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Abstract

In this work, one and two-dimensional lattices are studied theoretically by a
statistical mechanical approach. The nearest and next-nearest neighbor interactions
are both taken into account, and the approximate thermodynamic properties of the
lattices are calculated. The results of our calculations show that: (1) even though the
next-nearest neighbor interaction may have an insignificant effect on the entropy of
either the almost purely ordered or disordered phase, it does have a significant effect
on the entropy of the lattice when the order-disorder transition is taking place. (2) The
next-nearest neighbor interaction broadens the range of temperature on which the
transition occurs. (3) The transition takes place more slowly with respect to tempera-
ture, when the next-nearest neighbor interaction is considered.(4) The average
temperature, at which the transition occurs, shifts to a higher one when there is an
increase in the next-nearest neighbor interaction.

Introduction

The first exact solution to the one-dimensional lattice
was given by Ising [1] in 1925, by taking only the nearest
neighbor interaction into account. A matrix method was
then introduced by Kramer [2]. This matrix method was
used by Onsager [3] who, after a very long and sophisti-
cated argument, was able to obtain the solution to the two-
dimensional square lattice in closed form, but only when
the fractions of both species were equal (F=0.5). A new
method has recently been introduced, by which an exact
solution can be obtained for the macroscopic properties of
the one-dimensional Ising model, if three exact constraints,

which are given in this paper, are used [4]. However, this -

method gives an approximate solution to the higher dimen-
sional models, if four constraints, which are given in this
work, are used. In this approach, a method called "the
extended sequential construction method” (ESCM) is used
for the cases in which only the nearest neighbor interaction
is-considered. The main aim in this work is to use ESCM
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in such a way that one can take the next-nearest neighbor
interaction into account, as well as the nearest neighbor
interaction.

There is no exact solution available either for the one-
dimensional or for the two and three-dimensional lattice
models, when the nearest and the next-nearest neighbor
interactions are both taken into account. However, there
are some approximation methods like the quasi-chemical
method [5] and Kikuchi's approach [6] by which the
nearest and the next-nearest neighbor interactions may be
taken into account by using some larger groups of sites
than pairs. Here, we shall use the ESCM approach.

The next-nearest neighbor interaction becomes more
important when the interaction among atoms have a
longer range. For example, if the interaction is Coulom-
bic, the next-nearest neighbor interaction is 50% of the
nearest neighbor interaction for one-dimensional lattices,
and 71% of the nearest neighbor interaction for two-
dimensional square lattices. If we consider the interaction
between two molecules to be proportional to 1/r® (where
r is the intermolecular distance) then these numbers will



Vol.4 . No.l
Winter 1993

reduce to 1.6 (for one-dimensional lattices) and 12.5 (for
two-dimensional square lattices), respectively. In most
cases, however, the interaction is within the same range as
the above two cases (the interaction energy between two
jons is proportional to 1/r and the attraction between two
spherical neutral molecules with uniform charge distribu-

tion is proportional to 1/1%).

There are some systems in which the long-range
interactions play an importantrole in their physical prop-
erties. For example, the properties of the diluted magnetic
semiconductors depend on the long-range interaction
between magnetic ions [7]. In these systems, even the
interaction with a longer range than the nearest and the
next-nearest neighbor interaction should be considered.

Experimental Section
Thermodynamic Properties of the One-Dimensional
Lattice

We shall carry out calculations for the one-dimen-
sional model in detail, and then extend the results to the
two-dimensional square lattice. The approach is, in
principle, the same as that presented in reference 4 and is
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called the extended sequential construction method, or
ESCM. In order to take the next-nearest neighbor interac-
tion into account, however, the sites must be divided into
"solid” and "nonsolid” in a different way from that pre-

“sented in reference 4, even though sites are all identical

and such adivisionis quite artificial. We consider abinary
one-dimensional lattice with N sites which are located
along a straight line. Unlike the previous case (ESCM)
[4], both the nearest and the next-nearest neighbors of
each solid site are considered to be nonsolid sites, as
shown in Figure 1(a). Therefore, one third of the sites (full
circles in Figure 1(a)) are considered to be solid sites and
the others (open circles) are considered to be nonsolid
sites.

