FLOWS AND UNIVERSAL COMPACTIFICATIONS*

M.A. Pourabdollah and A. Sahleh

Department of Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Islamic Republic of Iran

Abstract

The main purpose of this paper is to establish a relation between universality of certain *P*-compactifications of a semitopological semigroup and their corresponding enveloping semigroups. In particular, we show that if we take *P* to be the property that the enveloping semigroup of a compactification of a semitopological semigroup S is left simple, a group, or the trivial singleton semigroup, then the universal *P*-compactification of S would be the distal, the right simple, or the right zero compactification, respectively.

Preliminaries

Throughout this section, unless stated otherwise, S will be a semitopological semigroup, written multiplicatively. For our notation, we shall follow Berglund et al. [1] as far as possible. In particular, we will frequently be referring to the notions of semigroup compactifications, universal P-compactifications, and their homomorphisms.

For a topological space Y, C(Y) denotes the C^* -algebra of all bounded complex-valued continuous functions on Y. A subspace F of C(S) is translation invariant if $L_s F \cup R_s F \subseteq F$, where

$$L_s F = \{L_s f : s \in S, f \in F \},$$

$$R_s F = \{R_s f : s \in S, f \in F \}$$

and

$$(L_s f)(t) = f(st) = (R_t f)(s)$$
 $(s, t \in S, f \in C(S)).$

A translation invariant closed subspace F of C(S)

Keywords: Compactification; Enveloping semigroup; Flow

containing the constant functions is left introverted if $T^F_{\mu}F \subseteq F$ for each $\mu \in M$ (F): = the set of all means on F, where

$$(T^F_\mu f)$$
 (s)= μ ($L_s f$) (s \in S, $\mu \in F^*, f \in F$)

We remind the reader that a mean on F is a bounded linear functional μ on F which satisfies $\|\mu\| = \mu(1_s) = 1$, where 1_s denotes the constant function of value 1 on S.

If, in addition, F is a subalgebra, then F is called left m-introverted if $T^F_\mu F \subseteq F$ for each $\mu \in \mathrm{MM}(F)$:= the set of all multiplicative means on F (i.e. the spectrum of F) which will hereafter be denoted by S^F . An admissible subspace of C(S) is a norm closed, conjugate closed, left introverted subspace of C(S), containing the constant functions. An m-admissible subalgebra of C(S) is a left m-introverted unital C^* -subalgebra of C(S).

The mapping $T^F: \mu \to T^F_\mu: MM(F) \to L(F, C(S))$ is called the introversion operator determined by F, where F is an m-admissible subalgebra of C(S) and L(F, C(S)) is the space of all bounded linear operators from F into C(S).

The reader is directed to Berglund et al. [1], Theorem 3.1.7, for the correspondence between compactifications

^{*1991} Mathematics subject classification. 22A20, 20M20, 54H15 E-mail: pourabd@ toos. um.ac.ir, Sahleh@ science 2. um.ac.ir

of S and m-admissible subalgebras of C(S).

Let F be an m-admissible subalgebra of C(S), then S^F under the multiplication $\mu\nu:=\mu$ o $T^F_{\nu}(\mu,\nu\in S^F)$ furnished with the Gelfand topology, is a compact Hausdorff right topological semigroup and hence we have a compactification (ε,S^F) where $\varepsilon:S\to S^F$ is the evaluation mapping. This compactification is called the canonical F-compactification of S. Conversely, if (ψ,X) is a compactification of S, then $\psi^*(C(X))$ is the corresponding m-admissible subalgebra of C(S), where ψ^* is the dual mapping of ψ .

