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Abstract

This paper considers the possibility of spontaneous transition of a racemic mixture
(composed of equal amounts of two enantiomeric species, say L and D) into a
monochiral state (in which only one enantiomer, say L, is present). Transitions of this
kind have been recently experimentally observed. A plausible approach to this
phenomenon is a model put forward by Frank, based on simple laws of chemical
kinetics. In order to be able to solve the underlying system of differential equations,
Frank made a drastic assumption, namely that the amount of achiral substrate from
which the enantiomers L and D are formed is time-independent. In this paper, it is
demonstrated that such an assumption is not justified, but that the essential features
of the Frank model are also maintained if the amount of the achiral substrate is allowed

to be time-dependent.

Introduction

The possiblity of spontaneous transition of a physico-
chemical system from a symmetric or racemic initial state
into a chiral terminal state (the so-called chiral symmetry
breaking) has intrigued the scientific community for more
than a century [1-3]. In a number of recent researches [4-
10], it was establised that such transitions may indeed
occur under well-defined laboratory conditions.

In 1953, Charles Frank [11] demonstrated that chiral
symmetry breaking could be a consequence of the basic
law of classical chemical kinetics, namely the law of mass
action. Frank designed a simple kinetic scheme by which
an almost racemic mixture evolves into a completely
monochiral terminal state. In the following four decades,
the Frank model was considered as just a curiosity in
(theoretical) chemical kinetics, without a sound experi-
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mental basis. In the last few years, however, several
experimental realizations of Frank-type processes were
reported [7, 9, 10], justifying further theoretical studies in
this direction [12-15]. The present paper offers some
observations on the Frank model and shows that it is more
general than originally anticipated.

The Frank Model

The model proposed by Frank [11] is based on the
application of the law of mass action to the following
elementary chemical reactions:

L+A—-2L (o)
D+A 2D (")
L + D — products ®

L and D are enantiomers capable of self-replication (reac-
tions (o) and (0.")); A stands for an achiral substrate. The



Yol. 6 No. 4
Autumn 1995

two enantiomers are supposed toeliminate each other from
the system via the formation of an inactive product, e.g. of
an insoluble complex (reaction (B)). Observe that all the
three elementary steps in the Frank model are assumed to
be irreversible.

Applying the law of mass action to the reactions (o)
and (B) and denoting by c =c (t) the (time-dependent)
concentration of the substance X, X=L, D, A, we readily
arrive at the system of differential equations

dc/dt=kc,c -k, cc, (1a)
dcy/dt=kc,c -k, cc, (1b)
de/dt=-k(c +c))c, (1c)

Herek, and k, are the rate constants of the reactions (o) and
(B), respectively; the reactions (o) and (o) are, of course,
supposed to have equal rate constants. The initial condi-
tions are ¢,= ¢, and c = ¢, for t = 0. Without loss of
generality, throughout this paper it will be assumed that
C,2Cp.

* In order to be able to solve the differential equations
(12) and (1b), Frank made the assumption that the concen-
tration ¢, of the substrate A is time-independent, and
completely ignored equation (1c). It must be noted that
this assumption is not chemically sound: If, namely, ¢,
were time-independent, then it would be dc,/dt= 0; from
equation (Ic) we see that this would imply either ¢, =0 or
¢, =¢,=0, both conditions being chemically unacceptable.

If , nevertheless, c, is considered to be time-
independent [11], then the functions ¢, (t) and c () are
calculated as follows [11]. First subtract (1b) from (1a)
which results in

d(c_-c =k, c, (c, -c)

Straightforward integration yields
c -c=(Cc,-cexpk c, b 2)
Dividing (1a) with (1b) one obtains
de /de=c (k c, -k, c)/c (k c, -k, c)]

which makes possible the separation of the variables c, and

Cp:

(k,c,-k,c)dec /e =(k c,-k,c)dcf,
and then by direct integration:

k, ¢, In(c /e, ) - k(c - ¢ )=k c, In(c fc )-k,(c,- ).
3)
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Combining (2) and (3) one easily finds explicit analytical
expressions for the functions ¢, (t) and c,(t):

4)

€= (€, - Cp) (€, - € F)' explk, c, 1)

€= Cpo (€15 - € )F (€, - ¢ F)' explk, c, 1) 4")

where

F= expl- (kica/k2)" (cuo - Coo) [exp(kscat])-1]].