We consider a binary one-dimensional lattice with N
sites, where each site is occupied by only one atom (or
molecule), A or B. We also assume an interaction energy
between two atoms which are located on two nearest
neighbor sites. The energy for such interaction will be
denoted by €aa, € A, and epg if the sites are occupied by
two A; one A and one B, and two B atoms, respectively.
Similarly, the interaction energy between (wo atoms
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Figure 1. (a) One-dimensional and (b) two-dimensional square
lattice. The full circles are solid sites and the open ones are
nonsolid sites. The group of sites which are connected by
lines are considerd as a "basic unit”.
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located on two next-nearest neighbor sites will be denoted and j represent the configuration of the basic unit. A basic
by €aa.an,and egg if the sites are occupied by an AA, unit has a total number of 2°= 16 configurations, excluding
AB, and BB pair, respectively. We shall calculate the the configurations of its solid site. Each configuration for
combinatorial factor, configurational entropy and energy the basic unit will be represented by Z,, where the sub-
for this model lattice, when A and B atoms are distributed scripts i and j are used for the number of A atoms on the
among the sites. The calculations may be carried out as nearest and the next-nearest neighbor sites of the solid site,
follows: respectively. All configurations for a basic unit are shown

(1) Consider the nearest and the next-nearest neighbor in Table I, on the left-hand side. If the configurations of the

sites of a solid site, the number of which is equal to 2+2 in
this case (see Figure 1(a)). We shall call this group of sites
the "basic unit" and denote it by Z_, where the subscripts i

solid site of a basic unit are included, then there are 2=32
configurations for a basic unit, as shown in Table I (on the
right-hand side). The number of basic units in the lattice

Easic conf iguration Nugber Configuration Number/(N/3)
unit
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o—0—e—0——0 “gn 11-Py)
A 8 A B 8
—0—=0
A 6 8 e o—0—=o 2gor POy
Z 01 O—O—8—0—=0 |2ap1 N3 A 8 B B B
o—0—8 —0——=0 2Qov (P
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O0—O—8—0—0 [|?woP
B A B B 0 "o
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e B 8 ®
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Table 1. Basic unit, configurations for a basic unit, and the number of basic units for the one-dimensional lattice.
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with- different configurations are all given in this Table.
Note that on the one hand, each basic unithas one solid site,
while onthe other hand, one third of sites are solid, thus the
total number of basic units in the lattice must be equal
N/3. '

(2) First we consider a basic unit with a Zx configura-
tion (four A atoms on its nonsolid sites, see Table I).
Suppose there are Q22 N/3 of such basic units in the lattice,
where Qn s the probability of having suchaconfiguration,
and N/3 is the total number of basic units in the lattice. If
the probability of having A atom on the solid site of such
a basic unit is presented by Py, then the probability of
having B atom on this solid site is equal to (1-P»). Note
that the subscripts for the Z's, Q's, and P's are the same for
any given configuration of a basic unit, and are given by
two numbers, i and j, where i and j represent the number of
A atoms on the nearest and the next-nearest neighbor sites
of asolid site of a basic unit, respectively. Therefore, there
are Qx N/3 solid sites belonging to basic units with Zx
configurations, on which Q2 P» N/3 A atoms and Qz (1-

P») N/3 B atoms must be distributed. Such a distribution
can of course be done in g» ways, where

(QxN3)!
(QuP2 N3)! [Qz (1-P2) N3]

The number of ways for the distribution of atoms
among eight other types of solid sites (each of which
belongs to abasic unit with a specific configuration) can be
calculated in exactly the same way as we calculated gn
above. For example, there are 2Q2; N/3 solid sites belong-
ing to basic units with Zy configurations, which. are
occupied by A and B atoms with the probabilities of Py and
(1-P2)), respectively. Hence, the number of ways for the
distribution of atoms among such solid sites is equal to g2,
where

gn=

g = (2QuNB)!
(2QuiP2a N/3)! [2Qu1 (1-Pa) NA3T!

Similarly, the number of ways for the distribution of
atomsamong the solid sites of basic units with the configu-
rations of Zi2, Zw, Za, Z11, Zot, Zio, and Ziy is given by
212, £20, 22, £11, S0, £10, and geo respectively, where

gu= (2QuNA)!
- (2QuPNAB)! [2Q12 (1-P) N3]
o= (QxN3)!
(QaoP2 N3)! [Qao (1-P) N3T!
= (QuNA)!
(Qu2Po N/3)! [Qo2 (1-Poo) N/3]!
gbz = (4QuNA)!

