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Abstract

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian
manifold and Sasaki-Mok metric for the frame bundle of a Riemannian
manifold [1] to the case of a semi-Riemannian vector bundle over a semi-
Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a
semi-Riemannian manifold M, then by using an arbitrary (linear) connection on
E, we can make E, as a manifold, into a semi-Riemannian manifold. When the
metric of the vector bundle E is parallel with respect to the chosen connection,
we compute the Levi-Civita connection of E, its geodesics, and its curvature
tensors. We also show that the sphere and pseudo-sphere bundles of E are non-
degenerate submanifolds of E, and we shall compute their second fundamental
forms. We shall also prove some results on the metric of E.

Preliminaries
Let (V,.) be a finite dimensional inner product
space. For each v € V, sgn(v) is defined as follows

+1 >0

sgn(W={ ¢ p.p=0

-l v.u<0

There exist bases like {e,..., ¢,} in V such that ¢; .
¢; = §; [4]. We call them orthonormal bases. Vector
spaces associated with V such as V*, L(V),®V, and
A"V can be made into inner product spaces in a natural
way. If the inner product is not positive or negative
definite, the restriction of it to a subspace is not in
general an inner product. In fact, if W is a subspace of
v, and W1 is its orthogonal, the restriction of the inner
product to W makes it an inner product space if and

only if W WL = {0} (or equivalently V=W @ Wi). If
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this is the case we call W a non-degenerate subspace. '

Let O(V) denote the space of all antisymmetric
linear maps on V, the linear map A2V — <(V), which
sénds 4 A v to the map x — (vx)u - (u.x)v, is an
isomorphism of inner product spaces. We shall
identify A2V and <>(V) under this isomorphism.

By manifolds we mean C> real manifolds. The
vector bundle (E, ©, M, F) will be denoted by E M,
and the fiber over p € M will be denoted by E,. VE
will denote the vertical bundle of E. It is well known

that VE is a subbundle of TE [9]. For §,n€ E with
() =n(n) we set Ien = dilza) & +1tn). Clearly
t

Ien € (VE)g, and it is called the vertical lift of § at 7.
To each connection V on E there correspond a
horizontal subbundle % (of TE), a connection map &:
TE — E, and a parallel system IP [9]. Let pe M,
ue T,Mand § &€ E,. There exists a unique vector on
?Cg such that its image under dr is 4. This vector is

called the horizontal lift of u at & , and it will be
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denoted by ug. The set of all sections of a vector
bundle E M will be denoted by T'E.

Let E be a semi-Riemannian vector bundle over M.
The vector bundles E* (dual of E), L(E), @ E, NE (1
< r) can be made into semi-Riemannian vector bundles
in a natural way.

Let M be a semi-Riemannian manifold, a
submanifold N of M is called semi-Riemannian
submanifold, if for each p € N , T,N is a non-
degenerate subspace of T,M (of course, if N is
connected, then the signature of the inner product on
each fiber is constant.). Clearly, in this case, the
restriction of the metric of M to N makes it into a
semi-Riemannian manifold. Let VM | VN denote the
Levi-Civita connection of M and N, respectively, and
E be the restriction of TM on N (or equivalently, E be
the pull-back of TM over the inclusion map N = M).
The pull-back of VM, which is a connection on E will
be denoted by the same symbol VM. Let p;: E — TN
be the orthogonal projection. Then for each U, V

ex NcTE

VEV=p(VIV)

[8]. Let TN: be the orthogonal complement of the
vector bundle TN in E, and p,: E — TN! be the
orthogonal projection. The map T : TN ® TN — TN

which is defined by 7@,V )=p, VIV )=VHv-Viv
is a symmetric tensor, called second fundamental form
of N[8]. Knowing mn, we can compute different
curvatures of N in terms of the corresponding
curvatures of M. Let RM and RV denote the curvature
tensors of M and N, respectively. Then for each U, V,
W, P ex N wehave

<RN(U ,V)(W),P>=<RM (U, V)(W),P>+<
oU,.P), m7(V,W)>-<n(V,P), (U, W)>

{8]

Let TN be a line bundle admitting a section Z such
that < Z , Z > = £1. Then the second fundamental form
of N determines a symmetric bilinear form 7 on TN as
follows:

