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Abstract .

In this paper, we study the Chebyshev centres of bounded subsets of normed
spaces and obtain a norm inequality for relative centres. In particular, we prove
that if T is a remotal subset of an inner product space H; and F is a star-shaped
set at a relative Chebyshev centre ¢ of T with respect to F, then Ilx - g (x)lI2 2
lbx-cl? + lic-g7 (c) IP x € F, where gr : F — T is any choice function sending x
to the point g7 (x) with llx - g (x)ll = sup,r llx - dl (note that T is called remiotal
if such a choice function gy exists). We then use such an inequality to show
that, under some restrictions, a uniquely remotal set is a singleton. Further, we
show that if c is a centre of a remotal subset 7' of a normed space E and x € E,
then there exists a functional f € E* such that Il fIl < 1 and llx - gy (x)I? 2

le-gr(c)P+21f(x-c)R-lx-cli2

Introduction

" Following the notation used in [6] and [7], a centre
(or Chebyshev centre) of a bounded nonempty set T in
a normed space E is an element ¢ in E such that sup,.r
llc -l = inf, g sup,er llx - ¢ll. The number sup,.;
lic - ¢} is called the Chebyshev radius of T and is
denoted by #(T). The set-valued map Qr defined by
Or(x) = {seT : lix - sll = sup,. llx - £ll}, is called the
farthest point map of T. If, for any x in E, the set Qy is
not empty (resp. is singleton), then T is said to be
remotal (resp. uniquely remotal). We assume for the
rest of the paper that T is remotal and g; : E — E is a
choice function such that ¢;(x) € Qr(x)¥x € E.
Suppose c is a centre of T, then we have r(T) = sup,
fie - dl = lic - gr (c) | = inf, g lx - g7 (x)ll. We recall
that any point c in a subset F of a normed space E for
which lic - gr (c)ll = inf{llx - gp (x)ll: x € F}, is called a
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relative Chebyshev centre of T with respect to F. The
number lic - gy (c)Il is called the relative Chebyshev
radius of T with respect to F and denoted by ry (T).
Let x € E and M be a subset of E. An element y €
M is said to be a best approximation to x from M if
lx - yit = inf {llx - mll : m € M}. If M admits a unique
best approximation to every x € E, then M is called a
Chebyshev set. Any closed convex set in a Hilbert
space is a Chebyshev set. The converse is an open
problem. It follows from Mazur-Tychonoff theorems
that a compact uniquely remotal set in a normed space
is a singleton [5]. The following well-known question
is not solved yet: If T is a uniquely remotal subset of a
normed space, then can we conclude that T is a
singleton? There are some affirmative answers to this
question in [1], [2] and [3]. An affirmative solution to
this problem implies that every Chebyshev set in a
Hilbert space is convex [5]. Using the idea of
Chebyshev centre one can prove that if the farthest
point map of a uniquely remotal subset T of a Banach
space is continuous, then T is a singleton [1], [8].
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For elements x and y in a complex vector space E,
we define the line segments (x, y/ and [x , y] by (x, ¥]
={ox+(1-a)y:0<a<1}and[x,yl={ox+ (1-@)
y:0< a<1}. A subset F of E is said to be star-
shaped at a vertex s if and only if for any x € F the
line segment (s, x] is contained in F. We denoted by
E* the dual of normed space E, that is the set of all
continuous linear functionals on E. A duality mapping
on E is any mapping D : E — E* such that for each x
€ E, IID (x)ll = lixll and < x, D (x) > = llxll2. By the
Hahn-Banach theorem, such a mapping always exists.

In this paper, we study the Chebyshev centres of
bounded subsets of normed spaces. We show that if T
is a remotal subset of an inner product space H, and F
is a star-shaped set at a relative Chebyshev centre ¢ of
T with respect to F, then llx - gy (x)I2 2rp(T)+llx - cl?
(x € F). The uniqueness of the centre follows easily
from this inequality (we notice that in a uniformly
rotund Banach space, every bounded subset has a
unique Chebyshev centre [4]). An extension of such
inequality to general normed spaces is discussed. In

particular, we show that for any x in Eand 0 <e <1,

_there exists a linear functional f in E* such that ll fIl =
land llx - gr (2 2r2(T) + (1 - )l flx - ¢) P +
(e - Dllx - clli2. Such an inequality is used to show that,
under some restrictions, a uniquely remotal set is a
singleton. We also prove that the defining inequality
related to the duality mapping as defined in [9] is valid
for farthest point map. We denote the diameter of a
bounded subset T by d(T), that is d(T) = sup{ll¢ - sll : ¢,
s € T}. We also obtain the diameter inequality d(7) 2>
V2 rp(T) for a star-shaped subset F of an inner product
H. Throughout this paper, all vector spaces are defined
over the field of complex numbers, and we denote the
real part of a complex number A by ReA.

