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Abstract

Pontryagin’s principle isused to study the shape of the supersonic partof the nozzle
of a carbon dioxide gas-dynamic laser whose gain is maximal. The exact shape is
obtained for the uncoupled approximation of Anderson’s bimodal model. In this case,
if sharp comers are allowed, the ceiling of the supersonic part consists of a slant
rectangular sheet followed by a horizontal one; otherwise, a parabolic cylinder joins
the two sheets smoothly. Pontryagin’s principle reduces the optimal control problem
to a multifactor optimal problem of the types treated by S.A. Losev, V.N. Makarov,

N.M. Reddy, and V. Shanmugasundaram.

I. Introduction

We are concerned with carbon dioxide gas-dynamic
sers whose supersonic parts are axisymmetric about an
tis Ot such that the point O is at the throat, and the cross-
iction of the nozzle with the plane perpendicular to Ot at
ich point ¢ is a rectangle of constant width and varying
sight. To describe the shape of the nozzle, we choose the
rthogonal coordinate system O-tyz in which Oy and Oz
& perpendicular to the ceiling and the walls of the nozzle,
spectively. Note that our analysis is based on the steady
ate equation and thus the time is eliminated everywhere.
‘ence, the use of ¢ for a spatial coordinate should not cause
ny ambiguity and instead enables us to use the notations
£ [4, pp. 27-28] in Pontryagin’s principle. Thus, through-
ut the paper z denotes the spatial derivative dz/dt.

Throughout the paper, the gas mixture will be CO,,N,,
nd H,O. It is assumed that the nozzle has a quasi 1-
imensional steady-state flow with no change inits chemi-
al composition. Using an m-vibrational temperature model,
y each point M of the nozzle we correspond a vector
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X1
X2

=(X1,X2 00 s Xm+l s Xme2) &
Xm+1

m+2

=(T,T2,..,T,A |A*)" € R™ a1

whose first m components T, T, are the various vibra-
tional temperatures of the gas, whose (m+1)st compo-
nent T is the translational temperature of the gas, and
whose (m+2)nd component is the area ratio A/A* at M,
where A*is the throat area and A isthe area of the cross-
section passingthrough M. Note that the ceiling and
the floor of the supersonic part of the nozzle have equa-
tions y=¥(h/2)x, (1), 0<t<t,, and its walls have the equa-
tions z= tw/2 where Aand w are the height and the width
of the (rectangular) throat and ¢, is the length of the
supersonic part. It follows from our assumption that if M
varies on a fixed cross-section perpendicular to O¢ at a
point ¢, then the vector (1) remains constant.
Losev-Makarov [8,9,10] studied the optimization of
the gain of such lasers by varying the initial temperatures.
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pressure, and composition of the gas mixture, as well as the
nozzle geometry. As the nozzle geometry is completely
determined by x__,(1) (0 < t < t,), they examined various
parametric functions for x_,, to obtain a better gain.
Among their tests are wedges of the form x,_,(1)= I+Bt
and piecewise parabolic nozzles of the form x (1)= af
+bt+c, for d, st<d; (i=12,...n) such that d,=0 and
d = t,. The examples are all increasing differentiable
functions which are concave downward. For other ex-
amples, some of which concave upward, see {3,5,11-17]
and the references cited therein.

Inthe present paper, we apply Pontryagin’s principle to

find an optimal increasing x_, (1) among piecewise C'-

functions if the oblique shock waves in the active medium
are ignored, or among piecewise C? functions with down-
ward concavity, otherwise. In the first case, u= ¥ ,,,, is
taken as the control; and in the second case, a new compo-
nentx, =X , isadded to the vector () andu=x __,is
taken as the control. In both cases we assign reasonable
initial values 0 x,(0),...,, (0) and hence we have

x(0)= T(0), x,,, (0)=1, i=1,2,...m+1.(2)

To avoid the flow detachment from the nozzle walls, we
further assume

0<x <P 1€))

for some positive known constant B [8, pp. 782-783].
(Note that x 20 follows from the assumption thatx_ (1)
is increasing). Condition (3) for the first case determines a
set U= [0, B] containing the values u(#) of the control . The
same condition imposes réstrictions 0<x _, .<p in the sec-
ond case.