Some of the m-admissible subalgebras of C(S), that will be needed in the sequel, are the following:

SAP(S):=Closed linear span in C(S) of the coefficients of continuous finite dimensional unitary representations of S,

LMC(S):= $\{f \in C(S): R_s f \text{ is relatively compact in } C(S) \}$ in the topology of pointwise convergence on $S\}$,

 $D(S):=\{f\in LMC(S): (\mu\eta\nu) (f)=(\mu\nu) (f) \text{ for } \mu, \nu, \eta \in S^{LMC} \text{ with } \eta^2=\eta\},$

MD(S):= $\{f \in D(S): (\eta \mu)(f) = \mu(f) \text{ for } \eta, \mu \in S^{LMC} \text{ with } \eta^2 = \eta\},$

SD(S):= $\{f \in D(S): (\mu \eta) (f) = \mu(f) \text{ for } \eta, \mu \in S^{LMC} \text{ with } \eta^2 = \eta\},$

 $GP(S): MD(S) \cap SD(S),$

 $LZ(S) := \{ f \in D(S) : f(st) = f(s) \text{ for } s, t \in S \},$

 $RZ(S) := \{ f \in D(S) : f(st) = f(t) \text{ for } s, t \in S \},$

We shall occasionally suppress the letter S from the notations for these algebras. For a description of the above algebras, the reader may consult Chapter 4 of Berglund et al. [1], and also Junghenn [2].

Remark. Supose that F_1 and F_2 are m-admissible subalgebras of C(S) with $F_1 \subseteq F_2$, and T^{F_1} , T^{F_2} are the introversion operators determined by F_1 , F_2 , respectively. Also suppose that (ε_i, S^F) is the canonical F_i -compactification, where $\varepsilon_i : S \to S^{F_i}$ is the evaluation mapping, i = 1,2. By proposition 1.2, there exists a continuous homomorphism $\pi : S^{F_1} \to S^{F_2}$ such that π o $\varepsilon_i = \varepsilon_2$; (notice that the homomorphism π is just the restriction map of the functionals in S^{F_2} to the subalgebra F_i). Thus we have

$$(T_{\mu}^{F_1}f)(s) = \mu(L_s f) = \pi(\mu)(L_s f) = (T_{\mu}^{F_2}f)(s)(s \in S, f \in F, \mu \in S^{F_2})$$

Therefore

$$T_{\mu}^{F_1} f = T_{\pi(\mu)}^{F_2} f$$
 $(f \in F_2, \mu \in S^{F_1})$ (*).

Now let $\mu \in S^{F_2}$, since π is onto, there is a $\widetilde{\mu} \in S^{F_1}$ such that π ($\widetilde{\mu}$)= μ , and

$$\pi(\widetilde{\mu})(f) = \mu(f) \quad (f \in F_2).$$

By (*) we have

$$T_{\widetilde{\mu}}^{F_1}f = T_{\pi(\overline{D})}^{F_2}f = T_{\mu}^{F_2}f \quad (f \in F_2) \quad (**).$$

Thus we can suppress the letters F_1 and F_2 from the notation of introversion operators and we can always assume $\mu \in S^{F_1}$.

Flows and Compactifications

A flow is a triple (S,X,π) , such that S is a semitopological semigroup, X is a compact Hausdorff space and $\pi: S \times X \to X$ is an action of S on X, meaning that $\pi(st, x) = \pi(s, \pi(t, x))$, where $\pi(s, .): X \to X$ is continuous for each $s \in S$. We often write (S, X) for (S,X,π) , sx for $\pi(s, x)$ and π_s for $\pi(s, .)$. The enveloping semigroup of a flow (S,X), denoted by $\Sigma(S,X)$, is the closure of the semigroup $\{\pi_s: s \in S\}$ in X^s . A flow (S,X) is called separately continuous if the mapping $s \to sx$: $S \to X$ is also continuous for each $x \in X$..

A flow (S,X) is distal if $\lim_{\alpha} s_{\alpha} x_{1} \neq \lim_{\alpha} s_{\alpha} x_{2}$ for each distinct pair x_{1}, x_{2} in X and all nets $\{s_{\alpha}\}$ in S for which both limits exist. By a famous theorem of Ellis (see Berglund *et al.* [1], Theorem 1.6.9), (S,X) is distal if and only if $\Sigma(S,X)$ is a group.