" @QuPy NB)Y! [4Qu (1-P) N
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oo QQuNB)!
2QuiPos N3)! [2Qu1 (1-Por) NA3T!
QQINA)!
(2QuP1oNB)! 2Qi0 (1-PYNB]!
o= (QuiNB)!
(QuePo N/3)! [Quo (1-P) N/3]!

gio=

Therefore, the total number of distribution of atoms
among the solid sites is given by
218 = (gngngngugngngagiogo). Since solid and nonsolid
sites are indeed identical, we assume that the number of
distribution of atoms among nonsolid sites is equal to the
square of that for solid sites, namely g%. The square is
taken due to the fact that the number of nonsolid sites is
twice as many as the solid sites. The total combinatorial
factor is, therefore, given by

g= (gzzgmglzgzogozzgl1gmgugoo)3

By using the Boltzmann equation, S=k 1n g, the
following expression will be obtained for the entropy:

.%: Q,, {P,, InP,, + (1- P, In(1-P,)}

+2Q, {P, 1nP, +(1-P,) In(1-P,)} +
2Q, (P, 1nP, + (1-P,,)In(1-P )} +
+Q,, (P, 1nP, + (1-P,)) In(1-P,)}

- 4+Q,, (P, 1nP, + (1-P,) In(1-P )} +

4Q,, {P,, 1nP, + (1-P )In(1-P )}
+2Q,, {P,, InP + (1-P ) In(1-P )} +
2Q,, (P, 1nP + (1-P ) In(1-P )} +
Q, (P, 1nP, + (1-P,) In(1-P )} 4]

(3) In order to calculate the number of pairs on the nearest
and the next-nearest neighbor sites with different configu-
rations, and the configurational energy, we have to con-
sider all basic units with different configurations which are
givenin Table I, We shall firstconsider only the interaction
of atoms located on solid sites with those atoms located on
their nearest and next-nearest neighbor sites. There areQ,,
P,,N/3 basic units with Z,, configurations, each with one
A atom on its solid site. This A atom interacts with two A
atoms located on its nearest neighbor sites, and also with
two other A atoms located on its next-nearest neighbor
sites. Therefore, each of these A atoms makes two nearest
and two next-nearest neighbor pairs with AA configura-
tions, and there is a total number of 2(Q,,P,, N/3) nearest
and the same number of next-nearest neighbor pairs with
AA configurations, in which one A atom is located on the
solid site belonging to the Z,, configuration. Similarly,
each A atom located on asolid site which belongs toa basic
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unit with Z21,Z12, Zao, Zoo, Z11, Zot, Zio, and Zoo configu- QP 10)+ KQuPyrt

rations makes 2,1,2,0,1,0,1, and 0 nearest neighbor pairs, W1P21 + 2019P 19 + OpPer + 2011P11 + O P

and 1,2,0,2,1,1,0, and 0 next-nearest neighbor pairs with QP21+ 2Pz + QP + 1P QO(16)01)}

AA configurations, respectively. Therefore, all A atoms
located on solid sites make a total number of o, , nearest

neighbor and ofy, next-nearest neighbor pairs with AA
configurations, respectively, where,

aAA:l% {2(Q2P2) +2QQ2P2) +2Q 0P +

2(QuoPa0) +4Q11P11 + 2Q10P10} )
a‘m% {2(QuP2) + 2QuiP21 +2(2QuPr) +
2(Qu2Pe2) +4Q11P11 +2QoiPor } 3)

We should emphasize that in the above expressions
only those AA pairs which have one A atom located on the
solid site and the other on the nonsolid site are counted.
Now we can calculate the total number of the nearest and
the next-nearest pairs in the lattice with the AA configura-
tion. The fact that solid and nonsolid sites are really
identical, and also the number of solid sites is one third of

all sites, gives the total number of, 3a., ,, and 306y 4 NEATESE
and next-nearest neighbor pairs, respectively, with AA
configuration. Since each AA pair is counted twice, then,

the actual number is equal to %(3 aa)and -;-(305' } re-
AA

spectively. Therefore, the lattice has a total of Naa

nearest neighbor pairs and Naa next-nearest neighbor
pairs with AA configurations, where

Naa=N{QuPn + 2P + QP 12+ QP+ 2Q11(P41 )1 + QP 1o

Naa = N{QpP2 + QP21+ 2Q12P 12+ QP + 2QnP 11 +QoiPoi}
)

