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Abstract
- Following recent works of several authors like Huilgol, Bhattacharya et al. and
Javadpour et al., this paper is to contribute further to the literature of axial flow in a
rotational coaxial rheomefer. We consider axial flow of Herschel Bulkley model
between two concentric cylinders with the inner one rotating, while the outer
cylinder is held stationary. An attempt has been made to direct the analysis toward

an examination of the relationship between moment (M) and angular velocity (£2) at
the inner cylinder. The radial dependence of the shear stress and viscosity follows
directly by our mathematical analysis with a simple numerical procedure. We
describe the relationship between shear stress and shear rate and the dependence of
these on axial flow rate in the annular region, for power law and Herschel Bulkley

fluids,

Introduction

Helical flow is generated by rotating one or both of
two concentric cylinders while simultaneously imposing
an axial pressure gradient upon the fluid in the annular
space. We are concerned only with the case where the
outer cylinder is stationary and the inner cylinder rotates
with angular velocity Q . It can be shown from the
equation of motion that the stress field, regardless of the
fluid rheology is given by

M

Inr?

where M is the torque per unit length. The annular
gap between the inner and outer cylinders is kept small
in comparison to the diameter of the cup or the bob in
order to reduce the secondary flow within the annular
space.

Theoretical analysis for helical flow was first
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considered by Rivlin [1}. Subsequently, several authors
have studied the problem of the helical flow of general
fluid making no special constitutive assumptions other
than incompressibility [2-5}. Rivlin presented his results
in terms of eight material functions. Noli and Coleman
showed that only three are necessary. Fredrickson [6] has
derived a solution for the combined axial and tangential
flow for an arbitrary, inelastic, non-Newtonian fluid in
an anulus. His equations are actually a solution to a
special case of the system of differential equations
derived by Rivlin [1]. He has also shown how his
equations could be generalized to give the solution of the

problem posed by Rivlin. Both Coleman and Noll [4]
and Fredrickson [6] concluded that the helical flow of any
fluid may be characterized by two parameters, the angular
velocity and the shear stress-shear rate, which are
dependent upon the axial pressure gradient. Dierckes et
al. [7] have presented an analytical solution of the
rotating outer cylinder, for power law fluid ending with
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two non-linear differential equations for the components
of velocity. These equations which are complicated and
required numerical solution retained the axial pressure
gradient term as one of the variable parameters. Specific
helical flows have been studied experimentally by some
authors [7,8]. Tanner [9] presented the theory of helical
flow as applied to a model due to Oldroyd [10] along
with some experimental results. Savins ef al. [11] have
presented a quantitative prediction to show how the axial
discharge rate and pressure gradient and angular velocity
and torque become coupled when a fluid exhibiting a
shear-dependent viscosity behaviour is subjected to a
helical flow field. They presented a numerical solution
for an Oldroyd type of constitutive equation. They
mentioned that the most interesting consequence of the
coupling effect was that the axial flow resistance was
lowered in a helical flow. Bird et al. {12} produced an
analytical solution of the equation for the special case of
narrow gap between the coaxial cylinders for special case
of power law fluid i.e. n = 1/3. Huilgol proposed a trial
and error method to solve the helical flow for general
fluids in terms of four parameters including one related
to pressure drop along the axial flow {13]. Bhattacharya
et al. [14] solved the problem of axial flow in a
rotational rheometer for power law fluids, along with
some experimental results. In their analysis the axial
pressure gradient term was eliminated; thereby redubing
the number of variable parameters studied in this
analysis. Following this study, Javadpour er al. [15]
extended the analysis to that for helical flow of Bingham
plastic fluid in an annular space. They were able to
obtain the shear rate, shear stress and viscosity
distribution for different values of flow rate, torque and
yield stress.

In this paper, the axial flow of the Herschel-Bulkley
model through the annulus between two concentric
circular cylinders is studied.

