A NORM INEQUALITY FOR CHEBYSHEV CENTRES

A. Niknam

Department of Mathematics, University of Ferdowsi, Mashhad, P. O. Box. 1159-91775, Islamic Republic of Iran

Abstract

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then $||x - q_T(x)||^2 \ge ||x - c||^2 + ||c - q_T(c)||^2 x \in F$, where $q_T : F \to T$ is any choice function sending x to the point $q_T(x)$ with $||x - q_T(x)|| = \sup_{t \in T} ||x - t||$ (note that T is called remotal if such a choice function q_T exists). We then use such an inequality to show that, under some restrictions, a uniquely remotal set is a singleton. Further, we show that if c is a centre of a remotal subset T of a normed space E and $x \in E$, then there exists a functional $f \in E^*$ such that $||f|| \le 1$ and $||x - q_T(x)||^2 \ge ||c - q_T(c)||^2 + 2||f(x - c)||^2 - ||x - c||^2$.

Introduction

Following the notation used in [6] and [7], a centre (or Chebyshev centre) of a bounded nonempty set T in a normed space E is an element c in E such that $\sup_{x \in T} e^{-cx}$ $||c - t|| = \inf_{x \in E} \sup_{t \in T} ||x - t||$. The number $\sup_{t \in T}$ ||c-t|| is called the Chebyshev radius of T and is denoted by r(T). The set-valued map Q_T defined by $Q_T(x) = \{s \in T : ||x - s|| = \sup_{t \in T} ||x - t||\}, \text{ is called the}$ farthest point map of T. If, for any x in E, the set Q_T is not empty (resp. is singleton), then T is said to be remotal (resp. uniquely remotal). We assume for the rest of the paper that T is remotal and $q_T: E \to E$ is a choice function such that $q_T(x) \in Q_T(x) \forall x \in E$. Suppose c is a centre of T, then we have $r(T) = \sup_{t \in T} \frac{1}{t}$ $||c - t|| = ||c - q_T(c)|| = \inf_{x \in E} ||x - q_T(x)||$. We recall that any point c in a subset F of a normed space E for which $||c - q_T(c)|| = \inf\{||x - q_T(x)|| : x \in F\}$, is called a

Keywords: Uniquely remotal set; Inner product space; Chebyshev centre; Farthest point; Best approximation

OAMS (1991) Subject Classification: 46 B 20, 46 C 99.

relative Chebyshev centre of T with respect to F. The number $||c - q_T(c)||$ is called the relative Chebyshev radius of T with respect to F and denoted by $r_F(T)$.

Let $x \in E$ and M be a subset of E. An element $y \in E$ M is said to be a best approximation to x from M if $||x - y|| = \inf \{||x - m|| : m \in M\}$. If M admits a unique best approximation to every $x \in E$, then M is called a Chebyshev set. Any closed convex set in a Hilbert space is a Chebyshev set. The converse is an open problem. It follows from Mazur-Tychonoff theorems that a compact uniquely remotal set in a normed space is a singleton [5]. The following well-known question is not solved yet: If T is a uniquely remotal subset of a normed space, then can we conclude that T is a singleton? There are some affirmative answers to this question in [1], [2] and [3]. An affirmative solution to this problem implies that every Chebyshev set in a Hilbert space is convex [5]. Using the idea of Chebyshev centre one can prove that if the farthest point map of a uniquely remotal subset T of a Banach space is continuous, then T is a singleton [1], [8].

For elements x and y in a complex vector space E, we define the line segments (x, y] and [x, y] by (x, y) = $\{\alpha x + (1 - \alpha) y : 0 \le \alpha < 1\}$ and $[x, y] = \{\alpha x + (1 - \alpha) y : 0 \le \alpha < 1\}$. A subset F of E is said to be starshaped at a vertex s if and only if for any $x \in F$ the line segment (s, x] is contained in F. We denoted by E^* the dual of normed space E, that is the set of all continuous linear functionals on E. A duality mapping on E is any mapping $D: E \to E^*$ such that for each $x \in E$, ||D|(x)|| = ||x|| and ||x|| = ||x||. By the Hahn-Banach theorem, such a mapping always exists.