Remark 2.1. (a) (See Berglund et al. [1], Proposition 1.6.5) $\Sigma(S,X)$ is a compact right topological subsemigroup of X^* , for the topology of pointwise convergence on X. The mapping $\sigma: S \to \Sigma(S,X)$, defined by $\sigma(s) = \pi_s$, is a homomorphism of S onto a dense subsemigroup of $\Sigma(S,X)$ and for each $s \in S$, the mapping $\zeta \to \pi_s \zeta: \Sigma(S,X) \to \Sigma(S,X)$ is continuous, where

$$(\pi,\zeta)(x) = s(\zeta(x)) \quad (x \in X).$$

(b) Suppose that F is an m-admissible subalgebra of LMC(S). If we define $\pi: S \times S^F \to S^F$, by $\pi(s, \mu)$ $(f) = \mu(L, f)$, then (S, S^F, π) is a flow. For each $\mu \in S^F$, there exists a $\widetilde{\mu} \in MM$ (C(S)) such that

$$\widetilde{\mu}(f) = \mu(f) \quad (f \in F)$$

Now if $\{s_{\alpha}\}$ is a net in S such that $\lim_{\alpha} s_{\alpha} = s$, for some $s \in S$, then we have

$$\lim_{\alpha} \mu(L_{s_{\alpha}}f) = \lim_{\alpha} \widetilde{\mu}(L_{s_{\alpha}}f) = \widetilde{\mu}(L_{s_{\alpha}}f) = \mu(L_{s_{\alpha}}f) \quad (f \in F).$$

Thus the mapping $s \to s\mu$, where $s\mu = \pi(s, \mu)$, is continuous for each $\mu \in S^F$ therefore, (S,S^F, π) is a separately continuous flow (see also Lau [3], Lemma 4.3).

(c) Let (ψ, X) be a compactification of S. Since $\psi^*(C(S))$ $\subseteq LMC(S)$, by (b), (S,X) is a separately continuous flow and therefore by (a), $(\sigma, \Sigma(S,X))$ is a compactification of S. We call $\Sigma(S,X)$ the enveloping semigroup of the compactification (ψ, X) ; obviously this will cause no confusion. If, in addition, X has a right identity, then the mapping $\theta: x \to \zeta: X \to \Sigma(S,X)$ is one-to-one, where $\zeta(y) = xy$ for each $y \in X$. Thus by Lemma 2.4 infra, θ is an isomorphism. Therefore $(\sigma, \Sigma(S,X)) \cong (\psi, X)$.

In Theorems 2.6 and 2.7, we will give the relation between universality of certain P-compactifications of S and their corresponding enveloping semigroups. To prove these theorems we need the following statements:

Lemma 2.2. Let S be a semitopological semigroup. Then

- (a) if $f \in D(S)$ and $\mu \in S^D$, then $T_{\mu} f \in MD(S)$,
- (b) if $f \in SD(S)$ and $\mu \in S^{SD}$, then $T_{\mu}f \in GP(S)$, (c) if $f \in RZ(S)$ and $\mu \in S^{RZ}$, then $T_{\mu}f$ is a constant function.

Proof. For an m-admissible subalgebra F of LMC(S), if $\mu \in S^F$, then there exists $\widetilde{\mu} \in S^{LMC}$ such that $\widetilde{\mu}(f) = \mu(f)$ for each $f \in F$.

(a) Suppose that $f \in D(S)$ and $\mu \in S^D$, then we have

$$v\eta(T_{\widetilde{\mu}}f)=v\eta\widetilde{\mu}(f)=v\widetilde{\mu}(f)=v(T_{\widetilde{\mu}}f) \ (f\in F,v,\eta\in S^{LMC},\eta^2=\eta)$$

Thus $T_{\widetilde{\mu}} f \in MD(S)$. Since

$$(T_{\mu}f)(s) = \mu(L_{\mu}f) = \widetilde{\mu}(L_{\mu}f) = (T\widetilde{\mu}f)(s) \quad (s \in S, f \in F)$$

so $T_{\mu}f \in MD(S)$.

(b) By (a), if $f \in SD(S)$ and $\mu \in S^{SD}$, then $T_{\mu}f \in MD(S)$. Since SD(S) is left introverted, $T_{\mu}f \in SD(S)$, thus $T_{\mu}f \in$ $MD(S) \cap SD(S) = GP(S)$.

(c) For $f \in RZ(S)$ we have

$$(L, f)(t) = f(st) = f(t) \quad (s, t \in S)$$

thus $L_t f = f$, and consequently $(T_{tt} f)(s) = \mu(f)$ for all $s \in S$. Therefore, $T_i f$ is a constant function.