MATHEMATICAL MODEL
We consider the motion generated by a cylinder
rotating (the bob) inside a fixed concentric cylindrical
housing (the cup), with the velocity distribution referred
to cylindrical polar co-ordinate of the form
v =v(r), v,=0, v4=r a1 )
which automatically satisfics the equation of continuity.
When v=0, we have a velocity distribution suitable
for use in the problem of flow between rotating
concentric cylinder, and when ® = 0, we have a velocity
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field appropriate to steady flow through a pipe of circular
cross section. An attempt has been made to direct the
analysis toward an examination of the relationship
between moment (M) and angular velocity (Q) and the
dependence of this on the axial flow rate.
We express the gravitational force in terms of a scalar
potential y by
g=-V¥ 2
and define
O = P+pV¥ 3)
where p is the fluid density (constant), P is the fluid
pressure. Thus, the components of the equation of
motion, written in terms of physical components of the
stress tensor are

1 d 1 bl 2
— = (P ) o gy = DT @ “
rodr TV, 0TS, P )
1 d o
2L y-22 -0 o)
r o dr o) oz
‘1 d 2 &P
— = (r°t -——==0 6
’ dr( (78)) E ()

where £(,,),t o), 1), [ gg)» are the usual components

of the stress tensor.
In the present example, we obtain

V' . ro’
f<n>="{ﬂ§)’ Le)= ¢

] -
where 1, the shear stress, will depend on the total rate of
shearing, &, given by
& =V(u)+re)? ®
We know from (1) and our postulate of a simple fluid
that the stress can only be a function of r. This leads to
the conclusion that ® can at most be of the form

7€) Q)

® =g+ 20,z + ¢, ®
where o and ¢, are constants. Then integration of (5)

and (6) results in

1
z(n)zw-n»—r-ﬁ (10)
fry= = €+ ¢, an
2 P

where the constants are determined by application of
suitable boundary conditions.

From a combination of (7) with (10) and (11) there
results a pair of differential equations for the velocity
components
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. 1 €21 &
on=|—c,+—|—=2— 13
v mc’#L@) o
where from (8) one may write
1
2 2 -
cC, C
1(E) = (ar+£ T BT R )
r 2 r2
E=1"(n) (15)

These relationships are well-documented in the
literature [16].

Thus, in principle we can solve the velocity profile
from (12) - (13) once the boundary conditions, and hence
the values of ¢, c,,0, andP, are known. We see that

the velocity field is completely determined, for a given
set of boundary conditions, by the single material
function 1(§).
The non-slip condition applied at the inner and outer
cylinders yield the boundary conditions
V(R )=V(R,) =0, (16)
R ) =Q, ®(R,)=0 a7
where 2 is the angular velocity of rotation of the inner
cylinder.

Analysis for the Herschel
Bulkley Model
We now consider the situation for the flow of the

Herchel Bulkley model, namely

€)= 8,+ xk&" and N(E)=xkE™'+ 8,81 (18)
where N(§) is known as the shear-dependent viscosity or
"apparent viscosity", Sy is the yield stress, x is the

consistency index, and n is the power law exponent.
Equations (12) and (13) then become

nl 1
x4 rlw?) ? +8 (rtet+v?) 2 v(r=ar+ B
;
(19)
n-1 1
By 2 , M
x(vi+ Pw?) 2+ Sy(rzco'2+ v?) 2| rafr=- 5
2rr
(20)

Equations (19), (20) together imply

v(r)= -2—”(ocr2+ B) r’e’ @n
M

and Bhattacharya

72

JScilRIran

Substituting equation (21) into (20) yields
1

3 -
Mr n 22)

W=-T(r,0B) | —M"
20k I'(r, o, B)

+ 98

y

where

23)

1 an’r? 2
I(r,a,B) = r\/1+ (orZ+P)
n/K M2

and integration of (22) subject to the boundary
conditions (17) gives
R

2

1

-3 -
Mr n dr(24)

2V T'(r, o, B)

Q=| I'(rap) +3,

R,
an equation linking Q and M through o and B.
Applying equation (22) to (21) and integrating subject to
the condition (16) yields
RZ
1

3
Mr " gr=0

G\(0, B=| (cr™+B)r’r(r, 0, B)
l 2wk T, o, B)

+5y

(25)
However, there is a further constraint on the axial
velocity v(r) that arises from the incompressibility of
the fluid i.e. the axial flow rate at any cross-section of
the annulus is constant.
If Q is this constant rate, this implies the extra

condition
R

Q=2n ’ ro(r)dr (26)
RI
Integrating by parts using (16) we obtain
RZ
n ’ r?'(rdr+Q= 0 27
lzl
Equations (27), (21) and (22) together give
R.’
, L
Gya, By =1 (0P+BXT(r, B)’——M'—~_ +8, /" ar+M2 -
Wk T, o, B) 2’
R,
(28)