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces. We show that if T is a remotal subset of an inner product space H, and Fis a star-shaped set at a relative Chebyshev centre c of T with respect to F, then $||x - q_T(x)||^2 \ge r_F(T) + ||x - c||^2$ $(x \in F)$. The uniqueness of the centre follows easily from this inequality (we notice that in a uniformly rotund Banach space, every bounded subset has a unique Chebyshev centre [4]). An extension of such inequality to general normed spaces is discussed. In particular, we show that for any x in E and $0 < \varepsilon \le 1$, _there exists a linear functional f in E^* such that ||f|| =1 and $||x - q_T(x)||^2 \ge r^2(T) + (1 - \varepsilon)|f(x - c)|^2 +$ $(\varepsilon - 1)||x - c||^2$. Such an inequality is used to show that, under some restrictions, a uniquely remotal set is a singleton. We also prove that the defining inequality related to the duality mapping as defined in [9] is valid for farthest point map. We denote the diameter of a bounded subset T by d(T), that is $d(T) = \sup\{||t - s|| : t$, $s \in T$. We also obtain the diameter inequality $d(T) \ge$ $\sqrt{2r_F(T)}$ for a star-shaped subset F of an inner product H. Throughout this paper, all vector spaces are defined over the field of complex numbers, and we denote the real part of a complex number λ by $Re\lambda$.

Results

Theorem 2.1. Suppose T is a remotal subset of an inner product space (H, < ... >) and F is a star-shaped subset of H at a vertex c such that c is also a relative centre of T with respect to F. Then

(i) Re < c - x, $c - q_T(x) > \le 0$ $(x \in F)$, and (ii) If $q_T(c) \in F$ is a cluster point of $\bigcup \{Q_T(x) : x \in [c, q_T(c)]\}$, then T is a singleton.

Proof. (i) Replacing T by c - T and F by c - F, one can assume that c = 0. Let $0 < \alpha \le 1$. By definition of the farthest point map we have

 $||x - q_T(x)||^2 \ge ||x - q_T(\alpha x)||^2$ and $||\alpha x - q_T(\alpha x)||^2 \ge ||\alpha x - q_T(x)||^2$.

Hence, expanding the two inequalities and adding them together yields

$$Re < x, q_T(x) > \leq Re < x, q_T(\alpha x) > (x \in F).$$
 (1)

We have

$$||\alpha x - q_T(\alpha x)||^2 \ge ||q_T(0)||^2 \ge ||q_T(\alpha x)||^2 (x \in F),$$
 (2)

since $||q_T(0)|| = \sup\{||t||: t \in T\}, q_T(\infty) \in T \text{ and } 0 \text{ is a relative centre of } T.$

We obtain from (1) and (2)

2Re < x, $q_T(x) > \le 2Re < x$, $q_T(\alpha x) > \le \alpha |x|^2 (x \in F, 0 < \alpha \le 1)$.

Hence Re < x, $q_T(x) > \ge 0 (x \in F)$.

(ii) Suppose there exists a sequence $\{\alpha_n\}$ in [0, 1] such that $y_n = q_T(x_n) \to q_T(c)$, where $x_n = \alpha_n c + (1 - \alpha_n)$ $q_T(c)$. It follows from (i) that $Re < c - x_n$, $c - y_n > \le 0$, and hence $Re < c - q_T(c)$, $c - y_n > \le 0$, (n = 1, 2, ...). The continuity of inner product implies that $||c - q_T(c)|| \le 0$. Therefore, $0 = ||c - q_T(c)|| = \sup\{||c - t|| : t \in T\}$, and thus $T = \{c\}$. \square

Corollary 2.2. Let c be a Chebyshev centre of a uniquely remotal subset of an inner product space H. Suppose that the range of q_T restricted to the line segment $[c, q_T(c)]$ admits $q_T(c)$ as a cluster point. Then T is a singleton. Therefore, T is a singleton if and only if the restriction of q_T to $[c, q_T(c)]$ is continuous at c. \square

Theorem 2.3. Suppose T is a remotal subset of an inner product space H and F is a star-shaped subset of H at a vertex c such that c is a relative centre of T with respect to F. Then the following assertions are true.