Avoiding oblique shock waves in the active medium,
the curvature of the nozzle must be restricted. Thus, for the
second case we assume

-asu=k =% ,.<0 RG]
for a certain a >0 [6, pp. 427-430]. ;
Summing up, we recognize the following different prob-
lems.

Problem A. (Ignoring oblique shock waves). Finding an
optimal trajectory x () € IR*? and an optimal control
uty=x _,, (1) €[-0, Pl satisfying the initial conditions (2)
and a certain equation of motion.

Problem B. (Avoiding oblique shock waves). Finding an
optimal trajectory x (1) €IR™? and an optimal control u(t)=
x . (t) €[-, 0] satisfying the initial conditions (2), the
constraints 0 < x_, < B, and a certain equation of motion.

Problems with constraints appear because of the com-
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plication arising from the junction points at which the
trajectories meetor leave the boundary. Fortunately, Prob-
lem B can be split into the following simpler Problems B1-
B4.
Problem B1. Finding an optimal trajectory x () € IR™’
and an optimal control u(t)= x __, (1) € [-o, 0] satisfying
the initial conditions (2) and a certain equation of motion.
If we are lucky enough to find an optimal solution x (¢)
€ IR™* of Problem B1 satisfying 0<x_, (1)sx,, (0)<p,
then we have found a solution of Problem B. This is
because <0 and hence x_, ,(#) is decreasing. Otherwise,
we proceed to the next two problems.

- Problem B2. As in Problem B1 with the extra initial

condition
%,.,(0)= . ®)

Problem B3. As in Problem B1 with the extra end condi-
tion :
X (t)=0. )

The optimal solution of Problem B is now among the
optimal solutions x of Problems B2 and B3 if
0sx_, (t)sx (0)<B. If no such solution exists, we pro-
ceed to the next problem.

Problem B4. As in Problem B1 with the extra end condi-
tions (5) and (6).

Ttis easy to see that if Problem B has a solution it must
be among those solutions x of Problems B1-B4 that satisfy
0sx . (t)sx (0)sB.

Problem A will be dealt with in section II where a
complete solution is obtained for the uncoupled approxi-
mation of the Anderson’s bimodal model. Problem B is
dealt with in section I in a similar manner.

I1. Oblique Shock Waves Ignored

In this section, we assume the effects of the oblique
shock waves can be ignored in the active medium and
hence the niozzle shape may have sharp comers. Thus
x,; () is assumed to be piecewise C'; that is X _, (1) is
piecewise continuous and, without loss of generality, left
continuous. Later-we will see that the equation of motion
needed in Pontryagin’s principle is described by a system
of the form ‘

izl Fi@y, . xm)i=1 2, m, 0}
Xm+?2 '
Xmat ="-x—ml:; [UF st (X1, cee ,Xmat) + Fma2 (X1, .00 IS )| B
®
Xme2=H, )

where Ffi= 1,..., m+2) are smooth functions except for
F_,, andF__, which are unbounded at the throat (the point
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it which the frozen Mach number M, is equal to 1) [5, p.
10871,
The equations (7)-(9) will be shortened as

b =f(xu), x(t) eR*? u(t) €0, Bl. (10)

‘We are adjusting our notation to that of [4, pp. 23-28]
‘or the application of Pontryagin’s pringiple. Thus, we
Jefine

e= (1, 1, x (1), x(t)) ER>™S, (11)
where [1), ¢,] is the interval on which the optimal trajectory
t(t) is defined. The function to be minimized is -g,(x,....,
(,..)» where g, is the small signal gain of the active
nedium,

Hence, asin [4, p. 24], we define the performance index
p,IR 6 — IR such that

o(e) ;= -gfx (t)....x, (1)) (12)

[he fact that the throat is always at =0 is formalized by
¢(e) :=1,=0.

The initial conditions (2) are formalized by

13

Ble) == x,,()-T,,= Ofi= 34,...m+3),(14)
(15)

Thus, we obtain a function ¢ : IR?*¢ — IR**“whose values
it ¢ are defined by (12)-(15).

Following the notation of [4], Problem A can be now
estated as follows.

¢m04(e) o= xuu-l(to) -1=0.