Remark 2.3. Suppose that F and G are m-admissible subalgebras of LMC(S) and $\{T_{\mu}f: \mu \in S^{F}, f \in F\}$ is a subset of G. Then the mapping *: $S^G \times S^F \to S^F$, defined by $(\mu *$ v) $(f) = \mu(T, f)$, is well-defined, and we also have.

$$(\mu_{1}\mu_{2})^{*} v(f) = \mu_{1}\mu_{2}(T_{v} f) = \mu_{1}(T_{\mu_{2}} *_{v} f)$$

= $\mu_{1}^{*} (\mu_{2} *_{v}) (f) \quad (f \in F, \mu_{1}, \mu_{2} \in S^{F}),$

so that

$$\mu_1^*(\mu_2^*v) = (\mu_1\mu_2)^*v \quad (\mu_1, \mu_2 \in S^G \text{ and } v \in S^F).$$

Lemma 2.4. Let F and G be m-admissible subalgebras of LMC(S) and let $\{T_{\mu}f: f \in F, \mu \in S^F\}$ be a subset of G. Then there exists a continuous homomorphism θ of S^G onto $\Sigma(S, \theta)$ S^{F}).

Proof. By Remark 2.1(b) (S, S^F, π) is a flow and $\pi: S \times S^F$ $\rightarrow S^F$, defined by $\pi(s, \nu) = s\nu$, is separately continuous. Suppose that $\mu \in S^G$ and $\nu \in S^F$, then by Remark 2.3, $\mu * \nu$ $\in S^F$. Let $\{s_a\}$ be a net in S such that $\lim_{n \to \infty} (s_n) = \mu$ and $\lim_{\alpha} \pi_{s\alpha} = \zeta$, for some $\zeta \in \Sigma(S, S^F)$. Note that the limits are taken in w^* -topology of S^G and pointwise topology of $\Sigma(S,$ S^{F}), respectively. Then we have

$$\mu^* v(f) = \mu(T f) = \lim_{\alpha} \varepsilon(s_{\alpha}) (T_{\nu} f) = \lim_{\alpha} v(L_{s\alpha} f)$$
$$= \lim_{\alpha} \pi_{s_{\alpha}} (\nu) (f) = \zeta(\nu) (f) (f \in F, \nu \in S^F).$$

Thus the mapping $\zeta_{\mu}: S^F \to S^F$, defined by ζ_{μ} (ν)= $\mu^*\nu$, belongs to $\Sigma(S, S^F)$ for each $\mu \in S^G$. Now if $\mu_{ij}, \mu_{j} \in S^G$, by Remark 2.3,

$$\zeta_{\mu_1\mu_2}(v) (f) = (\mu_1\mu_2)^* v(f) = \mu_1\mu_2(T_vf) = \mu_1(T_{\mu_2} * v f)$$

$$= \zeta_{\mu_1}(\mu_2 * v) (f) = \zeta_{\mu_1}(\zeta_{\mu_2}(v) (f) (f \in F, \mu_1, \mu_2 \in S^G, v \in S^G)$$
F).

Thus the mapping $\theta: S_G \to \Sigma(S, S^F)$, defined by $\theta(\mu) = \zeta_{\mu}$, is a homomorphism.

If $\zeta \in \Sigma(S, S^F)$, then there is a net $\{s_n\}$ in S such that

 $\lim_{\alpha} \pi_{s_{\alpha}} = \zeta$ and $\lim_{\alpha} \epsilon(s_{\alpha}) = \mu$ for some $\mu \in S^{G}$. Thus we have

$$\zeta(v) (f) = \lim_{\alpha} \pi_{s\alpha}(f) = \lim_{\alpha} \mu(L_{s\alpha}f) = \lim_{\alpha} \varepsilon (s_{\alpha})(T_{\alpha}f)$$
$$= \mu(T_{\alpha}f) = \mu * v(f) \quad (f \in F, v \in S^{F})$$

Therefore the mapping θ is onto. Continuity of θ is obvious.

