an optimal solution in the 
neighborhood of the solution obtained in the 

construction phase. A recent bibliography of GRASP 
for both algorithms and applications is presented by 
Festa and Resende ([15], [16]). 

 

 

Figure 1. Heuristic procedure. 

 

 

Figure 2. GRASP algorithm for solving problem Knapj. 

 

 

Figure 3. Procedure for constructing the  
restricted candidate list. 

1. Set  𝑘 = 1  ,  𝐽∗ = ∅  ,  𝐼 ̅ = {1,2, … ,𝑚} 
2. While  𝑘 ≤ 𝑝  &  𝐼 ̅ ≠ ∅  do 
3.     For all 𝑗 ∉ 𝐽∗  do 
4.           [𝐹𝑗, 𝐼𝑗∗] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑗 , 𝐼 ̅) 
5.     End 
6.     𝑗∗ = 𝐴𝐴𝐴�𝑀𝑀𝑀 �𝐹𝑗 ∶ 𝑗 ∉ 𝐽∗� � 
7.     [ 𝐽∗, 𝐼 ̅] = 𝑈𝑈𝑈𝑈𝑈𝑈 ( 𝑗∗ , 𝐽∗ , 𝐼 ̅) 
8.     𝑘 = 𝑘 + 1 
9. End 

Function � 𝐼𝑗∗ , 𝐹𝑗� = 𝐺𝐺𝐺𝐺𝐺 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ( 𝐼 ̅, 𝑗 ) 
1. Set  𝑘 = 1  ,  𝑘𝑘𝑘 = 1 ,  𝐼𝑗∗ = ∅ 
2. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∅   ,  𝑊(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) = 0 
3. While  𝑘 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀   &  𝑘𝑘𝑘 == 1  do  
4.    � 𝐼𝑗∗ , 𝑘𝑘𝑘 � = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� 𝐼 ̅, 𝐼𝑗∗ � 
5.        If  𝑘𝑘𝑘 == 1  then 
6.             𝐼𝑗∗ = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( 𝐼𝑗∗ ) 
7.             If  𝑊� 𝐼𝑗∗ � > 𝑊(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  then  
8.                 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐼𝑗∗ 
9.             End 
10.        End 
11.       𝑘 = 𝑘 + 1 
12. End 
13.  𝐼𝑗∗ = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
14.  𝐹𝑗 = 𝑊(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅_𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( 𝐼 ̅, 𝐼𝑗∗ ) 
1. 𝑅𝑅𝑅_𝑆𝑆 = ∅ 

2. 𝑎∗ = 𝑀𝑀𝑀 { 𝑎𝑖 ∶ 𝑖 ∈ 𝐼\̅𝐼𝑗∗  , 𝑆1 + 𝑓𝑖 ≤
𝜇2𝜏𝑗
1+𝜇𝜏𝑗

} 

3. For all  𝑖 ∈ 𝐼\̅𝐼𝑗∗  do 

4.        If  𝑎𝑖 ≥ 𝛼 ×  𝑎∗    &   𝑆1 + 𝑓𝑖 ≤
𝜇2𝜏𝑗
1+𝜇𝜏𝑗

  then 

5.             𝑅𝑅𝑅_𝑆𝑆 = 𝑅𝑅𝑅_𝑆𝑆 ∪ {𝑖} 
6.        End 
7. End 
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Here we present a GRASP procedure to solve sub-
problem   jKnap . The outline of the algorithm is given 
in Fig. (2) as follow:  

In this procedure I , as before, is the set of demand 
points not yet assigned to a center, *  jI  is the set of 
demand points assigned to center at j  and 

( )
*

* 
j

j i
i I

W I a
∈

= ∑ . The steps of the algorithm are repeated 

for a maximum of Maxitr  iterations, and the best 
solution is stored in  BestSolution . 

