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Abstract
The expressions for vibrational overlap integrals of the one-dimensional harmonic
wavefunctions (centered about different equilibrium positions and having different
frequencies) have been derived in a simple and straightforward way.

Introduction

In general, the vibrational structure of an electronic
ectrum is determined by two quantities: the dependence
‘the electronic transition moment upon the nuclear co-
dinates and the change in molecular dimensions upon
ectronic excitation. Given the change in the molecular
mensions, and the force fields for the two linking elec-
snic states, the Franck-Condon principle allows the in-
nsity distribution to be calculated.

Within the Born-Oppenheimer approximation [1], the
ansition dipole moment (which determines the intensity
 an optical transition) for a vibronic transition between
e v"th vibrational level in the lower electronic state aand
i v'th vibrational level of the upper state b is given by*
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there r and Q denote the sets of electronic and vibrational
ariables; &(r,Q) and x(Q) represent electronic and vibra-

jonal wave functions respectively, and M(r) is the electric
lipole operator. It is customary to assume that the elec-
ronic transition moment

Keywords: Franck-Condon integrals; Radiative and non-
-adiative processes

'We adopt the common spectroscopic notations, whereby we
label lower state quantities by a double prime and upper state
quantities by a single prime.
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Hab (Q) = I ®. (1, Q")fd(r)wb(r, Q)dr Q@

is a slowly varying function of the vibrational variables,
and to expand the transition moment about the equilibrium
configuration of one of the two electronic states as power
series in the vibrational variables Q' or Q"

1 (Q= 1, (0) + (d1,/dQ"). Q"+...

= 1,,(0) + (di,,/dQ). Q+... ©)]

If we retain only the first (constant) term in these

expansions: 1, (Q) =H,,(0), the transition dipole moment

is then given by

(av” Iﬁl bv§ 2 (0) (V" 1)

The approximation embodied in this equation isknown
in electronic spectroscopy as the Condon approximation
[2]. This leads to the usual Franck-Condon [3] description
of the intensity distribution within a band in terms of

square of vibrational overlap integral |(v" vy

The expression for vibrational overlap integrals of the
one-dimensional harmonic wavefunctions (centered about
different equilibrium positions and having different fre-
quencies) was first evaluated in 1930 by Hutchisson [4],
who used finite-series expansions. Manneback [5], Wagner
[6], and Ansbacher [7]in 1959 derived various formulas of
which Ansbacher’s are mostly used (see also [8] and 9Dn.
The work of Koide [10] obtains the general formula for
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FC factors, not explicitly, but in terms of a differential
operator. On the other hand, Katriel [11] givesitasa triple
summation. Palma and Morales [12] reconsidered these
derivations using the second quantization formalism.

Itisthe purpose of this paper to show thatall Ansbacher’s
formulas can be obtained completely with a simple and
straightforward derivation.

Closed Formulas for the Overlap Integral

Let us consider two displaced one-dimensional har-
monic oscillators with different frequencies ®", ©' and
respective Hamiltonians

;-(i; +@?Q™), ﬁb=;—@'2+ﬁ)'2Q'2)» ®)

where Pis the conjugate momentum to the mass-weighted
vibrational coordinate Q. These two oscillators are cen-
tered at different equilibrium positions and have different
force constants. The positions for both oscillators are
related to each other by

Q=Q"+d. ©®
The vibrational wave function is given by
2,Q = (0/n*? 2 V)2 H (aQ) exp(-02Q?12), (7)

where a= (w/h)'? and H (0Q) are Hermite polynomials.
We wish to evaluate the integral

{viv)= f %, Q)% QdQ"

=(a" /n 22" v )2 (@ /2 2¥ v x ®)

[ Hy (0" Q") Hv (¢ Q) exp(-02 Q"2 /2 - Q% 2)dQ"

Substituting equation (6) in equation (8) and making a
transformation to a new variable x= [(0(? + 0"%)/2]2 [Q" +
o%d/(a” + a"?)], we may then write equation (8) as

(v Iv)=m"N,. 1, 9)
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where
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Iyy= I Hy (02 x + &) Hy (0ux + &) exp(-xddx,  (10)

Nov=(2""v'tv1) " [28/(1+8%) " exp [-o* a7 201489

(1)
ou =V2B/(1+8H'2, & =Bard/(1+4°), (12)
02=V2 /(1+4fH)"?, &2=- P d/(1+6°), (13)

and = o'/o"