U,Vegx N aU ., V)=<xwn(U,V),Z>
The bilinear form 7 in turn determines a self-adjoint
bundlemap S : TN - TN

U,VegN <SWU),Vv>=mU,V).
The bundle map § is called Weingarten map of N
(with respect to Z), and can be computed directly as
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follows:

Ueg N swy=-vlz
[8]. Knowing §, the second fundamental form 7 can be
computed as follows:

U,Vex N =wm(U,V)=<8S(U),V>sgn(Z)Z

Fundamental Vector Fields of a Vector Bundle
Assume that t: E — M is vector bundle. Let

(x, U) be a chart of M, and ' (U) =5 U x IRk be a
trivialization of E over U. If x = (x! .., x?) and y =
(y!..., y¥), then

xlom,..xrom,y! ., yh

is a chart of E whose domain of definition is 7-! (U).
For each p eU, the restriction of y” (m=1,2,..., k) to

E, belongs to EF. Let ¥=x‘omfori=1,2,.,n

Clearly the vector fields 9 m=12,.. k)

oy
generate the vertical subbundle of TEl ! ().
A map F : E — E is called a strong bundle map if
every fiber E, (peM) is invariant under F. If
restriction of F to each E,, is linear, it is called a linear

strong bundle map.
To each strong bundle map F : E — E (not
necessarily linear) there corresponds a vertical vector

field of E (a section of VE) which will be denoted by F
and is defined by

~

EcE  Fe=1:F(§)

Fis smooth, because in local coordinate systems
defined above, if {y,..., ¥} is dual of {y! ..., y*},

and F is expressed as F(§) = fr(E)y,,, then f ’s are
smooth (f™ = ym o F), and by a direct computation

we have 175=ﬂ" (&) -——a—
oy”

For example, if F = 1, then 1 is the radial vector
field on E. The set of all vertical vector fields on E as
well as the set of all strong bundle maps on E, are
modules over C= (E). From the definition of F and the
local representations of F and F , we see that the map
F — F is a linear isomorphism between the above
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modules.

Let V be a connection on E throughout the paper,
the horizontal subbundle of E (respectively, its
connection map, and its parallel system) will be
denoted by 7 (respectively by k and IP).

To each strong bundle map A : E — TM (not
necessarily linear) there corresponds a horizontal
vector field on E (a section of #) which will be
denoted by A and is defined by

EeE A=A

To prove smoothness of A, we obtain its local
representation. Let

veTM, e Ep.v=vi£(p),§=§ml//m(p),

and I'},, be the Christoffel symbols of V. Then

=02 () VT (&)
&' AWy

[9]. So if A is expressed as A(@):Ai(g)i(A"=¢x‘oA)
axl

then

A=A ©)-LO-AOETHN-2®
ox oy

For example if E = TM and A = 1y, then 17y is
the geodesic spray of V. The set of all horizontal
vector fields on E as well as the set of all strong
bundle maps from E to TM are modules over C=(E).

From the definition of A and the local representations

of A and A it is clear that the map A — A is a linear
isomorphism between these modules.

For each X eI’ E (resp. Ue x—M))r(‘:m (resp.

Uom) is called the vertical lift of X (resp. the
horizontal lift of U) and it is denoted by IX (resp. U).

Proposition 1. Let F : E > Eand A : E > TM be
lincar strong bundle maps, and R be the curvature
tensorof VihenforX ,YelTEand U ,Ve ¢ M we
have
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X .1Y]=0 (N
U.1X]=1VyX 2)
[U,V1=[U,VI-R(U,V) (3)
UX,Fl=IFoX @)
[U.F1=VyF )
UX,Al=A0X-VanX ©6)
(U, A1=LuA-R U, A0X) 7

In the above relations, R(U , A(.))(.) denotes the
bundle map

E—>R(UOR(E), A(EINE)

A(.) denotes the bundle map & —> A(§) and Ly A:
E — TM is the Lie derivative of A with respect to U
given by

XeTE (LyAXX)=[U,A0X]-A(VX)
Proof. For a proof of (1) and (2) see [9]. The
relation (3) is followed by the definition of R (see [9]).
To prove (5) and (7), note that for each § € E, there
exist some X €l E such that X, =& and for each

ue T,M, VX =0 [9]. For such X eI’ E, by a
computation in local coordinates we obtain