For our problem in the construction phase, a 
restricted candidate list (RCL) of demand points that can 
improve the objective while maintaining the waiting 
time condition, is constructed.  If this list is not empty; 
then a candidate point is randomly selected from it, and 
key  is set equal to 1; else key  is set equal to 0 and no 
local search is performed. If 1 key =  then the local 
search is performed and the BestSolution  is updated. 
Fig. (3) shows the procedure for constructing the 
restricted candidate list. In this procedure the so called 
candidate parameter α ranges from zero to one. 0 α =  
indicates that the points are randomly selected, while 

1α =  yields the greedy selection. In addition we define 
1 S  as 

*

1  
j

i
i I

S f
∈

=∑ . 

The neighborhood structure suggested by Resende 
[32] who used GRASP to solve the maximal covering 
location problem, is the 2-exchange neighborhood. 
Here, we also use the 2-exchange construct. The 
exchange between two demand points *

ji I∈  and 
* \ js I I∈  is only possible if first of all   s ia a> , and 

second, adding s  to *
jI  and deleting i  from *

jI  would 
not violate the constraints. The procedure for local 
search is shown in Fig. (4). In this procedure 1S  is 
defined as before. 

4- GRASP Algorithm for Solving Problem P 

In addition to solving the sub-problems with 
GRASP, we have also tried to solve problem P  with 
this heuristic. The procedure is similar to that proposed 
for the maximal covering problem by Resende [32]. The 
main differences are in construction of the restricted 
candidate list, and the greedy function. The construction 
of the restricted candidate list is outlined in Fig. (5). 

For any candidate facility j  *( \ )j J J∈  we use 
GRASP to solve the sub-problem   jKnap , as indicated 
in line 3. 

We would like to point out here a few differences 
between our implementation of GRASP for this 
problem and that of Silva and Serra [37] for priority 
queues. In Silva and Serra [37] the allocation is based 
on the set   ijD , constructed for each candidate center j , 
which includes the indices of all demand points i , 
within reach (given distance) from center  j , ordered 
according to their distances from  j . Demand points are 
then, allocated to j  until the waiting time constraint is 
violated, similar to what has been done by Marianov 
and Serra [24]. We, on the other hand obtain this set by 
solving sub-problems. Another main difference is in the 
construction of the restricted candidate list (RCL). Their 
greedy function is the total costumer arrival rates, while 
ours is the objective function. Finally we use a 2-
exchange neighborhood strategy, while they employ a 
comprehensive search over all feasible solutions which 
improve the objective. 

 

 

Figure 4. Procedure for Local Search for  
the Knapj sub-problems. 

 

 

Figure 5. Procedure for constructing the restricted  
candidate list for problem P. 

Function  𝐼𝑗∗ = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ( 𝐼𝑗∗ ) 
1. 𝑘𝑘𝑘 = 1 
2. While 𝑘𝑘𝑘 == 1  do 
3.         For any  𝑖 ∈ 𝐼𝑗∗  do 
4.               For any  𝑠 ∈ 𝐼\̅𝐼𝑗∗  do 

5.                If   �𝑆1 − 𝑓𝑖 + 𝑓𝑠 ≤
𝜇2𝜏𝑗
1+𝜇𝜏𝑗

� & 𝑎𝑠 > 𝑎𝑖 then 

6.                          𝑆1 =  𝑆1 − 𝑓𝑖 + 𝑓𝑠 
7.                          𝐼𝑗∗ =  𝐼𝑗∗ ∪ {𝑠}\{𝑖} 
8.                          𝐼 ̅ = 𝐼 ̅ ∪ {𝑖}\{𝑠} 
9.                          𝑘𝑘𝑘 = 0 
10.                End 
11.             End 
12.        End 
13. End 