Forsimplicity, we shall assume that there exists only an
interaction energy between two A atoms, either when they
are focated on the two nearest neighbor sites (with the
interaction energy of €, , ), or when are located on the two
next-nearest neighbor sites (with the interaction energy of
€aa). This is a specific case in which we set
€AB=Eap = =g =0. This specific case is appropriate
for a "lattice gas model", and the more general case, & s #0,
for a binary lattice model. These two problems are physi-
callyidentical, and one can berelated to the other [8-9]. We
are using the lattice gas model simply to avoid calculating
the number of other nearest and next-nearest neighbor
pairs.

Now, by having Naa and Naain equations 4 and 5, the
configurational energy can be readily calculated, it is

given by,
E= (NUKT) {QP2 + 2QuiP21 + QP 2+ QP20+ 2QuPy +

27

where U is the reduced interaction energy between two
A atoms located on two nearest neighbor sites, being
specifically defined as,

U=gap /KT (7)
(k is the Boltzmann factor) and K is the degree of impor-
tance of the next-nearest neighbor interaction, relative to
the nearest neighbor interaction, and is defined as,

K=5aa ®)

€AA

In this work, we are mainly interested in studying the effect

of different values of K on the ordering behavior of the
lattice.

(4) The difference which arises between identical sites,
due to the fact that they are artificially divided into two
groups (solid and nonsolid), must be minimized. In order
to fulfil this condition, those distributions are only ac-
cepted in which the following constraints are satisfied.

In the acceptable distributions, the probabilities of
occupation of solid and nonsolid sites by atoms must be
equal. These probabilities are equal-to the fraction of A
atom in the lattice, F, where

F=Na

N
where N, is the total number of A atoms in the lattice. The
number of A atoms on nonsolid sites, N,(N), can be
calculated by referring to the left-hand side of Table I, A
basic unit with the configurationof 2,,,Z, ,Z,,,Z,, Z ,,
ZZy,Z,andZ  has 43,3,222,1,1,0 A atoms on its
nonsolid sites, respectively. N, (N) is, then, given by

Na(N) =é_ {4(Q2N3) +32QuNA3 +2Q12NA3) +

2(QuNA + QuNA +4 Q11 N/3) + 2QuNj3 +2Q 0 N3}
=§{2sz+3 (Qa1+ Q1) + Qo+ Qo +4Qu1 +Qos +Qio}

where the factor 1/2 is to prevent overcounting. If
N, (N) is divided by the number of nonsolid sites, —2—1\—1,
then we obtain the following constraint, 3

{2Q2+3(Qui + Q) + Qo+ Qo2 +4Q11 + Qoi + Quo} =F

®
Similarly, the number of A atoms on solid sites, N,(S),
can be calculated, by referring to the right-hand side of
Table L. If N (S) is divided by the humber of solid sites,
N/3, the following constraint will be found,

Qn Pn+2Q21 P +2Qn Pio+ Qo Po+ Qu Pu +4Qu P+
2Qo1 Po1 +2Q10 P10+ Qoo Po =F (10)

There is one more additional constraint, that is the normal-
ization of configurations on the basic unit, which is given

1
2
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by
Q22+ 2Q21 +2Qu2+ Qo+ Qo2 +4Q11 +2Qo1 +2Qu0 + Q=1
(1
There are no other exact constraints. We shall impose
more constraints which are exact only in the global lattice.

They are Q5=Qj and Qj=Qun, if i+j = m+n, or specifically,

Qu=Qn (12)
Q0=Qn=0Qn 13
Qo1=Quo (14)

{5) Now we are able to find the equilibrium state of the
lattice for any given values of F K, and U. First we set up
an expression for the reduced Helmholtz free energy, A/
NKT. This function is given by,

A S

(15)
NkT NkT Nk
The reduced configurational energy and entropy have

-already been obtained in equations 6 and 1, respectively.
We can substitute the expressions for the reduced energy
and enbropy into equation 15, and then minimize A/NKT
in such a way that the constraints given by egs. 9-14 are
satisfied. This minimization is done numerically by com-
puter. Some results of such a calculation are given in Table
11 and the configurational entropy is also plotted versus 4/
IUl (or temperature) in Figure 2, for some given values of
the next-nearest neighbor interaction energy.