(i)
$$||x - q_T(x)||^2 \ge ||x - c||^2 + r^2_F(T) \ (x \in F).$$
 (3)

(ii) c is unique, and if further $F \cap Q_T(c) \neq \phi$, then $d(T) \ge \sqrt{2}r_F(T) \ge \sqrt{2}r(T)$.

In fact we have $||q_T(c) - q_T(x)|| \ge \sqrt{2}r_F(T)$, $(x \in (c, q_T(c)], q_T(c) \in F)$.

(iii) Suppose T is uniquely remotal. If $Re < c - x_0$, $c - q_T(x_0) > = 0$ for some element x_0 in F, then $q_T(x_0) = q_T(c)$. Therefore, if $q_T(c) \in F$, then T is a singleton if and only if $Re < c - q_T(c)$, $c - q_T(q_T(c)) > = 0$.

Proof. (i) Replacing T by c - T and F by c - F, one can assume without loss of generality that c=0. Assertion (i) of Theorem 2.1 shows that Re < x, $q_T(x) > 0$, for all $x \in F$. Hence, Re < x, $q_T(\alpha x) > 0$, $(0 < \alpha \le 1)$, since $\alpha x \in F$. Therefore,

$$\begin{split} r^2_F & (T) \leq ||\alpha x - q_T (\alpha x)||^2 = (1 - \alpha)^2 ||x||^2 + \\ ||x - q_T (\alpha x)||^2 + 2 (1 - \alpha) Re < x, q_T (\alpha x) - x > \\ &= ||x - q_T (\alpha x)||^2 - (1 - \alpha^2) ||x||^2 + 2(1 - \alpha) Re < x, q_T (x) > \\ &\leq ||x \cdot q_T (x)||^2 - ||x||^2 + \alpha^2 ||x||^2. \end{split}$$

Thus, $||x - q_T(x)||^2 \ge r^2_F(T) + ||x||^2 - \alpha^2 ||x||^2$, $(\alpha \in (0, 1])$.

Hence, $||x - q_T(x)||^2 \ge r^2_F(T) + ||x||^2$, $(x \in F)$.

(ii) The uniqueness of c follows immediately from assertion (i) and the definition of relative Chebyshev radius. If we put $x = q_T(c)$ in the inequality (3), we obtain

$$||q_T(c) - q_T(q_T(c))||^2 \ge ||c - q_T(c)||^2 + r^2_F(T) = 2r^2_F(T),$$

hence, $d(T) \ge \|q_T(c) - q_T(q_T(c))\| \ge \sqrt{2}r_F(T) \ge \sqrt{2}r(T)$. In fact, if $0 \le \alpha < 1$, let $x_\alpha = \alpha(c - q_T(c) + q_T(c)$. Then $x_\alpha \in F$ and

$$\begin{aligned} \|q_{T}(c) - q_{T}(x_{\alpha})\|^{2} &= \|x_{\alpha} - q_{T}(x_{\alpha}) - \alpha(c - q_{T}(c))\|^{2} \\ &= \|x_{\alpha} - q_{T}(x_{\alpha})\|^{2} + \alpha^{2}\|c - q_{T}(c)\|^{2} \\ &- 2\alpha Re < c - q_{T}(c), x_{\alpha} - q_{T}(x_{\alpha}) > \\ &= \|x_{\alpha} - q_{T}(x_{\alpha})\|^{2} + \alpha^{2}\|c - q_{T}(c)\|^{2} \\ &+ 2\alpha(1 - \alpha)\|c - q_{T}(c)\|^{2} \\ &- 2\alpha Re < c - q_{T}(c), c - q_{T}(x_{\alpha}) > \end{aligned}$$