1.1. Problem. Let & be the set of all (m+3)-tuples (x,u)=
Xp... X, W)suchthatx,,...x_  arepiecewise C’ functions
wd u: [, t,] - [0, B] is a piecewise continuous, left
;ontinuous function satisfying the equation of motion (10)
ind the initial conditions (13)-(15). Define K: F— IR by
C(x, u)= ¢,(e), where e is as in (11). Find (x, u) € Fsuch
hat X is minimum,

Problem I1.1 is a Mayer type problem [4, p. 25]. The
wolution (x, u) is called an optimal point. The parts x and u
ire called an optimal trajectory and an optimal control,
espectively. It follows from (7)-(9) that x, (i= 1,....m) is
M,andx_, andx_ arepiecewise C'exceptats=0, where
 wey IS unbounded.

A partial solution to Problem IL.1 is given by the
ollowing theorem.
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11.2. Theorem. Let (x, 4) be an optimal solution of Prob-
lem I1.1. Then there exist ) € {0, 1} and a function P: [0,
t,] — IR™*for some ¢,>0 such that

m+2
Pi(e)=- 3 P (1)af; x(®),u 0)/0x: (=1....m+2),
=l

(16)
Pi(t1)=09go(x1(1), ... Xma1 (11 )/ 0xi (=1,...,m+1),

’ an
H(t.x(0), u(t) =0(0< 1<), (18)
P, ,=0, (19)
ut=x _,)=Bif P_,(0f, (>0, 20)
ut)=x_,(1)=0if P (1)f, (<0, @1

where H (tx,u)= 2,.13(:) f;(x,u) is the Hamiltonian of the
system. Moreover, if the set
{tel0,t):P_(0f, O =0,ut) €{0, B}} 22

has no interior poirtt, then x__, consists of a finite number
of line segments with alternating slopes f§ and 0.

Proof. Lete be asin (11). It follows from {4, pp. 27-28]
that there exist a nonzero vector A € R ™ with 4, € {0,
-1} and a vector function P: [0, t,] — IR™?satisfying (16)
and the following extra conditions:

P(t)’=2A"8,,=

.a.é&.&.a, EesTonst 1) 0

Xm+1

989 61 (1)ovnr T O -
oxt

[ I

0
23

H(t,x(t),u(t)))=-A"$;=0, )
H(t, x(1), u(t) = X g+ [ Pefilsx@ulhds=2, (25
0

max {H(t, x(t), u): 0susB) = H{(t, x(1), u(t)), (26)
forall t €10, 1.

Ttfollows from (23)-(25) that (17) and (18) hold for 1}=
-A,and that P__,(t,)= 0. Using (7)-(9) we conclude from
(16) and (18) that

Ps2 € Y Xme2 € )+ Prmsz € ) ima2 €)=0
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Hence P x_,isconstant. Sincex ()21 and P, 2(
0,r, 50 This proves (19).

Now (20)-(21) follow from (26), and the last conclu-
sion follows from the fact that Xm.2 () = # ¢ ) is piecewise
contingous.

- To justify (7)-(8) we follow [18, pp. 198-204} to
obtain the relations between x(¢) and u(1). Letting E(s) be

the vibrational energy of mode i at temperature s and G=

dE /ds, it follows from [18, p. 204, formuja (2.11)] that

wo 12...,m)
vGif)

ii= @n

where v is the gas velocity. (Recall that x; = dx;/ dt with ¢
denoting the spatial coordinate of the gas molecule, while
" the variable ¢ in (2.11 of [18] stands for time). - . «
For an expression for E, see (1, pp. 17-20]. The gas
velocity is obtained by

Vvt eotma) =] 2H-y (-1 R -3 Es (),
$=1

o @8
for ‘some constants H, ¥ and R whxch
‘variation of the energy conservation law
v2/2+7(y DRT+X L ET)=H [13, p. 2568). Fi-
nally, ¢, is given by
=T (x;,...,.vc.m;a):-----A’i-«é""w“ﬂ“2 exp (%: x,8), ‘ (29)
for some constants &, and ¥, (i= 1,2,...,m) [18, p. 204,
formula(2.13a)} and{l3 P-2568, formulas (2. 24),(2 271
Thus (7) holds.