The integral in equation (10) can be evaluated by using the
generating functions for the Hermite polynomials

sz (1) o = exp (-s3+ 25121) (14)

;%%@sxéexp(-s%nszz» (15)

If these expressions are multiplied together and also mul-
tiplied by the exponential in equation (10), and use ismade
of the Gaussian integration formula

] exp[- (ax2+bx +¢)] dx = ()2 exp|(b* - 4ac)dal, (16)

we obtain

w Nw:"(i:!V'!) s:' 5;. =exp[-Ast+ 2Bsis; + A+ 21+ 538
an

where
A= (1-p)/(1+85 B=2p/(1+B>) (18)

Expanding the exponential function on the right hand
side of equation (17) and then equating the like powers of
s, and s, on both sides of the equation, we obtain the
following general expression
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1ere k goes over 0 to (v'-))/2 or (v'-I-1)/2, and m over 0
"-1)2 or (v"-1 -1)/2.

By making use of the definition of the Hermite polyno-
als

Ha(x)= go -D* m( X, @1
: can write equation (20) as
‘W)= va'(vf:) 1EBY¢) (A
Hy-1(AM287) Hy1GA™? 52) 2

nere (v', v") means the smaller of v' and v"; and (k)
presents the binomial coefficient. Equation (22) which is
uivalent to Ansbacher’s formula (7) is the general ex-
ession for the vibrational overlap integral of adisplaced-
storted system. In particuldr,

1
IV 1)=Now A2 H, A2 ) (23a)

L
'10)=Nyro @A *Hy A &) (23b)
y derive the well-known recurrence relations given by
nsbacher, we may make use of equation (17). Taking
rivatives of this equation with respect to s, and s, and
uating the like powers of s, and s, on both sides of the
sulting equation, we easily obtain

1 1
"Iv)= & @/VE M + B ¢y div-)
(24a)

1
+ A D/VE x -2

1)=& @/VF i)+ B oWy UIvil)
(24b)
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Some Limiting Cases
(i) Displaced Oscillator
For two harmonic oscillators having the same fre-
quency P=1, B= 1, A= 0, and noticing that
(le—EO o H, (xor12 )= (2x)°, equation (22) reduces to

v.v)

<V'IV>=Ney ¥ 1) @R )8 25)
=0

where for this case 8, = -5,= a"8/2. This expression can be
written in terms of the associated Laguerre polynomials

- (P a+ky

s (®)= 2
=® n§0 @m)! k+m)! m! * 26)
The result is
v = exp (- ) (w1 /v 2 (@ V2)” ™ L (o? 2 vov
(27a)
v = exp (- ) (vin) 2 (' ¥Z ) L (@2 a2, viov
(27b)
Therefore,
(01v)= V_\lTT(a" dV2)" expaida) (28a)
(28b)

(v"l0)={—1='(-a"dﬂ2- )" exp (a'2d%4)
v

(ii) Distorted Oscillator
For the case in which the displacement between the two
oscillators is zero, § = 8,= 0, and equation (22) becomes

"W=BRA/) )2 Y Ay
(v'v)=B" @A) P tv) ;< L e
Hy1 (0) Hv-1(0) 29)

Noticing that H, (0)= (-1)"2* 2n-1)!!= (-1)* (2n)!/n!,
H, ,,(0)= 0, we may write equation (29) as

(v+2q1v)=B"2(A/2)"{(v+29)v1}* ¥, 2B/A)"?
h]

D’
V2N (+g)!

(30a)
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(viv+20)=B" (A7) ((+2qv"1) 2 T @B
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In particular,

(0|2q)=i(_22:.l).'!.l.v.2.(-1)‘13‘” (A2, (31a)

(2q|o)=.‘£2_‘:.l)71ﬁ B2 (A/2)" (31b)

In summary, we have presented a general formulation
for the one-dimensional overlap integrals in a simple and
easy-to-follow method, in contrast with the previous deri-
vations which involve differential operators [10], a triple

summation expression [11], or second quantization for-
malism [12].
Franck-Condon factors are widely used in formulating

the radiative [13, 14] and the non-radiative (e.g. electron
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transfer [15] and electronic relaxation [16] processes.
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