(U,Fle=[U,IFoX

[U,Ale=[U,A0X )

SO

(U, Fle=[U,IF o X le=( VuF 0X )e=( [(VuF XX)+F
(VuX)Me=1e(Vu F)Xp)+1eF (Vu, X)=1£(Vu F)E)
=(VuF)e

And for the relation (7) we have

[U,A)e=[U,A0X Ie=([U,A 0X1)e- R (U, AQX))e
=(LvA) X)+AVuXNe- 1R (Up , A Xp)NE)
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= (LoAYE) )e- IR (Up , AENE) = Lu M- RWU , AOY))e

The assertion (6) is also proved by a computation in a
local coordinate. The equality (4) is proved by using
the definition of Lie derivative and the flow of IX

which is @ (&) =&+ Xz )

Lift of Semi-Riemannian Metrics
The linear bundle map h from the tangent bundle

TE _1t£) E into the vector bundle E @ TM — M, defined
by h: D k(D) , dn(ﬁ)) is an isomorphism over each
fiber. Thus TE 5 E is the pull-back of E® TM — M

over . E— M and we can see that

XeTE, UexM W(X+U)=IX+U
(for definition of A see [3]). Vector fields of the form

IX and U generate the C=(E)- module g E[3].

Now, let E be a semi-Riemannian vector bundle,
and M be a semi-Riemannian manifold. Then we can
naturally make E ® TM into a semi-Riemannian vector
bundle and by using the map A , we can define a semi-
Riemannian metric < > on E as follows:

U, 0eT:E <i,0>=<k().k(V)>p+<dr(®),dn®) >y

Thus E becomes a semi-Riemannian manifold. At
each point £ € E , the horizontal space % and the
vertical space (VE), are orthogonal to each other, and
the inner product on 3(,’& and ( VE) are the same as the
inner products on Tge) M and E ;) under the
isomorphism dr : # — Ty M and k : (VE); — Epg,y,
respectively. So scalar products of horizontal and
vertical vector fields of E are zero.

Let C be a set and G be a semi-Riemannian vector
bundle. Assume that f, g: C — ( are functions such
that for eachx € C , f{x) and g(x) are in the same fiber.
Then < f, g > denotes the function from C to IR given
by

VxeC <f,8>W=<f(),g 0> -

Now,letF, ,F,:E—>EandA,,A,: E— TMbe

strong bundle maps (not necessarily linear) clearly

<F|,F1>1E=<F|,Fo>r <Ay, A2>1=<A1,A2>M
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From now on we assume that the metric of the
vector bundle is parallel with respect to V, namely for
everyX , YelTEand Ue g M we have

U<X,Y>=<VyX,Y>+< X, VyY >

The Levi-Civita Connection of E

To compute the Levi-Civita connection of E, we
need derivations of some functions on E along some
fundamental vector fields.

Proposition 2. Let X, Ye I'E,U ,Ve g Mand
F:E—E,A:E — TM be linear strong bundle maps.
Then

V< F.Xom>=<VyF,Xox>+< F,(VwX)ox> (1)
IY<F ,Xon>=<FoY,X>on )

V<A, Uor>=<VyA,Uor>+< A,(Vii)or > (3)
IY<A,Uon>=<AoY,U>onm “4)

Proof. The proof of (1) (resp. (2)) is the same as
the proof of (3) (resp. (4)). So we prove (1) and (2).
By definition

(Y )e=1I¢ Yﬂ(§)=%|:=o &+ &)

soforn(&)=p

(JY<F.,Xon>)=(Y)<F,Xon>
=‘d7‘|,=0<F,Xo > (E+ 1)

=Z—",=O<F(5+tYp),Xp>

=Zle0(<F (€), Xp>+1<F (¥,) X,>)