Simple analysis of equations (4) reveals that if at the
initial moment the system is racemic, i.e. ¢ = c,,, then it
will remain racemic all the time, If, however, the initial
state of the system deviates from racemity (containing an
excess of, say, L over D, €.y - Cp>0), then the system will
reach a monochiral terminal state (in which only the L
form is present whereas the D species have completely
vanished). Such a time-evolution of the Frank system will
take place no matter how small the initial excess of one
enantiomer is.

A systematic and non-stochastic (yet very small) de-
viation from racemity must occur in the case of all chiral
molecules as a consequence of the action of weak nuclear
forces (in particular, of weak neutral currents); details on
this matter can be found elsewhere {2, 12, 16-21]. Model
calculations show that for typical organic molecules, (c,-
Cpfe,, ~10°7,

The Frank Model with Variable C,

In the case when ¢, is not a constant, then the finding
of explicit analytical expressions for the solution of the
system (1) does not seem to be feasible. Nevertheless, it is
possible to deduce the basic properties -of this solution
without knowing the actual forms of the functions ¢, (t) and.
¢ (t).

" First of all, instead of (2) we evidently have

&)

¢ - cp=(c, - ) exp [k, {: c, dt].

Equation (5) enables us to draw conclusions about the
behavior of the Frank model with variable c, in the limit
t—oo. Really, from the fact that for all values of t, the
concentration ¢, (t) is necessarily non-negative, we see that
for t—eo the difference c -c, either (i) becomes
unboundedly large or (ii) has a finite limit value. Evi-
dently, case (ii) will occur only if the concentration of A

vanishes for t—e, or more precisely, if | ¢, dt<eo.
[+
In case (ii) ¢, -c,—e> and consequently, ¢, —ee. Inview

of the reaction (B) it must then be c,—0. Thus we arrive at
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the following resuit.

Theorem 1. If ¢,(t) is an arbitrary function such that

¢ (020 fort>0,andif the integral I_=| c, dtexists, then
0

the Frank model has (i) a strictly monochiral terminal state,
provided I_= oo, or (ii) a terminal state in which the two
enantiomers are both present, but in unequal amounts,
provided I_< o. The excess of the dominant enantiomer
exponentially increases with I_,

On the Enantiomeric Excess in the Frank Model

The enantiomeric excess (ee), or chiral polarization of
a system containing enantiomeric species L and D is
defined as [4, 9, 14, 17]

ee=(c -c)(c +cp).

This dimensionless quantity has the convenient prop-
erty that its value is zero for racemic, and unity for
monochiral states of the system considered. In systems in
which chemical reactions take place, ee is time-
dependent. Its derivative with respect to t satisfies

d(ee)/dt=2(c,, dc /dt - ¢ _dc /dv) (¢ +c))? ©6)

Substituting equations (1) back into (6) we obtain
d(ee)/dt=2 k¢ c (c -c,) (¢ +C)?
and by taking into account equation (5),

d(ee)/dt= 2k ¢, c (¢, -C,,) €xp [k, f c, di] (c +c,)?

0

If ¢ ;- ¢, >0, then the right-hand side of (7) is neces-
sarily positive for all t>0. We thus obtain the following
result.

Theorem 2. If ¢, (1) is an arbitrary function, such thatc,(t)
20fort>0,andifc, -c >0, then the enantiomeric excess
monotonously increases forall t> 0.

Observe that the statement of Theorem 2 is indepen-
dentof the actual numerical values of the parametersk .k,
¢, and ¢, . Also observe that Theorem 1 implies that for
t —> oo, the limit value of ee is either unity (if I_=o0), orless
than unity (if I < o).

Conclusion
This paper shows that the basic properties of the Frank
model are maintained for a very general class of functions
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c,(t). Namely, a completely monochiral terminal state is

t
achieved if and only if the integral | ¢, dt unboundedly

. 0
increases for t — oo, This, in particular, happens when c,

is a constant - as in the original formulation [11] of the
Frank model. However, for the success of the Frank model
the choice of constant ¢, is not at all necessary. These
features of the Frank model are established in this work for
the first time.