Results
Theorem 2.1. Suppose T is a remotal subset of an
inner product space (H, < .,. >) and F is a star-shaped
subset of H at a vertex ¢ such that ¢ is also a relative
centre of T with respect to F. Then

(i)Re <c-x,¢-qr(x)><0(xe F),and
(ii) If g (c) € F is a cluster point of U{Qr (x) :
x € [c, gr(c)l}, then T is a singleton.

Proof. (i) Replacing T by ¢ - Tand F by ¢ - F, one
can assume that ¢ = 0. Let 0 < a < 1. By definition of
the farthest point map we have

Il - g7 (x)I2 2 lx - g7 ()12 and
llox - qp (a2 2 1l ax - g (x)I2.
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Hence, expanding the two inequalities and adding
them together yields

Re < x,qr(x) > <Re < x,qr(ox) > (x € F).

(1)
We have
o - gr (o)I2 2Migy (0)112 2 lgy (o)l (x € F), 2)

since ligy (O = sup{liell: ¢t €T}, gy (0x) eT and O is a
relative centre of T.
We obtain from (1) and (2)

2Re < x, qr (x) > <2Re < x, g7 (ox) > < adlxli? (x €F,
O<a<l).

Hence Re <x, gy (x)>20(x €F).

(ii) Suppose there exists a sequence {a,} in [0, 1]
such that y,=qr(x,) = gr(c), where x,=a,,c + (1- &)
gr(c). It follows from (i) that Re < ¢ - x,, ¢ - ¥, > <0,
and hence Re < ¢ - qr(c), ¢ -y,><0(n=1,2,..). The
continuity of inner product implies that lic - g7 (c)Il <
0. Therefore, 0 = lic - gy (c)l = sup{lic - dl : t €T}, and
thus T={c}.O

Corollary 2.2. Let ¢ be a Chebyshev centre of a
uniquely remotal subset of an inner product space H.
Suppose that the range of gr restricted to the line
segment [c, g7 (c)] admits g (c) as a cluster point.
Then T is a singleton. Therefore, T is a singleton if and
only if the restriction of g7 to [c, gr (c)] is continuous
atc.O0

Theorem 2.3. Suppose T is a remotal subset of an
inner product space H and F is a star-shaped subset of
H at a vertex ¢ such that c is a relative centre of T with
respect to F. Then the following assertions are true.

(i) W - gr ()2 2 Wx - ¢l + r2p (T) (x €F). 3)

(i) c is unique, and if further F NQr (c) # ¢, then
d(T) 2 V2rp(T) 2 V2r (T).

In fact we have gy (¢) - gr (x)} 2 V_Z-r,.- (T),
(x €(c,qr (c)), qr (c) €F).

(iii) Suppose T is uniquely remotal. If Re <c-
Xo, € - g7 (X5) > = 0 for some element x, in F, then gr
(x0) = qr (c). Therefore, if gr (c) €F, then T is a
singleton if and only if Re <c-qr(c).c-qr(qr (c))>=0.
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Proof. (i) Replacing T by ¢ - Tand F by ¢ - F, one
can assume without loss of generality that ¢ = 0.
Assertion (i) of Theorem 2.1 shows that Re < x, gr (x) >
< 0, for all x eF. Hence, Re < x, qr (ox) > < 0,
(0 < @< 1), since ax € F. Therefore,

r’g (T) < Hax - g (ax)l2 = (1 - )2 lxh2 +
lx - g (ax)I? + 2 (1 - &) Re < x, g1 (ax) - x >

= lx -gr (0x)IP -(1- 02) W2 +2(1-)Re < x, qp(x) >
Sl - gr ()17 - 1P + a2lli2.

Thus, lx - gp (x)I2 > rZF (T) + lxli2 - o2lixdi2,
(a €(0, 1]).
Hence, llx - g7 (x)IP 2 r2.(T) + X2, (x € F).