We may now regard the problem as one of finding o
and f3 from the simultaneous non-linear equations

Gi(a, B) =Gy, B)=0 29
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This will allow us to obtain the function, v(r), ®()
and hence the complete velocity field. More significantly
for the present discussion ¢ and § may be substituted
into (24) to establish a relationship linking Q and M
with Q appearing as a parameter, via equation (28).

There are two special cases of the above analysis that
deserve particular comment. (i) For a power law
(pseudoplastic) fluid 8y= 0 and ¥ = m, equations (26)
and (27) become

R

2 (1' 3
G,B=| r "
R

)(ar2+B) @, ap) dr=0

(30)
and
RZ
g :
Goap=| s, o p o 20 0 MO _g
2
RI
(3D
where
1
2 2 — -1
®(r, o, B) = \/1+4"_’_ @+ | (32
M2

respectively, providing a relationship of o and B in
terms of Q.

(if) For a Bingham plastic fluid: n=1, k= p |
k,

RI
Gya B)= LV (ortepyrtde+ o L(a12+[5)r2w (r.0, ) dr=0
e | M
(33)
and
kl
RZ
Gfo,B) = M (ar+Bydr+ | (@r?+By'y (r.o, B)dr+ M2y
Znup 1’
RI
Rl
34
where
4 -1
y(ro,B)=— y\/l + 412 (024 )2
p
(35)
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Estimation of Shear Stress
and Viscosity
Calculations were performed for the Herschel Bulkley
model using the same definition for total shear stress,
fluidity and approximate viscosity [15].
In the present case fluidity is

1 1
o(1) = (%) " o=, " 07 a6

and the total shear stress in the z-0 plane is defined as

T=\Tigt T G7

Based on the total rate of shear { given by (8),

viscosity may be obtained as total shear stress divided by
the total shear rate, i. e.

/ 2 2
T(r9)+ T(rZ)

n= ' (38)
Vo 2+ Gw)?
and approximate viscosity is
Mapp. = Ké:;)L- + Syg;:m (39
where
app.
"V RyR, (R2-R}(R,R))
(40)

Numerical Solution

The value of o and B from equation (29) calculated
by the same procedure as described previously {13],
results of comparison between viscosity and approximate
viscosity are given at the different radial points in the
annular region.

We also applied the value of o and B to examine the
relationship between shear rate and shear stress and the
dependence of these on axial flow rate at different radial

points in the annular region, for different values of
torque.

Results and Discussion

Theoretical results of shear stress, shear rate,
viscosity and velocity profile for the Herschel Bulkley
and power law fluids flowing through the annular region
of a rotational rheometer are presented here. The assumed
values of the diameters of the inner and outer cylinders of
the rheometer have been arbitrarily taken as 0.0215m and
0.0242m respectively for the calculation; however, they
correspond to the dimension of the rheometer which is
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used in this laboratory for the experimental study.
Values of n, x and 3 have also been arbitraﬁly chosen
covering a range of values.

Figures 1-3 present the relationship between total
shear stress and total shear rates for power law fluids for
three flow rates of 1x10°, 1x107% and 1x 10, m?/s
respectively. In Figure 1, the relationship is shown for a

fluid of n equal to 0.729 and K equal to 0.482 Pas". It

is seen that the axial flow rate does not have any effect
on the shear stress-shear rate relation. Estimates of shear
stress-shear rate relation for other values of n and x such

as 0.696 and 2.020 Pa s" and 0.85 and 10 Pas"

110
oo L Power law fluid
w0 - n=0.729, k=0.482 Pa s"
% L
o+
60
s0 L
wl s
4

30
2 -
10
0 . I .

0 500 1000 . 1500 y

Total shear rate (s™!
- Q=107m’s™ _e Q=107'm’s™! A Q=10"fn’s"

Figure 1. Effects of axial flow on shear stress-shear rate
relation.