To justify (8),letM s=v/YyRT , andleta;=‘{ ¥YRT .
tfollows from [5, p. 1087] and (27)-(29) that (8) holds for

is a
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and G,(T,) are very small compared to y(y- 1 y!R.Thu

by differentiating the encrgy conservation law

V2 4+ y(y-1)'RT + El(T,) + 2(17'2).-.- H, wehave
VU+ Yy -19RT mvi+ iy - 1)“Ri'+G;(T:‘}i'; +Gy I))T5=0

- Therefore, we canassume visafunctionof x,= Talone
Now, it follows from the mass and momentum conserva

tion laws pvA /A*=Q and pdv+ dP=0, together with the
gas state equation P= pRT, that

T=(4%) (7—1>Mf’T dA/AY
X a-mp)  d

Using our notation, we have

P (y—l)szsm
X4 1- Mf

Thus, in view of (30)-(31), F,=0and F,isa function

‘ F3 of x, alone. Hence, it follows from (8), that dr/

Fm+l (xl’ vas ’xm+1)—(y 1)%{-}-1 Mf# (30)
it e -ELQM G@F@, ... Xmn)

Fria oy Xmet) aMPP E o) FiG, oo Xmat)

(31

where F,,...F, are as in (7). Note that F,,...F, , are

smooth functions except for F,, and F bemg posslbly

unbounded at the throat, the only place at whxch the frozen
Mach numberM isequalto 1.

Now we shazpen the conclusion of Theorem 12 m‘
case that m=2 and that an uncoupled approximation of the
Anderson’s model is used. We assume the gas has afrozen
nozzle flow {1, pp.48-52].In thiscase we assume, asin [1],

that Ty and T2 are negligible withrespectto T. Also,G(T,)

184

Fa(x )=dx Jx, and therefore
’5 ~ .
X4=exp ] [Fs(]!ds. 32
x {0

Replacmgx,m (7)-(8) and noting that v is a function of
x, alone yields the following new equation ofxmuon

Xi =Fi(Xi » X3 ) (i= Iv 2)1 ‘ (33)
i3 =uF3(x3), (34)
. x4 =U. (35)

Itfonows&ommemmnzmatxf(x,u)xsanmmal‘
solution of Problem I1.1, t!wnt!meexxssafmcnonl’ io,
t] »lk‘sm:hthat

G6)

Pi=-PF; [ (i=1,2),
B3 =-P13F1 [ds- PF2/ 933 Pwé‘!"-i 6D
P, sOwH ax@),u@) (38) -

=P (OF (x,(0).x,() +P (1) F (x(t), x,(f))
-+ POF, (x,(0) we).

Letting L= 7v, it follows from (36) that
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fi: I 1 .d_G,' f i=1,2). 39
Pi Li(x) +Gi(xi(t)) dt i) ¢ >

Then, if P(t’')#0 for some ¢’,€[0,1], then
N Y N B
(=R (1) ———"exp( ) 40

Gi (xi(t)) P ‘,'Lu (x3(t) “

ori=1,2. Since G,(x,) #0 forall x,[13, p. 2568], it follows
atP(t)=0forallt €[0,,] if and only if P,(¢)#0 for some
[0, t,] (i= 1, 2). Thus (40) holds if t*, =0 (i = 1, 2).

There are certain conditions on F,, G, which automati-
ally hold in the supersonic part of an optimal nozzle;
therwise, we have no population inversion. Some of them
re as follows:

Fi<0, ¢(=1,23)

Giwt) _ G@m@) L nh
106E)-E1 () Efs€)-Ex0¢) 3 @)

see [1,7,16,17] and Fig. 1). We will see in the proof of
heorems I1.4 and I11.5 that P, <0 and hence P F >0in the
ipersonic part. The following lemma is based on the
bove observations.

(3. Lemma.Let P, P,, F, and F, be as above and define

C(1/K)
0

Ol |
02f
03
04r
05|

1] o

07 1 1 i 1 L
0 0.01 0.02 0.03 0.01 0.05

t(m)

Gm®) Gr) 4

am)-at) et et dn
s (t) for a wedge nozzle with 15° half angle

0.06

n Zver-

gurel.C (@)= 2
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0 O)=-P@) F1001(6), x3(0)) - Pot) Foxa), x36)) (A1)
fort [0, ¢,]. Assume a (t ') =0 for some ¢’, and suppose
x4(t ') >0 (resp. x4 (¢ '+) > 0). Then there exists £ >0 such

that Q (1)> 0 (resp. Q (1)<0) for all t € (- &, t') (resp. t € (¢,
t'+€))

Proof. For convenience we may write j(t) for j(x(t)) if j is
a function of x= (x,,...,x). It follows from the hypothesis
that