(ii) The uniqueness of ¢ follows immediately from
assertion (i) and the definition of relative Chebyshev
radius. If we put x = g7 (¢) in the inequality (3), we
obtain

Har(c)-gr (qr (c)IP2MNc-gr ()2 +r2e(T) = 2r2, (T),

hence, d(T) = ligr (c) - qr (qr (N = V2rp (T) 2

Y2K(T). In fact, if 0 < @ < 1, let x, = ofc - gy (c) +
.gr(c). Then x, e F and

lgr (c) - gr(x IR =lbx, - g7 (x5) - 0i(c - g (c))IP
= llxg - g7 (x )2 + a2lic - gp (c)I2
-20Re < c-qr(c), xg - qr (xg) >
=g - g7 (X )2 + 02llc - g (c)I2
+20(1 - a)llc - gp (c)li2
-20Re < ¢ - qr(c), c- qr(xg) >

By 3) 2 r2p(T) + llc - x 12 + o2 - o)r2g (T) - 20Re
<c-qr(c) c-qr(xg) >
=2r2p(T)-20Re < c - gr (c), c - qr(xg) > .

In Theorem 2.1 (i) let x = x,, and conclude that
Re<c-qr(c)c-Qr(xy) ><0, (x € (c, gr (¢)]). @)

It follows therefore that

gz (c) - g (xa)IP 2 262, (T)

-20Re < c-qr(c), c - qr (xg) >’ 2r2; (T). S)

(iii) By the inequality (3) and the definition of the
farthest point map we have lic - g, (c)I? < Hx, -

54

Niknam

J.Sci. . R. Iran

gr (xp)I? - lbxy - ¢l = lic - qp (x)I2 < e - g (C)lI2.
Hence, llc - g7 (c) I = lic - gp (xp)Il. Thus, g7 (xy)
= gr (c), since T is uniquely remotal. If x, = g7 (c),
then gy (x) = xythatis T = {x,}.00

Corollary 2.4. Suppose T is a uniquely remotal
subset of an inner product space H and ¢ is a
Chebyshev centre of T. Then the following assertions
are true;

(i) llx - g ()12 2 llx - ¢l + rX(T)

(ii) If T is not a singleton, then d(T) = V_Z_r(T).

Proof. (i) follows 1mmed1ately from the assertion
(i) of Theorem 2.3.
(ii) Let x be an element in (c, qr (c)]. Then Re < ¢ -
qr (¢), ¢ - gr {x) > < 0 by (4). We show that Re < ¢ -
gr(c)hc-qr(x)>#0.IfRe<c-qr(c)c-qr(x)> =
0, then we have Re < ¢ - x, ¢ - g7 (x) > = 0, since x =
o (¢ - qr(c)) + gr (c) for some o € [0, 1]. Assertion
(iii) of Theorem 2.3 shows that T is a singleton; a
contradiction. Therefore, Re < ¢ - g7 (c), ¢ - g (x) > <
0. We obtain from (5)

a2 (T) 2 llgy (c) - g (x)W2 2 2r2(T)
-20Re < c-gy(c), c-qr(x)>.

Hence d(T) > ‘fZ_r(T).D

" ‘Theorem 2.5. Let £'be a normed space and T be a
uniquely remotal subset of E. Suppose ¢ is an element
of Eand define E, = {x € E: lx-qp (x>l ¢ -
gr (c)ll}. It is obvious that ¢ is a relative Chebyshev
centre of T with respect to E,. If, further, c is the only
relative Chebyshev centre of T (that is x # ¢ implies
lx - g7 ()l e - g7 (c)Nl), then
(i) E = E_ Ulc, g7 (c)], and
(ii) c is the centre of T if and only if [c, g7 (¢)] C E,.

Proof. (ii) follows immediately from the assertion
(i). .
(i) Let E, be the complement of E, in E, that is
={xe E:llx-gr(x)ll <lic - gp ()} It is enough to
show that £, < [c, gr (c)]. Let x, be an element in £..
If xo = gr (xo), then T is a singleton and x, = gy (c) €
[c, gr (c)). Thus, we can assume x, # g (x,) and ¢ #
gqr (c). Define o and y, by

o - gr (o) Il
fle-gr

a= ,yo=qr(m)+-é-(xb-tn(xo))- ©)
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Then we have lic - g (c)ll = llyy - gr (x| €
llyo - gr (yolll.