150

Power law fluid
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50 -
o L | . .
° s 10 15 » o
-1
Q=i0-tms? st Total shear rate (s~")
.- —o- Q=10"mw’s & Q=10"'m’

Figure 3. Effects of axial flow on shear stress-shear rate
relation.
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respectively are shown in Figures 2 and 3. For all these
fluids the axial flow rate did not have any effect on the
total shear stress. : ' ‘
Some variation was however observed when the
component of the stress (ensor, T, i.€. the shear stress
in the 9 direction (termed as shear stress), was calculated
as a function of shear rate (r@’). It should be noted that
this is the shear stress which is measured by the rotating
bob of a concentric rotational rheometer. For n equal to
0.6 and x equal 10 Pa s"; the shear stress was found to
decrease slightly with increase in axial velocity (Figure
4). A smaller decrease was observed for a lower value of

110 — -

w L Power law fluid
o |- - n=0.696, k=2.020 Pa s"
PR .
S 8D
(-9
o
@4 mr
8 P
= e
@ e b
I
g
< 0
v
g N -
= oL
20 y
| o
10 ’
Py — ) -l I I S R
0 .50 100 150 200 250
. Total shear rate (s 1)
- Q=100 —e- Q=107 & Q=107

Figure 2. Effects of axial flow on shear stress-shear rate
relation.

- Power law fluid-
n=0.6, k=10 Pa s"

150 -

Shear stress (pa)
\
\\

-m 0=10"*m’s!

_e- O=10"'m%"" _a-Q=10"'m's"! Shear rate (1

Figure 4. Effects of axial flow on shear stress-shear rate
relation.
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K such as 2.02 Pa s™ as shown in Figure 5.

Total shear stress versus total shear rate data for two
Hetschel Bulkley fluids as a function of axial flow rate
are presented in Figures 6 and 7 respectively. Here also
no variation in shear stress is observed for change in
axial flow rate.

Figure 8 shows the effect of axial flow rate on shear
stress. It may be noted from this figure that there is a
noticeable decrease in shear stress with increase in axial
flow rate. Similar behaviour was noted by Savins and
Wallick [11] when they analysed the helical flow using
an Oldroyd type constitutive equation. They observed
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e
,/
-
40 - <
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o 10 20 30 40 56 6 76 80 %0 108 110
- Q=10 e Q=105 —a- Q=107 Shear rate (s~1)

Figure 5, Effects of axial flow on shear stréss-shear rate

relation.
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Figure 7. Effects of axial flow on shear stress-shear rate
relation.
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that with increase in helical flow the viscosity values
decreased at any radial position in the annulus. Although
their analysis was based on the application of a given
-applied axial pressure gradient, it was demonstrated that
the axial discharge rate increased under a helical flow
condition in comparison to a simple annular flow. The
magnitude of increase in axial flow rate under a given
applied pressure gradient was found to be dependent on
the values of the fluid model parameters. In our analysis
it has been similarly observed that the axial velocity
produces greater decrease in viscosity when the value of
K is increased from 10 Pas"® to 25 Pas® (Figure 9). A
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Figure 6. Effects of axial flow on shear stress-shear rate
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Figure 8. Effects of axial flow on shear stress-shear rate
relation.
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comparison between Figures 8 and 9 shows that for axial
flow varying from 10" to 10# m?/s, the percentage
drop in shear stress for a shear rate of 32 s™' is 3.5 in
Figure 8, and 7.5 in Figure 9. This indicates that the
degree of viscosity reduction is higher for a fluid having
a higher value of «.
An approximate value of the viscosity has been
calculated using equation (39). This prediction is simple
. and may be compared with the rigorous prediction that
may be obtained from the ratio of shear stress to shear
rate data as presented in Figures 1 to 7. The rigorous

viscosity data calculated from Figure 2 is compared with

600
Herschel Bulkley Model
sl By=5Pa, n=0.60, k=25 P:j:l/
wo b / g
300 |- *

Shear stress {Pa)