P,(t)=-P,(1)F,(t)IF (1). 42)

(NotethatF, (t)<Oforallt €[0,¢],i=1,2,3). It follows that

O(1)= -P, ({)F (1)Q(1), 43)
where ‘
(r)=210) _ @) @4)
@) q")
() =20 ‘_dt 45
() b(t)exp(fw(r)) @5)

and A,(1) = E(x,(1)) - E{x(1))<0 forall €[0,,]. Note that

P F >0 and hence EQ <0on/0,¢].)
Now, forallt€ [0, ¢,] and fori = 1,2,

2
) €)=5) Fo6) S () g¢) [Gese) 1 (ln'{vf
CO=HOBOL V00 Lo &

)].

=]
(46)
Hence, if x,(t'-)>0, then
N s Gwl') GEwl'), r2-h
t-)= YFa(t + ’
AR Rl ey a;c»"’]
CY))

and hence Q(t'-)>0. (Sec the paragraph preceding the

lemma). Therefore, there exists £>0 such that Q (¢)<0 for
all te (- ). A similar argument in case x4(t4+>0
completes the proof.ll

We are now ready to state and prove our result for the
uncoupled frozdn flow approximation of Anderson’s
bimodal model.

I1.4. Theorem. Assume (x,u) is an optimal solution of
Problem I1.1 in which the equation of motion is changed to
(33)-(35). Then
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1+ Bt,0<t<ts,
1+ 80, 00s5t<t,

x4(t)= @8)

forsomet, (1), 1,).

Proof.LetA’=(4,....,A,) be asinthe proof of Theorem I1.2.
If A,=0, then P.(t,)=0, i= 1,2,3. It follows from (40) that P,

=0(i=12).By (37)-(38),P,u=0andP 3 = 0. ThusP 3 = 0.
By [4, p. 27, Formulas (5.4), (5.6)], A= 0; a contradiction.
Thus, our problem is not abnormal; i.e. A =1 [4, p. 28]. By
[13,p.2572], g, is strictly decreasing with respecttox; and
hence dg,/ ox,<0. Thus P (1,)<0and hence P (1) forallt &
[0, ¢,]. By (20)-(21), P()F (t)u(t)2 0, and thus P,(t)= [-
P(OF (t)-P (F (u(6)V/F (1)>0.

Assume, if possible, that P (#)= 0 for allt in some open
interval (£, {) c(0,¢,)and thatu(¢")>0for some " &(§, {).
Then Q (¢)is identically 0 and u is positive and continuous

on some open interval (§ ', {' ), where Q is as in Lemma
11.3; a contradiction. We conclude that if P, is identically
0 on some open interval, then so is  on the same interval.
Therefore, in the light of (20)-(21) and the fact that £,(2)<0
forallr €0, ],

P3(t)<0
P3(t)20.

B .
0o,

u@)= 49)

Since u is piecewise continuous and left continuous,
there exists a partition {c,= 0<c,<...<c,=t,} suchthat uis
constant on each subinterval (c,, .c;] (i = 1,2,....k) and
discontinuous at c,,C,,....C; . Now, fix i= 1,2,..., k-1 and
assume, if possible, that u(¢)=p. Then there exists £>0

such that u(¢)=p and Q (t)<0 for all t € (c,, c;+€), where O
is as in Lemma I1.3 with ¢'= c,. Then it follows from (38)
that P,(1)>0 and hence u(t)= 0 for all 1€ (c, c+€), a
contradiction. Thus u(c,+)= 0. Hence k < 2. If k=1; the
supersonic part of the nozzel is either achannel ora wedge.
It is known that the channel can produce no population
inversion. Thus, ignoring the channel, we have ¥ <2 and

, 0st<
uy=| P+ 0SIsa
0 , a<tsh.

- (50)

where C, may or may not be equal to 7,. Now, (48) follows
from (50) and the fact that x,(0)=1(See Fig. 2). B

IIL. Avoiding Oblique Shock Waves
In this section we assume the oblique shock waves in
the active medium are significant. Thus, we avoid sharp
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comers as well as high curvatures. For this reason, we
assume x__, is a piecewise C? function, and define a new
componentx_ =¥ _ . The derivativex__, is taken as the
control # which is piecewise continuous and, without loss
of generality, left continuous. Hence, if x__, is assumed to
be concave downward with -o as a lower bound for its
second derivative, then

u)el-a,0], x(t)eR™, (51)
where, as we mentioned before, the positive constant ais
discussed in [6, pp. 427-430].