=<F({¥,),Xp>=<FoY,X>0nr(¢)
This proves (2). Now if V, = 0, then concerning (1)

there is nothing to prove. So let V,, # 0, and suppose
that o :] -€, €[— M is a curve such that &/(0) = V,. Set

a(r) = (IPE)®). So &' (0) = (V)e. We can find a

section of E say Y, such that for small t , Y, = a(),
S0 VVPY=0. Now we are ready to prove (1). From the
above we have
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(V<F,Xor>)E)=Ve<F,Xom>
=Zlo <F, X 01> (0 ()
=24 <F @(1)), Xap>= e < F (Ya) . Xap>
=d| o<Fo Y. X> (@)= 0)<FoY,X>
=Vp<FoY,X>
=<VVP(Fo . Xp>+<Fo Y)(p),VVpX>
=<(Vy,F) %) +F (Vy,¥), Xp>+<F (), Vy, X >
=<(Vy,F)E) . Xp>+<F (£),Vy,X>

=<WF ,Xorn>E)+<F,(VvX)orn>(§).+

Let <(E) be the vector bundle over M, whose fiber
at each point p € M is <XE,) and let L(A2TM , <XE))
be the vector bundle over M, whose fiber at each point
p e Mis LNTM , <(E,)) (space of linear maps
between these vector spaces). Then R(the curvature
tensor of V) is a section of L(A2TM , <X(E)). As
mentioned above, O(E) and <(TM) are naturally
isomorphic to A2E and A2TM. So we use them
interchangeably, and assume that

R €T L(A2TM , A2E).
Then

R* e L(A2E , A2TM).
or

R* eT L(A2E , )(TM)).

which is defined explicitly and uniquely by the
following formula

X, YeTE, U, VexM <RU,V)}X)Y>g

= <R¥(X ,Y)U),V >y.

For example if E = TM , and V = V¥ (the Levi-
Civita connection of M), then R* = R. In other words,
R is symmetric with respect to the inner product of
A2TM.

Theorem 3. Let V denote the Levi-Civita
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connection of E. If F: E—> Eand A : E —» TM are
linear strong bundle maps and X, Ye TE, U, Ve ¥ M,
then

VixIY=0 (5)
VuV:V’W-;_R(lT V) ©6)
v,xa=;—1e*(_.,X')(T) )

VixF=IFoX ®)
VixA=A 0X+;_R* CX)AQ) ©)
%F=%‘F+;-RW (10)
VgA=Vua. -%R(U,'X(.))(.) (11)

Proof. The theorem is a consequence of the
identities in section 2 and this section and the
following two assertions:

1) The Levi-Civita connection of a semi-
Riemannian manifold N is uniquely determined by the
following formula [9]. For U, V, W e gN

2<VuV,W>=U<V, W>+VW U>-W<U V>

+<[U,V].W>-<[V,W],U>+<[W,ULV>

A A
2) Two vector fields U,Ve g E are equal if and
onlyif foreachZel'EandWe x M

A — A — A A
<U,We=<V,W>,<UIlZ>=<V IZ>

We prove only the assertions (10) and (11). Let us
prove (10).

2< VEF,IZ>=EJ<F,IZ>+I?< 17, El>-lZ< f/,f>
+<[U.F1.1Z>-<[FIZ], U>+<[IZ, U].F>

—U<F.Zon>+<VyF.1Z>-<-1(FoZ),
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Us+<-1VyZ, F>
=<VyF,Zon>+<F,VuZ)on>+<VyF,

Zomr>-<(VyZ)on,F>

=2<VyF,Zon>=2<Vy F+;_R* CFOND.IZ>
2< ﬁﬁﬁ, W>= I—J<}?, V—V>+f<ﬁ/, U>-W< l_/,f>
+<[L—/,i7] , V.V>—<[I::, ﬁ/], l_/>+<[lx/, l_/]»,1?>
=f<W,U>on+<VF,,7“, V_V>-<-m, U>
+<W-R(ﬁ U),F>
=dn(F)<W,U>-<RW.U),F>
=-<RW,U),F>=<RU,W)(),F()>
=<R*,FO)NU),W>=2<Vy F+1R*(.FO)U), W>

Now we prove (11).

< V-7UZ,IZ>= U<A JZ>+A <IZ, U>-iZ< (_/,Z >
+<[U,A)IZ>-<[A,IZ], U>+<lIZ, U], A>
=-1Z<Uom,A>+<Ly A-R(U AW,
IZ>-<-M+W(,)Z, U>

+<-1VyZ, A>=-<U,A0Z>-<R(U.AO)),IZ>

+<AOZ,U> =2<VyA-IR(U.AO)).IZ>

To complete the proof, fix € E, and suppose X is a
section of Esuch that X,=¢& and foreachu e M,
V. X = 0. As mentioned before for each U £ ¥M we

have [U, Ale=[U,A 0 Xk. By a direct computation we
can see that foreach U , Ve ¥ M
Us<A,Vom>=Up<A0X,V>.