By (3)
$$\geq r^2_F(T) + ||c - x_{\alpha}||^2 + \alpha(2 - \alpha)r^2_F(T) - 2\alpha Re$$

 $< c - q_T(c), c - q_T(x_{\alpha}) >$
 $= 2r^2_F(T) - 2\alpha Re < c - q_T(c), c - q_T(x_{\alpha}) >$

In Theorem 2.1 (i) let $x = x_{\alpha}$ and conclude that

$$Re < c - q_T(c), c - Q_T(x_\alpha) > \le 0, (x_\alpha \in (c, q_T(c)]).$$
 (4)

It follows therefore that

$$||q_T(c) - q_T^{\epsilon}(x_{\alpha})||^2 \ge 2r^2_F(T)$$

$$-2\alpha Re < c - q_T(c), c - q_T(x_{\alpha}) > \ge 2r^2_F(T).$$
(5)

(iii) By the inequality (3) and the definition of the farthest point map we have $||c - q_T(c)||^2 \le ||x_0||^2$

 $q_T(x_0)||^2 - ||x_0 - c||^2 = ||c - q_T(x_0)||^2 \le ||c - q_T(c)||^2$. Hence, $||c - q_T(c)|| = ||c - q_T(x_0)||$. Thus, $q_T(x_0) = q_T(c)$, since T is uniquely remotal. If $x_0 = q_T(c)$, then $q_T(x_0) = x_0$ that is $T = \{x_0\}$. \square

Corollary 2.4. Suppose T is a uniquely remotal subset of an inner product space H and c is a Chebyshev centre of T. Then the following assertions are true:

(i)
$$||x - q_T(x)||^2 \ge ||x - c||^2 + r^2(T)$$

(ii) If T is not a singleton, then $d(T) \ge \sqrt{2}r(T)$.

Proof. (i) follows immediately from the assertion (i) of Theorem 2.3.

(ii) Let x be an element in $(c, q_T(c)]$. Then $Re < c - q_T(c)$, $c - q_T(x) > \le 0$ by (4). We show that $Re < c - q_T(c)$, $c - q_T(x) > \ne 0$. If $Re < c - q_T(c)$, $c - q_T(x) > = 0$, then we have Re < c - x, $c - q_T(x) > = 0$, since $x = \alpha$ $(c - q_T(c)) + q_T(c)$ for some $\alpha \in [0, 1]$. Assertion (iii) of Theorem 2.3 shows that T is a singleton; a contradiction. Therefore, $Re < c - q_T(c)$, $c - q_T(x) > < 0$. We obtain from (5)

$$d^{2}(T) \ge ||q_{T}(c) - q_{T}(x)||^{2} \ge 2r^{2}(T)$$

$$-2\alpha Re < c - q_{T}(c), c - q_{T}(x) >.$$

Hence $d(T) \ge \sqrt{2}r(T)$.

Theorem 2.5. Let E be a normed space and T be a uniquely remotal subset of E. Suppose c is an element of E and define $E_c = \{x \in E : ||x - q_T(x)|| \ge ||c - q_T(c)||\}$. It is obvious that c is a relative Chebyshev centre of T with respect to E_c . If, further, c is the only relative Chebyshev centre of T (that is $x \ne c$ implies $||x - q_T(x)|| \ne ||c - q_T(c)||$), then

(i) $E = E_c \cup [c, q_T(c)]$, and

(ii) c is the centre of T if and only if $[c, q_T(c)] \subseteq E_c$.

Proof. (ii) follows immediately from the assertion (i).