In view of (7)~(9) and their justification (27)-(30), the
equation of motion in this case is as follows:
(52)

1 g .
Xi x_—m-leF' (XI,...,X»H-I),I 1,2,...,'”,

Emtt =l tmaFmst (15000 Xma) + Fns2 (1,00, Xmad)],
Ama

(53)

Xma=Xm3 (54)

Ima3=U (55)
The analogues of (10)-(11) are

Y
0.03 (m)
002
00!

o 1 1 1
o] 0.01 0.02 0.03
t(m)

Figure 2, Upper half of an optimal nozzle of piecewise C* shape
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i=fix,u),x € R uel-0,0l, (56)
ind
e= (1, 1, (1)), X(t,)) € RS, &1))
The performance index ¢, and the functions ¢,.,....9, .,
wre now defined on IR »*® with no other change in (12)-
'15). The function ¢ may have additional components
lepending on which problem (B1-B4) is under consider-
ition. In the following we reformulate problems B1-B4 to

wit our approach.

II.1. Problem. Let & be the set of alt (m+4)-tuples
X,u)=(x,...X,  u)suchthatx,,...,x_ . arepiecewise C’

unctions and u: [#,, ¢,]->[- a,O]xsap:ecewmeconunuous '

eft continuous function satisfying the equation of motion
36) with the initial conditions (13)-(15). Define J: F —
Rby J(x,u)= ¢, (e), where ¢ is as in (57). Find (x,u) € &F
wuch that J is minimum.

As in Problem IL1, x and u are called the optimal
rajectory and the optimal control, respectively. Problem
IL1 is a reformulation of Problem B1. Problems B2-B4
vill be reformulated respectively as follows.

1L.2. Problem. As in Problem III.1 with the extra initial
'ondition
P,.s(e)=x  ,(1)-p=0. (58)

IL.3. Problem. As in Problem III.1 with the extra end
ondition
9,.s(e)= (59

IL4. Problem. As in Problem L1 with the extra end
onditions

%,.,(t,)=0.

(60)
(61)

zmi(e) - ms{‘a)' = 0.
Puisle)i=%,,5(t,)=0.

A partial solution to Problems III.1-IIL.4 is given by the
oliowing theorem,

IL.S. Theorem. Let (x,4) be an optimal solution of Prob-
:m 0.1, 1112, 1.3, or IL4. Then there exist A, & {-1,0}
nd P: [0, #,]—» R™ for some ¢,>0 such that

. ma3
Pi ==Y Pi)ofix (), u(t)) /3xi(i=1,...,m+3), (62)
=i

% (€)= A9 g0 01 (1), .. s Xmet (D) /i G=1, ... ,m#1),
63)
) (t 1 )= O, (64)
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H(tx(t).ut)=0, Osist, (65)
u)=0 if P ()>0, (66)
ut)=-o if P_ (1)<0, 67)
where

H(t, x, u)= X P, (t)f(x.u). (68)

Moreover, if the set
{tel0,¢]: P, (=0 ut) e {0, oj} 69

has no interior point, then x__, consists of finitely many
line or parabolic segments,
Finally,

P_.,(0)=0 for Problems III.1 and IIL.3, (70)
P ()= 0 for Problems IIL.1 and I11.2. (71)

Proof. Let e€IR*™¢beasin (57), and let ¢: IR 2™+ — IR’
beafunction whose firstm+4 components ¢,....., , ,areas
in(12)-(15).For ProblemII1.1, s=m+4 and hence ¢is well-
determined. For Problems [I1.2and 113, s=m+5and ¢,
isdefined asin (58) and (59) accordingly. Finally, s= m+6
for Problem 1114, and ¢, and ¢__, are defined by (60)-
(61). It now follows from [4 pp. 27-28] that there exist a
nonzero vector A€ R “with 4, € {0, -1} and a vector
functionP: [0,¢,] »IR™? sathfymg (62)and'the following
extra condmons