Now

2< VA W>(E)=U< A, W>+ A< W, U>- We<U, A>
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+<[U,A],W>()-<[A, W]. U>(E)+<[W,U],A> (&)
= Up<A ,Wom>+ Ai<W,U>on- We<Uom,A>
+<[U,A0X], W>(£)-<[AoX, W], U>(&)
+<[W,U],A>(£)

=Up<AOX,W>+A0X )p<W,U>- Wp<U. A0 X>
+<[U,A0X],W>(p)-<[AoX,W],
U>(p+<[W,U],AoX>(p)

=2<VH(A0X).W> (p) =2 <(Vu AYXHAV X)W > ()
=2<Vu A, W>(©)=2<Vy A-LRWU AN W> ()~

Geodesics of E

We know that for each { € E, and OeT:E there
exists a unique geodesic y:]-£,e[—E such that

Y@ =Eandy'(0)= 0. To determine it, first suppose
that { is vertical. So 3:[.51] ,forsome ne E,. Lety
be the curve defined by y(1) = £+ m which is entirely
in the fiber E,. Trivially, y (0) = £ and y'(0) =I¢n=3

Now choose X € I'E in such a way that X,=1, so
Y @ =Xy, thus

67’0) Y'= (€71 xI X)yn=0

Therefore, yis the desired geodesic.

Clearly, the fibers of E are semi-Riemannian
submanifolds of E and the restriction of the metric of
E 10 them is their orginal metrics. By the above result,
they are geodesically complete.

Now suppose that b is not vertical and Y is the
desired geodesic. Thus y°(¢) is never vertical. Set o =
®O Y. aisacurve in M, and o (1) = dn(y'(1)) # (.
Consequently we can choose U € ¥ M such that for
small ¢ , Ugg = a'(t). We can also choose X € TE in
such a way that for small ¢ , X,,,, = ¥(t). To compute
-V—77 7', we find a suitable vector field on E for which y
is an integral curve for small values of t. Clearly we
have

dr(y' ()= (=Uay

and
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k('(0)=k({(X 0a)()=k(d X(cx'(D))
=VapX=Vu X)ao

Therefore, if we set Y=VyX,thenU+IY is the
suitable vector field.

Set, v=dm(V).n=k(V). So X)) =U,=v .Y, =17,
o(0) = p. Since ¥ is a geodesic we have
0= Vyoy'= (Vi (U+IY )(y(1)

=(Vg U+ VilY+ VyU+ Yy IY)(y(1)

=(VoU - 1R U U)+R¥C, D(U) +190 V) (1)
The above relations imply the following

(VIU Y1) +R* (7(1)  YaoXUatn) =0 (1)

(VoY Xa(n))=0 )

Now, recall that for a differentiable curve h: I - E, |
and o : I > M with a(0) = p . we can define a section
of E along « as follows:

tel X(t) = (IP h(1))(1)
The covariant derivative of X, along o is as follows:

VX = APA(0))(1)

By repeating this formula for second derivative we
have

Va'(r) Va'x = (IP A" (1))(1)

In the special case of our problem, we can assume that
X oy = (IPGh(1))(1) , for some b 1 — E,

(P " (0)(0)= VgV X) = V¥ = (VY )(o()) = 0
Thus, h" = 0. But

h(0) = (P h(0)O) = X g9y = V() =&
and

() = (PR ONO0) =Vyy X=Yq0 =Y, =17
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So A(1) = & + tn. Therefore, the geodesic y is of the
following form

Y1) = (P& + M)
and oris a curve in M for which we have
V' + R¥(y (1), YN a'(1)) =0
From this equality we have

Vi@ + R¥((IP (& +mN) , (1P n)(1) (a'(1)) = O

or

V@ + R¥((IPE)0) (P () (e(1) =0 (3)
So, a is a solution of the equation (3). with initial
condition, a'(0) = v. In some special cases, the
solutions of (3) can easily be found. For example, it V
is flat (RA= 0), then the solutions of (3) are geodesics
of M. If v is horizontal (1 = 0), then a is a geodesic of
M. Thus, geodesics of E with horizontal tangent vector
(at some point), are obtained by parallel transport of
some points of E along some geodesics of M.