(i) Let $\not E_c$ be the complement of E_c in E, that is $\not E_c = \{x \in E: ||x - q_T(x)|| < ||c - q_T(c)||\}$. It is enough to show that $\not E_c \subseteq [c, q_T(c)]$. Let x_0 be an element in $\not E_c$. If $x_0 = q_T(x_0)$, then T is a singleton and $x_0 = q_T(c) \in [c, q_T(c)]$. Thus, we can assume $x_0 \ne q_T(x_0)$ and $c \ne q_T(c)$. Define α and y_0 by

$$\alpha = \frac{\|x_0 - q_T(x_0)\|}{\|c - q_T(c)\|}, y_0 = q_T(x_0) + \frac{1}{\alpha}(x_0 - q_T(x_0)).$$
 (6)

Then we have $||c - q_T(c)|| = ||y_0 - q_T(x_0)|| \le ||y_0 - q_T(y_0)||$,

$$||y_0 - x_0|| = ||c - q_T(c)|| - ||x_0 - q_T(x_0)||$$
 and

$$||c - q_T(c)|| = ||y_0 - q_T(x_0)|| \le ||y_0 - q_T(y_0)||$$

$$\leq ||y_0 - x_0|| + ||x_0 - q_T(y_0)||$$

$$\leq ||y_0 - x_0|| + ||x_0 - q_T(x_0)|| = ||c - q_T(c)||.$$

Hence, $||c - q_T(c)|| = ||y_0 - q_T(x_0)|| = ||y_0 - q_T(y_0)||$. Thus, $c = y_0$ and $q_T(x_0) = q_T(c)$, since c is unique and T is uniquely remotal. It follows therefore from (6) that $x_0 = \alpha c + (1 - \alpha)q_T(c)$ is an element of $[c, q_T(c)].\Box$

It is not known whether the inequality (3) in Theorem 2.3 can be extended to an arbitrary normed space E. However, we can prove a more or less similar inequality using the continuous linear functionals in E^* .

Theorem 2.6. Let c be a centre of a remotal subset T of a normed space E. Then the following properties hold:

- (i) Given x in E and $0 < \varepsilon \le 1$, there exists an element f in E^* such that ||f|| = 1 and $||x q_T(x)||^2 \ge r^2(T) + (1 \varepsilon) |f(x) f(c)|^2 + (\varepsilon 1) ||x c||^2$.
- (ii) For each x in E, there exists an element f in E^* such that $||f|| \le 1$ and $||x q_T(x)||^2 \ge r^2$ (T) $+ 2 ||f(x c)||^2 ||x c||^2$.

Proof. (i) We may and shall assume that c = 0. By the Hahn-Banach theorem, there exists a functional f in E^* such that ||f|| = 1 and

$$f(q_T(\varepsilon x) - \varepsilon x) = ||\varepsilon x - q_T(\varepsilon x)||$$
. Note that

$$\begin{aligned} \|q_T(0)^2 &\leq \|\varepsilon x - q_T(\varepsilon x)\|^2 = |f(q_T(\varepsilon x) - \varepsilon x)|^2 \\ &= |f(q_T(\varepsilon x))|^2 + |f(\varepsilon x)|^2 - 2\varepsilon Ref(x) \overline{f(q_T(\varepsilon x))} \\ &\leq \|q_T(\varepsilon x)\|^2 + \varepsilon^2 \|x\|^2 - 2\varepsilon Ref(x) \overline{f(q_T(\varepsilon x))} \\ &\leq \|q_T(0)\| + \varepsilon^2 \|x\|^2 - 2\varepsilon Ref(x) \overline{f(q_T(\varepsilon x))} \end{aligned}$$

Hence

$$2Ref(x) \stackrel{-}{f}(q_T(\varepsilon x)) \le \varepsilon ||x||^2. \tag{7}$$

Observe that

$$||q_T(0)||^2 \le ||\varepsilon x - q_T((\varepsilon x))||^2 = |f(q_T(\varepsilon x) - x + x - \varepsilon x)|^2$$

$$\leq ||x - q_T(\varepsilon x)||^2 + (1 - \varepsilon)^2 ||x||^2 + 2 (1 - \varepsilon) Ref(x)$$

$$f(q_T(\varepsilon x)) - 2 (1 - \varepsilon) |f(x)|^2.$$

It follows therefore from (7) that

$$\begin{split} r^2(T) &= ||q_T(0)||^2 \le ||x - q_T(\varepsilon x)||^2 + (1 - \varepsilon)^2 ||x||^2 + \varepsilon (1 - \varepsilon)||x||^2 - 2 (1 - \varepsilon) |f(x)|^2. \end{split}$$