+7 4

S/NK ——
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Application to two-Dimensional Lattice
As in the case of the one-dimensional model, we first
have to choose solid and nonsolid sites appropriately, in

“such a way that the nearest neighbor and the next-nearest

neighbor. interactions are both taken into account. The
appropriate way for dividing the sites here into solid and
nonsolid groups is shown in Figure 1(b). One fourth of the

K 0 0.1 02 03 04
-U S/Nk

10 040 026 .017 01l 007
8 --- 066 047 034 024
6 191 154 123 097 077
5 269 227 191 159 132
4 365 325 286 251 220
3 475 442 408 376 345
2 582 562 341 519 497
! 663 - 657 650 643 635
23 679 677 674 670 667
0 .693 693 693 693 693

Table IL The configurational entropy of the one-dimensional
lattice for some given values of the nearest neighbor interac-
tion, U, and some different values of the next-nearest neigh-
bor interaction, K. ’

]
3 2.3
42101

T
3.

>

T ) i T

3 4.3 5.3 6.3

Figure 2. The configurational entropy of a one-dimensional lattice versus 4/IU} {or ternperature) for some given valuesof K and F=5 .
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sites (full circles) are taken as solid sites and those remain-
ing (open circles) are considered to be nonsolid sites. As
shown in this figure, the basic unit is a square with eight
nonsolid sites located around a solid site, four of which
(located at the corners) are the next-nearest neighbors and
the others (located on the middle of the sides) are the
nearest neighbors of the solid site (located at the center of
the square). As in the case of the one-dimensional lattice,

we representeach basic unit configuration by Z;, where the
subscripts i and j are again the number of the nearest
neighbor and the next-nearest neighbor sites of a given

solid site, respectively, wh1cl§ are occupied by A atoms.
There is a total number of 2°=256 configurations for a

basic unit (excluding the configurations of its solid site),
many of which are identical and have equal probabilities.
We shall consider a multiplicity factor, A, for those basic

units with identical configurations of Z; (the subscripts i
and j on A have the same meaning as those for Z). A basic
unit may have 25 different configurations (i=0, 1, ... ,4 and
j=0,1, ... , 4). The values of the multiplicity factor for all
basic unit configurations are given in Table III, as a two-
dimensional matrix. Of course, the sum of the elements of
this matrix must be equal to 256.

. j
1
0 1 2 3 4
0 1 4 6 4 1
1 4 16 24 16 4
2 6 24 36 24 6
3 4 16 24 16 4
4 1 4 6 4 1

Table III. The multiplicity factor of a basic unit with different
configurations for the two-dimensional square lattice, 7L,..

The probability for the basic unit withZ conﬁgur'mon
will be denoted by Q,, (excluding the conﬁgurdnons forits
solid site). The probablhtles for occupation of those solid
sites belonging to the basic units with Z, configurations,
by A and B atoms, will be denoted by P and (1-P, )
respectively. If we follow steps (1) and (2), exacty as we
did in the case of the one-dimensional lattice, the follow-
ing expression will be obtained for the reduced configura-
tional entropy, S/NK,

%:zzj?\.-,oij{PijlnPij+(1-P;j)1n(1-1>ij)} (16)

where the values for A s are given in Table IIL

If we follow step (3) for the two-dimensional square
lattice, the number of nearest neighbor pairs with AA
configuration, N,,, , the number of next-nearest neighbors

with the same configuration, Maa, and the reduced con-
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figurational energy of the lattice, EAvwr will be obtained as,
N—Z_}I\\IA = QuaPas +4Qu3Pa3 + 3Q34P3 + 6QaoPr + 3Q2Pu +

12 Qs3P3 +4Qu1Pa1 + 18QnPx + 12Qu3P1 + QudPu +
QuoPao+ 12Q31P31 + 18Q22P2 +4Qu3P13 + 6QuPr +
12Qu1P21 +3QsoPn +4Qi1P1 +3QuoPo + QiPio a7
%= QuiPas +3QuPs3 + 4QuPss + 3QuPio + 6QuiPy +

12Q53P3 + QaPy + 12QnP3 + 18QuPrn +4Q1dP1s +

4Q31P31 + 18Q2P2 + 12Qu3P13 + QuaPos + 3QusPos +

12Q12P12+ 6QuPa1 + 3Qu2Pe +4Qu1P11 + QoiPoi
(13)

_E oy aa g Maa (19)
NKT N N
where U=g44/kT and €aa is the interaction energy be-
tween two A atoms located on a pair of nearest neighbor
sites. As before, K is the degree of importance of interac-
tion between two A atoms located on two next-nearest
neighbor sites, relative to €aa .