Curvature Tensor of E

Theorem 4. Let R and RM denote the curvature
tensors of V and VM, respectively. Assume that X, Y,
ZeTCEand U,V, W e ¥ M. Then

RUX , I1Y)IZ)=0 (1)
7&([7,(X)(IY)=-%[R*(X,Y)(U)
%R*(.,X)(R* C.OD)) (2)

RUX. 1YY U)=R* X, Y)(U)+ L (R*(., X)R* (. Y)(U))

-R* (R X)) 3)
R(U.IXXV)= 3 RU, VX))~ 3R UR* (X0

+35(Vu R, X)(V) 4)

_ / -
RW,VYUX)=IRU,VXX)- %(Vv R¥)(., X))

HVeRHCXIV) - R U R* XN
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+IRV.R*CXXDNO) 5)
R, V) (W)=R" U, V)W) +UVWR) (U, V)
+3R* R WU, VIO)W) - 2R* (R (V WOV )

+IR*R (U, WHONV) ©)

Proof. The proof is by direct computation and all
these computations are short except (6) which is
lengthy. We compute the relation (4).

RUIXXV)=ViVixV-VixVi V- V[ﬁ,IX]r/

=Vi GR*, X)(V))- @x(VuV-%R W.V)-Viv,xV
= VR XV R U R CXOV N0

SR X)VuV)+1 IR U,VXX)

SR¥ (VU X)) =1 IR U,V XX)

IR W R* CXHVNO+ 30 RO XNV)

Proposition 5. Let the metric of M be positive or
negative definite. Then VR = 0 if and only if R = 0
and VRM = ().

Proof. First suppose R = 0 and VRM = 0 (this part
of the proposition needs no special assumption on the
metric of M). By using formulas (1)-(6) and merely
the assumption R = 0, we find that when at least one
of the vector fields ),(\f’ and Z is vertical then
R .¥)2)is zero. Now let U, V, W € ¥ M. Then

RWU.VYW)=RM" WU ,V)W).

To prove that V R=0, we check all possible cases. For
example

(VixR)AY:  I2)AY3) = Vix (RUY, . IV2)(IY3))
- R(Vix IY1.IV)(AY3) -R(Y , Vix IV2) (IY )

- RUY1. 1Y2)(Vix I Y3) =0
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The proof of the assertion in other cases is’in the same
way. In computation, there appear expressions which
involve values of R or R* which are zero. The only
case for which we use VRM = () is the following
(VaR)Vi, V)(V3)=Vi (R (Vi, Va)(V3)-R(Vis V. Va)(Vi)
RV, ViVa)(Vs) -R(Vi Vo) (V5 V3)=ViERM (Vi Va)(V5)

-R(Vu Vi, Va)(V3) - R(Vi. Vi Va)(V3) - R(V). Va)(Vy Vi) =

VurMV1 V2)(V3) - RM (Vu v, v ws) -RY (v, Vi va)vs)
-RMWVL VUV = (VuRMV V) (V3) =0

Now assume that §;€=O. Let X,Y,ZeT E and
Ue ¥ M. Then

0=(VaRYIX ,IY)YUZ) =V RUX ,IY)IZ))
-R(Vii IX 1Y YUZ) - RUX ,VGIYYIZ)-RUX 1Y)
(Vi 1Z)=RAY, VaIX )AZ) -RUX , V5lY YAZ)
-RUX Vi 1Z) Y) +RAY, VGZ)(IX)

All the terms in the above expression are in the same
form. We compute one of them.