(ii) Fix x, $q_T(x)$ and take $\varepsilon = \frac{1}{n}$ for each n. By the assertion (i) there exist linear functionals f_n in E^* such that $||f_n|| = 1$ and

$$||x - q_T(x)||^2 \ge r^2(T) + 2(1 - \frac{1}{n}) ||f_n(x - c)||^2 + (\frac{1}{n} - 1) ||x - c||^2.$$
(8)

By the Alaoglu-Banach theorem, $\{f_n\}$ admits a W^* -cluster point [10]. Take f to be a W^* -cluster point of $\{f_n\}$ and assume without loss of generality that

$$f_n \xrightarrow{W^*} f$$
. In (8), letting $n \to \infty$ yields

$$||x - q_T(x)||^2 \ge r^2(T) + 2||f(x - c)||^2 + ||x - c||^2$$

The following theorem also shows that a similar defining inequality, as defined in [9], is valid for farthest point maps (antiprojections). This theorem does not really belong here, but there seems to be no better spot for it.

Theorem 2.7. Let T be a remotal subset of a normed space E and D be duality mapping on E. Then for each $x \in E$ and $t \in T$

(i)
$$Re < t - q_T(x), D(q_T(x) - x) > \le 0$$

$$(ii) Re < 2x - t - q_T(x), D(q_T(x) - x) > \le 0$$

(iii) If c is a centre of T then $Re < t - c + x - q_T(x)$, $D(q_T(x) - x) > \le 0$, and therefore Re < x - c, $D(q_T(x) - x) > \le 0$.

Proof. (i) and (ii) are immediate consequences of the following

$$Re < \pm (t - x), D(q_T(x) - x) > \le ||t - x|| ||x - q_T(x)|| \le ||x - q_T(x)||^2.$$

(iii) If c is a centre of T, then for each $t \in T$ we have

$$Re < t - c$$
, $D(q_T(x) - x) > \le ||t - c|| ||x - q_T(x)|| \le ||c - q_T(c)|| ||x - q_T(x)||$

$$\leq ||x - q_T(x)||^2 = \langle q_T(x) - x, D(q_T(x) - x) \rangle$$

Hence

$$Re < t - c - q_T(x) + x, D(q_T(x) - x) > \le 0.$$
 (9)

Put $t = q_T(x)$ in (9), we get Re < x - c, $D(q_T(x) - x) > 0$. \square

Acknowledgements

The author would like to thank the referees for their valuable remarks and suggestions. Thanks are also due to Professors L. Batten and F. Ghahramani.

References

- 1. Blatter, J. Weiteste Punkte und nuchste Punkte. Rev. Roum. Math. Pures Appl., 14, 615-621, (1969).
- 2. Bosznay, A. P. A remark on the farthest point problem.

- J. Approx. Theory, 27, 309-312, (1979).
- Bosznay, A. P. A remark on uniquely remotal sets in C(K < X). Periodica Mathematica Hungarica, 12(1), 11-14, (1981).
- Holmes, R. B. A course on optimization and best approximation Lecture Notes in Mathematics, 257, 187-190, (1972).
- Klee, V. Convexity of Chebyshev sets. Math. Ann., 142, 292-304, (1961).
- Niknam, A. On uniquely remotal sets. *Indian J. Pure Appl. Math.*, 15, (10), 1079-1083, (1984).
- Niknam, A. Continuity of the farthest point map. *Ibid.*, 18, (7), 630-632, (1987).
- 8. Panda, B. B. and Kapoor, O. P. On farthest points of sets. J. Math. Anal. Appl., 62, 345-353, (1978).
- 9. Phelps, R. R. Metric projections and the gradient projection method in Banach spaces. SIAM J. Control Optim., 3, (6), 973-977, (1985).
- Rudin, W. Functional analysis. (2nd edn) McGraw Hill, (1991).