For the reason which has already been given for the one-
dimensional model, some appropriate constraints must be
satisfied. Similar arguments which resulted from equa-
tions 12 to 14 (for the one-dimensional lattice) give the
following constraints for the two-dimensional lattice:

Q43 =Q34 (20)
Qa2 =Qu=0n @n
Qa1 =Qn=Qxs =Qu 22)
Qa0 =Q31=0Q2 =Q1=Qu (23)
Qo3 =Qr=Qu =Qu (24)
Qu =Qn=0Qx (25)
Qo1 =Quo 26)

The following constraint is obtained by using similar
arguments that resulted from equation 9.

Q44+%Q43+]T0Q34+ 5Qaz +4Qu + 12Q33 + 3Q41 + 16Q32+
14 Q23+ZQI4+%Q40 +%le + 18Q22+-23(1Q13+-§-Q04 +
Qu+80Q12+10Q21+2 Q30+ Qun+4 Qi+ 2Qn+

L Qui+2Qio=F
3 3 N

(For obtaining this equation, one should note that anonsolid
site located at the corner of a basic unit belongs to four
basic units in the lattice, but the one located in the middle
of the side of a basic unit belongs to two basic units in the
lattice). The following constraint can be obtained by

similar arguments which resulted from equation 10 for the
one-dimensional lattice).

QuaPas + 4Qu3Pas+ 4QxPu + 6QuPsx +6QuPu + 16Q3P33 +
4QuPa; +24QxPx+ 24Qu3Px + 4Qu4P1a + QaoPao + 16Q31Ps 1+
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36QuP2 + 16Q13P13+ QuPos + 4QosPos + 24 QP12 + 24QuPar+

4Q30Px0 + 6QoPozt 16Q11P11 + 6QaoP20 +4QoiPo; +4QuioP 1o+
QooPoo=F (28)

The equation for the normalization of configurations of a
basic unit, corresponding to equation 11 for the one-
dimensional lattice, is given by:
Q«+ 4Q43+4Q34+6Q42+6Q7A+ 16Q33+4Q4l+42Q32+24Q23+
4Q, +Q,;+16Q;,+36Q,+16Q,+Q,+4Q,+24Q, +24Q,,
+4Q,+6Q,,+16Q, +6Q,+4Q,, +4Q,+Q,, = 1 29
One more constraint is used in the two dimensional
model in ESCM, that is the fraction of nonsolid-nonsolid
and solid-nonsolid pairs with AA configurations are equal.
This constraint, which may be only globally good, is given
by,
Qast 3Qua3+ 3Qu + 3Qa2 + 3Qus+ 9Q33 + Qa1+ 9Qn + 9Q3
+ Quat 3Qa1+ 9Q2 +3Qu3 + 3Qu+ 3Qa1 + Qui= QuaPast
4Qu3Pazt+ 3QauPut 6QuPaot 3QuPut+ 12Qa3Pyx+ 4Qa 1P+
18QuPa+ 12QxPxs+ Q1aPiut+ QuoPat 12Q31 P31+ 18Q0Po+
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4Qu3P13+ 6Q P12+ 12QuPa+ 3Qi0Pwt+ 4QuPH+ 3QuPa+Q
(30)
We are now able to set up an expression for the reduced
free energy of the lattice, it is given by:

4 4
A_SUN[ +KMiD+ S 3 A Qp {Psi InPy + (1P5) In(lP
KT 2o I I j

(3D

where Nij=Naa/N and My = Maa/N, which are the frac-
tions (or probabilities) of the nearest neighbor and next-
nearest neighbor sites having AA configurations in the
lattice, respectively. In order to find the equilibrium state,
we should minimize the free energy in such a way that
equations 20 through 30 are all satisfied. Such a minimi-
zation is done by computer, and one sample of the results
is given in Table IV. The thermodynamic properties of the
lattice have been calculated in terms of the nearest neigh-
bor interaction energy, for some given values of the next-
nearest neighbor interaction (K). Some of the results are
givenin Table V.