P()=24,, 72)
-g-g-o-(h 1) ooy Bnarlti).. -.ﬁé’ﬂ.(x,(:,), s Xmar) O
X1 ' Xen+1

- l' 0

A
H(t, x(t,), u(t,))=- X'$=0, 3)
Hit, x(1), u(t)= A, (74)
max{H(t, x(t), u): -a<usO}= H{t, x(t), u(t)), (75

forallt €[0,,], where A is a vacuous matrix for Problems
ML1-ML2, and

A=[0 0 ... 0 1]

Ix(m+3)
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for Problems I11.3-111.4. Now, (63)-(65) follow from (72)-
(74). The assertions (66)-(67) follow from (75) and hence,
if the set in (69) has an empty interior, then x_,, is
piecewise linear or parabolic.
Now, if A is vacuous, then P__(t,)=0. The result for
P_,,(0) follows from P (t0)’= A'¢r) [4, p. 27, formula

(5.4)]. Since the last column of @) in Problems I11.1 and
111.3 is zero, it follows that P__,(0)=0.1

Bahrampour and Radjabalipour

TIL6. Remark. With the notation of Theorem IIL5 and its

proof we can further conclude that ,=0 and

(76)

PO)= A, (i =1..., m+2)
P, (0)= A, for Problems IIl.2 and ITL.4, an
P, (t))= 24, for Problem IIL3, (78)
P, (t)= A, for Problem IL4. (79)

For more detailed results in this case we again approxi-
mate the Anderson’s bimodal model by assummg the gas
has a frozen nozzle flow.

Here, since u=Xma=%Imas it follows from (27)-(32)
that the equation of motion is described by the system

xi=Fi(xi,x3),=1,2, (80)
%3 =xsF3(x3), (81)
X4 =X5, (82)
Xs=u. 83)

By Theorem IIL5, for the optimal solution (x, u) of
Problems III.1-II1.4, there exists a function P: [0, 1] —
IR’ such that

B, =-P; oF: [axi(i=1,2), (84)
P3 =-P1oF /&xs-P2aF2 /33 - PxsdFsfdxs  (85)
P4 =0, Ps =-PsF3-Py, (86)

H6x @), u @)=PiF1+PiF2+P3xsF3+Paxs+Psu=0.
Y

Since P, (t,)= 0, it follows that P, =0 and hence

Ps+PiFs=PiF1+ P+ PuxsFa+ Pu=0.  (88)

Now, (39)-(47) hold and hence Lemma I13 remains
 valid in this case too. (Note that & 4 is now continuous and
thus X4 (t-)=xa(t+)=x(t)forallt €[0,])

The analogue of Theorem I1.4 is as follows.

188

J.Sci. L.R. Iran

I1.7. Theorem. Assume (x, u) is an optimal solution of
Problem I1.1, I11.2, 113, or I11.4 in which the equation of
motionischanged to (80)-(83). Then, allowing degenerate
segments, x, consists of a line segment, a parabolic seg-
ment, and a lme segment in the same order. Moreover, if
the parabolic segment degenerates to a point, then the
supersonic part of the nozzle is a wedge. ‘

Proof. We first show that Problems IIL1-II1.4 are not
abnormal; i.e., A,=-1, where 4 = (4,,..., A, } is as in the
proof of Theorem TIL.5. Assume, if possxble, that 4,=0.
Then P, = P, = 0 and P,(1)=0. (See (40) and (63)) It
follows from (85) that

- £1

Pi(t)=Ps(t) exp { xs@t )%@3 Oxs@ydr. (89
' 3

4

Hence P3=0.By (88), Ps=Ps 0)=Ps () and Ps (Qu=0.
By (70)-(71), Ps=0 for Problems I1I.1-II1.3. Also, since
x,(0)= B> 0=x,(1,) and (hence) u #0 in Problem IT1.4, it
follows that Ps=0 for that problem. Thus, in view of
Remark I11.6, A= 0; a contradiction. Hence A,=-1.