Function 𝑅𝑅𝑅_𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀( 𝐽∗ , 𝐼 ̅)  
1. 𝑅𝑅𝑅_𝑀𝑀 = ∅ 
2. For any  𝑗 ∈ 𝐽\𝐽∗  do 
3.        � 𝐼𝑗∗ , 𝐹𝑗 � = 𝐺𝐺𝐺𝐺𝐺_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ( 𝐼 ̅, 𝑗 ) 
4. End 
5. 𝐹𝑚𝑚𝑚 = 𝑀𝑀𝑀 { 𝐹𝑗 ∶ 𝑗 ∈ 𝐽\𝐽∗ } 
6. 𝑅𝑅𝐿𝑀𝑀 = �𝑗 ∶  𝑗 ∈ 𝐽\𝐽∗ , 𝐹𝑗 ≥ 𝛼 ×  𝐹𝑚𝑚𝑚� 
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Table 1. Computational results for test problems; Sub-problems were solved with a branch and bound algorithm 
Average CPU 
time for 100% 
pop coverage 

(seconds) 

Least number of 
servers for 
100% pop. 
coverage 

Percent of population covered Number of 
customers 
(demand 
points) 

p=20 p=15 p=10 p=5 p=3 

0.01 3 - - - - 100 20 

0.02 4 - - - - 98.53 30 

0.03 9 - - - 85.80 74.57 50 

0.10 14 - - 96.06 79.65 66.48 100 

0.21 17 - 99.13 92.44 73.40 61.60 150 

0.32 18 - 98.31 92.80 71.54 56.74 200 

1.28 37 87.18 76.78 60.07 35.16 22.11 324 

28.45 43 59.73 44.79 29.86 14.93 8.96 818 

 
Table 2. Computational results for test problems; Sub-problems were solved with GRASP 

Average CPU 
time for 100% 
pop. coverage 

(seconds) 

Least number of 
servers for 
100% pop. 
coverage 

Percent of population covered Number of 
customers 
(demand 
points) 

p=20 p=15 p=10 p=5 p=3 

0.05 3 - - - - 100 20 

0.11 4 - - - - 98.53 30 

0.30 9 - - - 85.80 74.57 50 

1.19 14 - - 96.06 79.65 66.48 100 

2.99 17 - 99.13 92.15 73.02 60.68 150 

6.23 19 - 97.54 91.76 69.70 54.70 200 

19.69 36 88.40 77.39 60.36 35.31 22.11 324 

425.53 42 60.10 45.16 30.01 14.96 8.96 818 

 
Table 3. Computational results for test problems; Problems were solved with GRASP 

Average CPU 
time for 100% 
pop. coverage 

(seconds) 

Least number of 
servers for 
100% pop. 
coverage 

Percent of population covered Number of 
customers 
(demand 
points) 

p=20 p=15 p=10 p=5 p=3 

5.48 2 - - - - - 20 

13.04 4 - - - - 98.61 30 

24.52 9 - - - 87.42 75.20 50 

93.21 14 - - 96.91 80.28 66.62 100 

208.89 16 - 99.71 94.51 74.58 60.68 150 

393.22 17 - 98.94 92.80 71.77 55.89 200 

1483.25 36 88.69 77.48 60.40 35.32 22.12 324 

24727.34 42 59.58 44.73 29.84 14.93 8.96 818 
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Table 4. Comparison of the results with CPLEX and the results with heuristic algorithms 

Percent of population covered Least number of servers for 
100% population coverage  

Using CPLEX software 
[CPU time] 

Number of 
customers 

GRASP 
for the entire problem 

[CPU time] 

Sub- problems solved  with 
GRASP 

[CPU time] 

sub- problems  solved with 
branch and bound 

[CPU time] 

100 
[5.48] 

98.10 
[0.05] 

98.10 
[0.01] 

2 
[0.02] 20 

100 
[13.04] 

100 
[0.11] 

100 
[0.02] 

4 
[0.02 ] 30 

100 
[24.52] 

100 
[0.30] 

100 
[0.03] 

9 
[0 .04] 50 

99.78 
[92.75] 

99.29 
[1.18] 

99.29 
[0.09] 

13 
[0 .66] 100 

99.41 
[206.18] 

98.24 
[2.92] 

98.62 
[0.21] 

14 
[ 29.33] 150 

98.94 
[379.26] 

97.54 
[5.82] 

98.31 
[0.28] 

15 
[ 1.08] 200 

97.94 
[1229.35] 

97.85 
[19.17] 

97.24 
[1.03] 

29 
[ 12.20] 324 

99.76 
[24653.36] 

99.37 
[417.49] 

99.08 
[26.57] 

37* 
[8836.76] 818 

*- The smallest number we were able to obtain a solution for! 