RUY, Vil X)Z)=R(Y, IVuX +R* (. X)(U)XIZ)

=RAY 3R* (. XNUNUZ)= LRV . Z) R X))

+% R*(,Y)R*(.,Z)R* (., X YU

So by substitution, we obtain

0=R*(Y,Z)0 R*.,X (U)+3R*(..Y) 0 R¥(..Z)
OR*(,XXU)-R*X ,Z) o R*(.. Y XU) - 1R*(..X)
OR*(.,Z)OR*(.,Y X U)-R*(X ,Y)oR*(..ZXU)
-R*(.X)OR*(,Y)0R¥(., ZXU) +R*(Y, X))

OR*(, ,Z)(U)+%R*(. JY)OR*(,X)OR*(.,ZXU)
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In putting X and Z in turn in place of the dot in the
above expression we obtain
R¥X ,ZYoR*(X YYU)-2R*(X Y)Yo R*(X,ZYU)=0(T)

R*Y.Z)oR*Z.X)YU)-R*(X,Z)o R*(Z.YXU)=0(@®)

Now interchange X and Z in (8) and sum the resulting
expression with (7). From this and the fact that U is
arbitrary, we obtain

R*X ,Y)oR¥*(X,Z)=0

Now,setY=Z,and T = R¥(X , Y). Clearly, T is an
antisymmetric map for which 72 = (). But such an
antisymmetric (or symmetric) map is zero, because

0=<T2(v), v>=2£<T(v), T(v) >= 2IT(V)I2= T(v)=0
Consequently, R* = 0 and so R ="0. Now by the

computation in the first part of the proposition we
have

0=(Vi R)(V1,V2)(V3) = (VuR™(V\, V2)(V3) = VRM=0

Sectional, Ricci, and Scalar Curvatures of E

With R in hand, we can easily compute other
curvatures of E. In general, if o is a non-degenerate
plane of TE, for some § € E, and {?).f}} is a base of
o, then the sectional curvature of E along o, denoted
by 7(5 is

- A A A A
1—( _ <R ,vW.u>
o=

A A A A A A 2
<UU><V,D>-<U,V>

(The denominator is non-zero if and only if o is non-
. > A A .
degenerate). To indicate that {u, v} is a base of &, we
A A
denote o by o (u, v).

Proposition 6. Letpe M, u,ve T,Mand §, ¢
n € E,. Assume that

<u,v>=0,<n,{>=0, <u,u>|=|<v,p>|
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=’<n,n>’=|< g, §>|=1.

Let K be the sectional curvature of M. Then

Kotae.e) =Ko - i—sgn @ sgn OIR@, WOE (1)
;(a(;g,lgn)=4lsg" () sen (MIR*E, ) I @)
Katgni =0 3)

Proof. Clearly
<ﬂ§,ﬁg><'f)g,T)§>-<E§,B§>2=5gn ) sgn (V)
and
<R(ug ve)ve) ,ug >=

<®Mu, D)+ L (VoRY, VE)

+5 R*E. R, DENW)z +5 R*E, RV, 0E)w)e

+3 R*E.RW, DENW)g. ue>=<R" (@, v)(v) . u>

+IR*E, RW, VENW . u>=<R" W, )V .u>

+3<RO.E) R, VE) >=<R" (. V() .u >

IR@ oI

So (1) is proved. On the other hand, clearly
<ug,ug><len g n>-<ue,len = sgnu) sgn(mn)

Furthermore

<RGig, Ieigm) iig>=<- 3 (R*(), W)

- R*E MRHE M) g >=
-3 <RHEMR*E. W), u>
= L<R*E, W), R*E, mw>=1IR*E, mw I

So (2) is proved. In the same way (3) can be proved. «
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Let £ € E. Assume that {2 ..., &/} is an orthonormal

basis for T¢E. Let § (resp. 7) denote the Ricci
curvature (resp. scalar curvature) of E. Then

—_ k —
SAR.D=%., sgn@)<RE. V) .8> 0. Ve T:E

_ k —
re=Y,., sgn (©) S, )

Proposition 7. Let p € M, § €E,. Assume that
{v; ..., U} and {7, ,..., ,,} are orthonormal bases for
T,M and E,, respectively. If § (resp. r) denotes Ricci
curvature (resp. scalar curvature) of M, then for

{,nekE,and u, veT,M we have

Saen, 1) =4l— Ysgn (V) <R*(E, (i) .R*(&, M(vi)>

i=1

C))

Stz 1em = B sgn () <V RE. D@, vi> (5)

i=1
Sz Ve =S, V)+; 50 sgn (1) <R*E, )W),

R*&, n)(v) >

-3 Zie1 sgn (V) <RV E) . RWi, VYE)>  (6)

Fe=rp+ s Ty Ty sgn (0) sgn ()l RAE, 1) I

_3 :,'tj=l sgn () sgn(V;ll R(vi, v,')(§)||2 )]

The proof is by direct computation.