Next, we show that the set (69) has an empty interior.
IfP,(t) =0 and u(1)<0, for all tinsome interval (§, {), then,
in view of (88) and the fact that F,<0, P,(t)= P (1)F (x (1},
x,(t) +P J(OF (x,(1), x(1)= Oand xa(t)=xs5()>0forall
te€, C)whxchxs impossible in view of Lemmall.3. Thus,
u(t) € {0, —of for all ¢ & [0, t]. Thus, there exists a
partition {0= C,<...<C,= 1} such that 4 has a constant
value -ot or 0 on each subinterval (C.,. Cl(i= 1,...k).
Moreover, if k>, then u is discontinuous at C,(i=1,...k-
1). We claim k < 3. In view of (88),

ot .
ps(y=xs 0[] BELEEE 30 SOy ) ), 00)
7 4 x5(0)}
whenever x,t) #0. Let (0, t,) be the largest open interval
on whichx>0. Since the nozzle x,= constant is physically
rejected, either ¢,= C, , or 1,= C,= t,.. Since x(1)>0 for all
tef0,4,),it follows thatn( t)P,(t) have the same sign for all
te[0,1,). Now,

x3(t) 7(t) =P1(OF 1061( ), x3()) + P2 (OF ox2 (1), x3 (1))

; o1
forallt €[0,¢). ByLemmaII 3, there exists somet, €[0,
t,] suchthat 77(1) <O if O<r<t, and w(t) >0if t,<t<t,. (Nome
that either of the intervals (O t)or(t,t )maybeempty)
We consider two cases.

Case 1. P (0)<0. Then n(0)< 0 and hence there exists
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€0, £,] such that n(t)<0<n(s) whenever 0<t<t,<s<t,.
ws, u(t)=-afort €(0,¢,)and u(t)=0fort €(t,1,). Since
is continuous, it follows that either t,=t, or t,=t,. Hence
<2,

Case 2. P(0)>0. Then n( 0)>0 and hence there exists

and ¢, such that 0<t <t <t,, n()>0if 1 €(0,2) U (1, 1,),
dm(t)<0if t €(t,,t,). Accordingly, u=0on(0,¢,) (1,
,andu=-oron (¢,,t,). Again, here, since x; is continuous,
follows that either ¢,=t, or t,=¢,. Thus k< 3.

So, tosum up, we have shown that x, consists of a line
gment, a parabolic segment, and a line segment in the
ime order (See Fig. 3), where we allow some of them to
:generate to a point. Note that two line segments can
:ver be adjacent.ll

I11.8. Conclusion
In this section, we prove that the supersonic part of an
stimal gas dynamic laser with a gas mixture of CO,
00X c0,%), N, (100X n,%), and H,0 is bounded by the
anes =0, t=t,, and z= * &2, and the cylinders y= hx(t)/
described as

y=Ct+hi2 for 0<t<D,

=-(0/2)+ (C+0aD)t+(h-aD?)/2 for D<t<(C+aD-E)/a,
= Et+h/2+(C+aD-EPI(20)-aD*2, for (C+oD-E)la<t
t,
‘here h, @ are the height and the width of the throat, C is
ie slope of the opening wedge, D is the length of the
redge part, and E is the slope of the nozzle atits end t=1,.

Now, assuming the combustion chamber has a known
esign and subject to the reductions and models imposed
y [1,6,8,9,10,12,13,14], the parameters X co; , XNz, C, D,
 t, together with the gas temperature T, and pressure P,
1 the combustion chamber fully determine the optimal
hape of our laser via the system of differential equations
1)-(9), exactly in the same way done by Losev-Makarov
3,9,10] and Reddy-Shanmugasundaram [13,14]. (Fol-
wing [6,pp. 427-430], we take o= 20). Thus, our optimal
ontrol problem reduces to a multifactor optimal problem.
his is an improvement on the work done by Losev-
Aakarov [8,9,10]; now, we already know that the super-
onic part of the nozzle begins with a wedge, then bends to

parabolic cylinder and ends with a second wedge.

Our numerical computations reveal that E must be 0,
nd 2 tan"'C must be the maximum admissible opening of
he wedge at the throat which is usually 40° [7]. In Figure
., the values of the small signal gain g, is plotted
gainst the final half-angle A= tan”E for various values
f B = tan"*C and fixed values of the gas temperature and
iressure in the combustion chamber.

0.03

0.02
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Y(m)

0.0l 0.02 0.03
t(m)

Figure 3. Upper half of an optimal nozzle of piecewise C?shape

-4

o
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Max. gain (1/m)

A L L 1

10 20 30 40 A
Degree

Figure 4. Gain versus beginning and ending angles of a piece-
wise C? nozzle shape T,=1200°K, P =40 Atm, Xco7 0.1, X\, =

0.85, XH20= 0.05
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