 
5- Computational Results 

We have tried to solve some test problems, both 
adapted from the literature, and randomly generated, by 
the proposed algorithms. All calculations were 
performed on a Pentium IV processor with 2.80 GHz 
and 2.50 GB of RAM. 
To test the efficiency of the algorithm, we have solved 
some test problems. The number of points in the 
samples ranged from 20 to 200. The 30 point problem is 
that of Marianov and Serra [24]; others are generated 
randomly. The 324 and 818 node problems are from 
OR-Lib (Beasely [3]) for the capacitated p-median 
problem, which are also available at http:// 
www.lac.inpe.br/~lorena/instancias.html for queueing 
maximal covering location-allocation problems, and are 
used by Correa et al ([9] and [11]), too. 

In these examples the distances are considered to be 
Euclidean, and the number of candidate locations, n , 
was taken to be equal to the number of points,  m . We 
assume that each demand point is also a potential server 
location.  if , jτ  and μ are the same as the ones used in 
Silva and Serra [37]; namely, the daily call rate of 0.005 
times the population, an average time limit of 12.75 
minutes, the average service time of 10 minutes; The 
covering radii R  were taken to be 1.5 miles for 20-200 
point problems, 250 km for 324 point problem, and 750 

km for 818 point problem. 
In Table 1 below the results for the test problems 

solved with the branch and bound [1] algorithm with 
Dantzig's upper bounds for the sub-problems, are 
presented. In Table 2 the results when the sub-problems 
are solved with GRASP are presented. The number of 
iterations and parameter  α  were set to 50 and 0.85, 
respectively. 

Table 3 shows the results when the entire model P is 
solved with GRASP. 

In order to be able to make a reasonable comparison, 
we have solved our test problems with CPLEX, too. The 
results obtained with ILOG-CPLEX 10.2 under Unix 
system, are shown in Table 4. Average CPU times 
(seconds) are shown in brackets ([ ]). 

It is evident from these tables that as the problem 
size increases we have a wider gap between the optimal 
solution and the heuristic solution; even when the 
optimal is known, the heuristics do not produce the 
same results due to the limit imposed on the number of 
iterations. On the other hand, the solutions obtained by 
CPLEX do not exhibit a uniform behavior in terms of 
CPU time for different problem sizes, as well as for 
different number of new facilities for a given problem 
size. For example, for the 818 point problem, for 

38p =  it took 51579.4 seconds to obtain the optimal, 
for 37 p =  it took 8836.76 seconds, as indicated, while 

http://www.lac.inpe.br/~lorena/instancias.html
http://www.lac.inpe.br/~lorena/instancias.html
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for 36p =  we were not able to get a solution in 141450 
seconds! This is while we have a rather uniform 
behavior for the heuristics! 

Results and Discussion 
In this paper we considered the maximal covering 

problem in a congested system with an M/M/1 queueing 
system. A heuristic procedure based on decomposition 
of the problem into smaller knapsack sub-problems was 
proposed. In addition we solved the resulting sub-
problems both with a branch and bound algorithm and 
with GRASP. We also solved the entire model with 
GRASP. Computational results for these approaches 
were compared with the solutions obtained by CPLEX.  
The results indicate that coverage percentages are the 
same for the three variants of the solution method. 
However, as the running times, especially for the large 
scale problems, are much less for the first method, using 
branch and bound for the sub-problems should be 
preferred. 
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