Proposition 8. If the metric of M is definite
(positive or negative), then E is Ricci-flat if and only
if R =0 and M is Ricci flat.

Proof. Suppose R = 0 and M is Ricci flat. (This
part of the proposition needs no special assumption on
the metric of M). Relations (4)-(6) show that E is
Ricci flat. Conversely, suppose E is Ricei flat.
Let p € M and §, n €E,. Assume that {v, ,..., v,} is
an orthonormal basis for T,M. Then

0=SUzn . Jem) =1 Tiy + R*E, M), R*E, D)) >

=+1 5, I R*E, Ml

= R*§,nXv)=0
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Since, € and 7 are arbitrary and {v,,..., v,} is a basis

for T,M we have R* = 0. Therefore R = 0. Now by

relation (6), for arbitrary u, ve T.M we have
0="5(uz, ve)=Su, 1) +0

Therefore § =0

Proposition 9. If the metric of E is an Einstein
metric, then E is Ricci flat.

Proof. By the definition of Einstein metric there
A A
exist A € IR such that for every U,V.c ¢E,

- A A A A
SU,V)=A<U,V >
Thus, specially for each £ € E

SULEeE)=A<IgE IgE>=A<E, E>.

On the other hand we have

3‘(155155){?2"; 21 (0) <R*(E.EXV) R*E, EX)>=0.
i=]

So,foreach e E, A< &, &> =0. But for some & we
have < €, £> #0, so A= 0. Therefore E is Ricci flat. »

Sphere Bundles and Pseudo-Sphere Bundles
Let (V, <>) be an inner product space. The set

{fveVi<v,v>=1}

is denoted by S and is called the sphere in V. Similarly
the set

{veVi<v,v>=-1}

will be denoted by § and we shall call it the pseudo-

sphere in V. When § (resp. §) is not empty, it is a non-
degenerate submanifold of V whose dimension is one
less than that of V, and its sectional curvature is 1
(resp. -1). Let E be a semi-Riemannian vector bundle,
its associated sphere bundle E; and its pseudo-sphere

bundle ES" are defined as follows:
Eg={eEI<t.E>=1} Ey={{c E|<§,§>=-1}

The bundle Eg (resp. Eg), if not empty, is a
submanifold of £ whose dimension is one less than
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that of E. Let Z denote the radial vector field of E (Z =

1g). For each § € Ey, (resp. § € Ep), Z; is a non-
degenerate vector, and by an elementary computation

we see that Ty Eg (resp. Ty Ep) is equal o Zé. So Eg

(resp. Eg) is a non-degenerate submanifold of E, and Z
is orthogonal to it. Since Z is a vertical vector field for
each § € Eg (resp. § € E¢) we have

He < TeEs (resp. TeEy)

So, each horizontal vector field along E (resp. Ep) is

tangent to it.

Proposition 10. Let 7 be the Weingarten map of
A
Eg (resp. Ep) with respect to Z. For each ueT:Es
(resp. TeEp)

T(W)=-Ick (1)

Proof. Let dn({)): uand k(z/4\)= n,s0 1/4\=z;¢+l.5n.
Now by definition of T

T(@)=-VaZ=-Vagszen 1e=-Vaele- Vien It
— e . . A

=1e(VilEXE) -5 (R*E, O@) el e() =-len = -1k (1>»

Proposition 11. If © and 7 denote second
fundamental forms of Eg and E¢ respectively, then

A A A A A A

UVexEs nU,V)=-<k(U),k(V)>Z

A A AN AA A A

U,Ve X Ep alU.V)=<k(U),k(V)>Z

N A A
Proof. As mentioned in section 1, for U,V e ¥ Es,
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and £ € E we have
A A N A
aUe, Ve)y=<TUeg), Ve >sgn(le) e
A A A A ~
=<-lek(Ug) , Ve>Ze =<k(Ug) . k(Ve) > Ze

For Ep a similar computation can be done.
Now, we can easily compute the curvatures of Eg or
Eg. For example, we see that sectional curvatures of

Eg and E¢ in the direction of the planes which have at

least one horizontal vector are the same as those of E.
and in the direction of the vertical planes they are
constantly + 1 and -1, respectively.
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