Qu 0 |Pas | 405 | Pa0 |.692 [P11 | 393
Qar= Qi 0 {Pa3 | 413 | P31 [.613 [P | 399
Q= Qu= Qa3 015 Py | 412 | P22 [444 |Po1 | .289
Qu1= Q3= Qu= Qi 0 |Pgp | .814 | P13 |.284 |P1p | 324
Qao= Qn=Q2=Qi3=Qu | .003 | Py | .528 | Poa |.216 |Poo |.098
Qo= Qi2= Qu= Qs 0 |py3 | .681 | Po3 {398 {P14 |.399
Quz= Q1= Qo 0 |pgy | 400 | P12 |39 |Poy |.395
Qui=Qio 0 Pz [399 | Py |393 |Njp | 261
Quw 408 [Py | 396 | P3p |-399 [My; [.240

Table IV. The probabilities for a basic unit with different configurations, Q, the
probabilities for occupation of different solid sites (each belongs to a basic unit
with a specific configuration) by A atoms,P, and the fraction of the nearest and
the next-nearest neighbor sites with AA configuration,” Njjand My; respectively,

forU=-1,K=0.3, and F=0.4, forthe two-dimensional square lattice.

K 0 0.2 03 04

.U |-A/NKT -E/NKT S/Nk|A/NKT -E/NKT S/Nk |-A/NKT _E/NkT S/Nk|-A/NKT ENKT  S$/Nk
0| 673 0 673 | 673 0 673 | 673 0 673 | 673 0 673
13] 783 114 669 | .805 137 668 | 816 147 669 | 827 161 666
23| 903 252 651 | 951 313 638 | 974 340 634 | 998 372 626
1 11038 436 602 |1.122 576 546 | 1165 665 500 | 1.220 786 434
2 11620 1368 252 | 1926 1879 047 | 2083 2060 023 | 2240 2240 0
3 | 2405 2400 005 | 2879 2868 011 | 3.120 3119 o1 | 3360 3360 0
4 | 3205 3200 005 |3835 3824 011 | 4159 4.159 0 |4480 4480 0
5 14000 3999 001 | 4791 4780 011 | 5199 5.198 001 ]5-600  5.600 0
6 | 4.800 4800 0 5747 5736 011 | 6.238  6.238 0 {6720 6720 0

Table V. The reduced thermodynamic properties of the two- dimensional square lattice for some given values of
the nearest and the next-nearest neighbor interaction energies.
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Results and Discussion

The order-disorder transition phenomenon is very dif-
ficult to study experimentally because the kinetics of the
solid-solid transition is very stow. It is for this reason that
solid phase systems are notoften found in their stable form,
thermodynamically. Therefore, the solid-solid phase tran-
sition and the related problems, such as obtaining the phase
diagram, should be studied theroretically. Statistical me-
chanics is a powerful tool for the investigation of this type
of problem.

At low temperatures, T — 0 or U — - oo, the lattice
becomes completely ordered and S — 0, and at very high

temperatures, T — o or U — 0, atoms are distributed
randomly and the configurational entropy is given by:

S=kin— N

(NB! [N (1-Bl!

Where, when F=.5 and F=4 the reduced entropies of
the lattice are equal to .693 and .673 respectively.

These values are in agreement with the results of Table
1I (for the one-dimensional lattice) and Table V(for the
two-dimensional lattice). At these limits, on which the
lattice is either completely ordered or completely disor-
dered, the next-nearest neighbor interaction (K) has no
effect on the distribution of atoms on the sites. It has a
significant effect, however, within the intermidiate tem-
peratures where the order-disorder transition takes place.

Devoting an attraction energy for the next-nearest
neighbors, besides the attraction for the nearest neighbors,

Parsafar
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is the same as relating a longer range attraction force to
atoms in the lattice. One then expects the lattice to become
more ordered as K becomes larger, for any given tempera-
ture and U. Our results are in agreement with this expec-
tation, see Fig.2 (for one-dimensional) and Table V (two-
dimensional). Relating a longer attraction force to atoms
(the next nearest neighbor interaction) causes the atoms to
be held more strongly together in the lattice, and gives
them more resistance against molecular agitation. The
entropy will then increase more slowly with raising the
temperature, and the average temperature, at which the
order-disorder transition occurs, shifts to a higher one.
These phenomena are quite in agreement with our results
as shown in Figure 2 and Table V.
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