Iy - xolt = llc - g7 (c)Il - lxg - g7 (xp)!l and
llc - g (c)ll = lyg - g (x)t < Hlyy - g7 (YoM
<y, - xoll + lxg - g ()l
<y - xoll + lxg - g (X!l = llc - gp ().

Hence, llc - gp () = llyy - gp (xp)it = lyg - g7 (Yol
Thus, ¢ = y, and gy (X,) = g7 (c), since ¢ is unique and
T is uniquely remotal. It follows therefore from (6)
that x, = ac + (1 - o)gr (c) is an element of
[c, gr (c)1.0

It is not known whether the inequality (3) in
Theorem 2.3 can be extended to an arbitrary normed
space E. However, we can prove a more or less similar
inequality using the continuous linear functionals in
E*.

Theorem 2.6. Let ¢ be a centre of a remotal subset
T of a normed space E. Then the following properties
hold:

(i) Given x in E and 0 < € < 1, there exists an
element f in E* such that Il f1I = 1 and llx - g7 (x)IF 2
r2(T)+ (1 -8 Lfix)-flc)? + (- 1) lx - cli2.

(i) For each x in E, there exists an element f in E*
such that i fll < 1 and Ix - g7 (0)IP 2 12 (T)
+21f(x- o) -lix - cli2.

Proof. (i) We may and shall assume that ¢ = 0. By
the Hahn-Banach theorem, there exists a functional f
in E* such that Il f1l=1 and
f(qr(ex) - &x) = llex - gy (ex)ll. Note that
ligr (0)2 < llex - g7 (ex)IP = | f(qr (ex) - &x) P

=1 fiqr (€x) P + | f(ex) & - 2eRef (x) f(qr (€x))

< llgp ()2 + & Xl - 2eRef (x) f(qr (£X))

< llgy (O + & Ii2 - 2eRef (x) f(qr(€x))

Hence

2Ref (x) f(qr (£x)) < €llxli. )
Observe that

ligr (O < llex - g ((ex)2 = | flgr (€x) - x + X - ex)i?
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< llx - g (exX)2 + (1 - €2 ldP+ 2 (1 - €) Ref(x)
f(qr(ex) -2 (1- &)l fix)2.

It follows therefore from (7) that

P(T) = lgg (O < lix - g (€12 + (1 - €PIxI + £ (1 -
el -2 (1- &) | fix) 12

(ii) Fix x, qr (x) and take t»:=l for each n. By the

L s n. .
assertion (i) there exist linear functionals f,, in E* such
that i £l = 1 and

1x-gr@WP2r? T)+2(1 Hipe-ork & Diix- et
n n

®)

By the Alaoglu-Banach theorem, {f,} admits a W*-
cluster point [10]. Take f to be a W*-cluster point of
{f,} and assume without loss of generality that

£ 251 . In (8), letting n — oo yields

lx-grelP= () +2 (- O I lix- ¢120

The following theorem also shows that a similar
defining inequality, as defined in [9], is valid for
farthest point maps (antiprojections). This theorem
does not really belong here, but there seems to be no
better spot for it.

Theorem 2.7. Let T be a remotal subset of a
normed space E and D be duality mapping on E. Then
foreachxe Eandte T

(i) Re < t - qr (x), D(q{x) - x) > <0

(ii)Re <2x-t-qr(x),D(qr(x)-x)> <0

(iii) If cisacentre of Tthen Re < t-c¢ + x - g7 (x) ,
D(qr (x) - x) > <0, and therefore
Re <x-c,D(qr(x)-x)>=<0.

Proof. (i) and (ii) are immediate consequences of
the following

Re <+ (t-x), D(qr(x)-x) > S llt-xlllx - gp (Wi S
lx - gp ()1

(iii) If ¢ is a centre of T, then for each t € T we have

Re < t-c¢, D(gr(x)-x)><lt-clllx - gy )l £
lic - g () lx - g7 (X
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<lx - g7 (I = < gr (x) - x, D(qr (X) - x) >
Hence -
Re<t-c-qr(x)+x, Digr(x)-x)><0. ¢)]

Putt= g7 (x)in (9),we get Re < x- ¢, D(qy (x) -x) >
0.0
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