In the case of time-dependent c, , it is no more easy to
find explicit expressions for the functions ¢, (t) and c(t).
The straightforward way to overcome this difficulty would
be to find ¢ , ¢, and ¢, by numerically solving the differ-
ential equations (1). For this, however, one would have to
guess some concrete numerical values for the rate con-
stants k, and k, as well as for the initial concentrationsc, ,,
€y, andc,. Introduction of such ad hoc assumptions would
certainly diminish the credibility of the Frank model,
whose power lies in its simplicity and generality. This
paper showed how this obstacle could be overcome by
using mathematical analysis and how the basic properties
of the Frank model could be established without knowing
the actual analytical form of the solution of the respective
system of differential equations and without referring to
any particular numerical value of the rate constants and/or
the initial concentrations.

References

1. Mason, S.F. Molecular optical activity and the chiral
discrimination. Cambridge Univ. Press, Cambridge, (1982).

2. Mason, S.F. Biomolecular homochirality. Chem. Soc. Rev.,
17, 347-359, (1988).

3. Mason, S.F.Chemical evolution. Clarendon Press, Oxford,
(1991).

4. deMin, M., Levy, G. and Micheau, J.C. Chiral resolutions,
asymmetric synthesis and amplification of enantiomeric
excess. J. Chim. Phys., 85, 603-619, (1988).

5. Wynberg, H. Autocatalysis-the next generation of asymmet-
ric syntheses? Chimia, 43, 150-152, (1989).

6. Kondepudi, D.K., Kaufman, R.J. and Singh, N. Chiral
symmetry breaking in sodium chlorate crystallization. Sci-
ence, 250, 975-976, (1990).

7. Kondepudi, D.K., Bullock, K.L., Digits, J.A., Hall, J K. and
Miller, J.M. Kinetics of chiral symmetry breaking in crystal-
lization J. Am. Chem. Soc., 115, 10211-10216, (1993).

8. Casswell, L., Garcia-Garibay, M.A., Scheffer, J.R. and
Trotter, J. Optical activity can be created from "nothing." J.
Chem. Educ., 70, 785-787, (1993).

9. Buhse, T. Lavabre, D., Micheau, J.C. and Thiemann, W.

Chiral symmetry breaking: Experimental results and com-

puter analysis of a liquid auto-oxidation. Chirality, 8, 341-

345, (1993).

Kondepudi, D.K. and Sabanayagam, C. Secondary nucle-

ation that leads to chiral symmetry breaking in stirred crys-

tallization. Chem. Phys. Letters, 217, 364-368, (1994).

11. Frank, F.C. On spontaneous asymmetric synthesis. Biochim.

10.



Vol. 6 No. 4
Autumn 1995

Biophys. Acta, 11, 459-463, (1953).

12. Gutman, 1. Factors determining the direction of the
stereoselection process in the generalized Frank model. J.
Math. Chem., 3, 343-355, (1989).

13. Gutiman, L, Todorovid, D., Vuckovic, M. and Jungwirth, P.
Modelling ‘spontaneous chiral stereoselection: the Frank
mechanism with racemization. J. Chem. Soc. Faraday
Trans., 88, 1123-1127, (1992).

14. Gutman, L. and Todorovic/, D. The critical time in Frank’s
chiral amplification model. Chem. Phys. Letters, 195, 62-

66, (1992).

15. Gutman, 1., Todorovi, D. and Vuckovic, M. A variant of
Frank chiral amplification model. /bid., 216, 447-452, (1993).

16. Tennakone, K. Biochemical L-D stereoselection by weak
neutral currents. A mathematical model. /bid., 105,444-446,
(1984).

Gutman

234

J.Sci. I.R. Iran

17. Avetisov, V.A., Kuz’min, V.V. and Anikin S.A. Sensitivity
of chemical chiral systems to weak asymmetric factors.
Chem. Phys., 112, 179-187, (1987).

18. Babovid, V., Gutman, . and Jokic’, S. Origin of biomolecular

chirality. Analysis of Frank’s model. Z. Naturforsch., 42a,
1024-1026, (1987).

Goldanskii, V.I. and Kuz’min, V.V. Spontaneous mirror
symmetry breaking in nature and the origin of life. Z. Phys.
Chem., (Leipzig) 269, 216-274, (1988),

Gutman, 1., Babovid, V. and Jokic, S. The origin of
biomolecular chirality: the generalized Frank model with
arbitrary initial conditions. Chem. Phys. Letters, 144, 187-
190, (1988).

Quack, M. Structure and dynamics of chiral molecules.
Angew. Chem. Int. Ed. Engl., 28, 571-586, (1989).

19.

20.

21.