1 i

. Qe
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Figure 9. Effects of axial flow on shear stress-sheér rate

relation.
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Figure 11. Comparison between true and approximate
viscosity at R, =0.0215m.
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the corresponding approximate data in Figure 10 for a
power law fluid. It is seen that the approximate viscosity
is higher than the true viscosity. However, the Vdi‘fference
between the true and the approximate value somewhat
diminishes at higher shear rates. This behaviour is
however pronounced for a Herschel Bulkley fluid as
shown in Figure 11. Here for an axial flow rate of
-10%m3/s the difference between the true and the
approximate viscosity disappears at higher shear rate.
The velocity profile in the annular region may be
“estimated if equation (21) is integrated as a function of r.
Figure 12 shows the velocity profile for power law

13 s v e o S e s By

Power Law Fluid

 n=0.696, k=2.020 Pa 5"
Q=10"%m’™"

=
4
T

approximate viscosity

S

=
w

Viscosity (Pa s)

04

83 H £ £ 1 i

Total shear rates (s™7)

Figure 10. Comparison between true and approximate
viscosity at R, =0.0215m.

25
Power law
245 1 n=0.6, Q=10 m’s™*
b L e )
- 24 |- % h ‘*\\“.’\
B L
N
g 235 - y \h\.\l
g
Boz3
= k=0.482 k=0.269
8
E 225 o
# .
i P o
2 . el I S »
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Figure 12. Effect of consistency on velocity profile.
Note: k is in Pas”
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fluids of n equal to 0.6 and x of different values for an
axial flow of 10°m3/s. The profile becomes flatter
with decreasing maximum velocity as the value of ¥
increases. Similar behaviour is observed for the Herschel
Bulkley fluids. A comparison between the velocity
profiles of a power law and a Herschel Bulkley fluid is

¥ Power Law,n = 06

26+ Herschel Bulkley, 655 Pa, n=0.6

-
8

@

5

] k=10 k=2.020

g

k=l -

) "

21 . !
o o1 02 03 04 03

Axial velocity, (sms™1)

m Powerlew o Powerlaw _,  Herschel Bukley

Figure 13. Effect of consistency on velocity profile.
Note: k is in Pas".

presented in Figure 13, where the values of x have been
varied. It may be noted from Figure 13 that the difference
between the velocity profile for power law and Herschel
Bulkley fluids almost disappears when x becomes high
and 8, is low. For a power law fluid with a high

value of x, such as 10 Pas”, the velocity profile is
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similar to that of a Herschel Bulkley fluid with the same
n and x. However, the central region of the annulus for
the Herschel Bulkley fluid has a region of constant
velocity as is expected of a yield stress fluid.

Acknowledgement
Dr. Javadpour extends his sincere appreciation for

the financial support given to him by the Ministry of
Science and Higher Education in Iran, and for the
hospitality of RMIT in Australia.

References

L. R. 8. Rivlin, J. Rational Mech. Anal.,$, 179 (1956).

2. W. Noll, Arch. Rational Mech. Anal., 2, 197 (1958).

3. B. D. Coleman, W. Noll, ibid., 3, 289 (1959).

4. B. D. Coleman, W. Noll, J. Applied Phys., 38, 10, p. 1508
(1959).

5. R. B. Bird, C. F. Curtiss, Chem. Eng. Sci., 11, 108 (1959).

6. A. G. Fredrickson, ibid., 11, 252 (1960).

7. A. C. Dierckes, W. Schowalter, Ind. Eng. Chem. Fund. §, 263
(1966).

8. D. R. Rea, W. Schowalter, Trans. Soc. Rheol. 11, 125 (1967).

9. R. L Tanner. Rheo. Acta, 3, Part 1, 21; Part 11, 26 (1963).

10. J. G. Oldroyd, Proc. Roy. Soc., A245, 278 (1958).

it. . G, Savins, G. C. Wallick, 1. A. L. Ch. E., 12, 357, (1966).

12. R. B. Bird, R. C. Armstrong, O. Hassager, "Dynamics of
Polymeric Liquids” vol. 1, John Wiley & Sons (1987).

13. R. R. Huilgol, Sth National Conf. Rheo., Melbourne, 43
(1990).

14. §. N. Bhattacharya, A. Chryss, H. J. Connell and J. J.
Shepherd, 5th National Conf. Rheo,, Melbourne, 15 (1990).

15. S. H. Javadpour, S. Bhattacharya, J. Sci. 1. R. Iran (Submitted),

16, W. R. Schowalter, Mechanics of Non-Newtonian Fluids (1978).