Proposition 2.5. Let S be a semitopological semigroup and let F be any one of D(S), SD(S) or RZ(S), then $\sigma^*(C(\Sigma(S,S^F)))$ is MD(S), GP(S), or the set of all constant functions, respectively.

Proof. By Remarks 2.1 (b) and (c), (S, S^F, π) is a separately continuous flow and $(\sigma, \Sigma(S, S^F))$ is a compactification of S, where $\sigma: S \to \Sigma(S, S^F)$ is defined by $\sigma(s) = \pi_s$. If F is RZ(S), then by Lemma 2.2 (c), $\sigma^*(C(\Sigma(S, S^F)))$ is the set of all constant functions.

Now let the pair (F, G) be (D(S), MD(S)) or (SD(S), GP(S)). By Lemmas 2.2 and 2.4, $\theta: S^G \to \Sigma(S, S^F)$, defined by $\theta(\mu) = \zeta \mu$, is a continuous homomorphism of S^G onto $\Sigma(S, S^F)$. Since S^G is left simple or a group, so is $\Sigma(S, S^F)$. Thus $\sigma^*(C(\Sigma(S, S^F)))$ is a subalgebra of MD(S) or GP(S), respectively.

Now it is enough to show that θ is one-to-one. We consider two cases.

Case 1. F = D(S). Let μ_1 , $\mu_2 \in S^D$ with $\zeta \mu_1 = \zeta \mu_2$. For $f \in MD(S)$ and $\eta \in S^D$ with $\eta^2 = \eta$, we have $T_n f = f$. Thus

$$\mu_{I}(f) = \mu_{I}(T_{\eta}f) = \mu_{I} * \eta(f) = \zeta_{\mu_{1}} (\eta)(f) = \zeta_{\mu_{2}}(\eta)(f)$$

$$= \mu_{2} * \eta(f) = \mu_{2}(T_{\eta}f) = \mu_{2}(f) \quad (f \in MD(S)),$$
thus $\mu_{I} = \mu_{2}$.

Case 2. F=SD(S). Let $\mu_1, \mu_2 \in S^{GP}$ with $\zeta_{\mu_1} = \zeta_{\mu_2}$. Suppose that η is the identity of S^{GP} , then there exists $\widetilde{\eta} \in S^{LMC}$ such that $T_{\widetilde{\eta}}f = T_n$ for each $f \in GP(S)$. Thus we have

$$\begin{split} \mu_{I}(f) &= \mu_{I} \eta(f) = \mu_{I} *_{\widetilde{\eta}}(f) = \mu_{I}(T_{\widetilde{\eta}}f) = \zeta_{\mu_{1}}(\widetilde{\eta}) \ (f) = \zeta_{\mu_{2}}(\widetilde{\eta}) \ (f) \\ &= \mu_{2} *_{\widetilde{\eta}}(f) = \mu_{2} \eta(f) = \mu_{2}(f) \ \ (f \in GP(S)), \end{split}$$

thus $\mu_1 = \mu_2$. So, in any case, θ is one-to-one. \square

Now consider the following properties of compactifications (ψ, X) of a semitopological semigroup S:

 $(P_i) \sum (S, X)$ is a left simple semigroup.

 $(P_2) \sum (S, X)$ is a group (or (S, X) is distal),

 $(P_{*}) \sum (S, X)$ is the trivial singleton semigroup.

By proposition 2.5, (ε, S^D) , (ε, S^{SD}) and (ε, S^{RZ}) have the properties P_1 , P_2 and P_3 , respectively.

Theorem 2.6. Let S be a semitopological semigroup, then

- (a) (ε, S^D) is the universal P_i -compactification of S.
- (b) (ε, S^{SD}) is the universal P_2 -compactification of S.
- (c) (ε, S^{RZ}) is the universal P_i -compactification of S.

Proof. Let (ψ, X) be a P_i -compactification of S, i=1,2,3. By Remark 2.1 (b) and Lemma 2.3, $\sum (S, S^F)$, where $F: = \psi'(C(S))$, is a left simple semigroup, a group or the trivial singleton semigroup for i=1,2,3, respectively.

Let \overline{v} be the restriction of v to F for $v \in S^{LMC}$, i = 1,2,3. (a) Suppose that (ψ, X) is a P_i -compactification of S. For μ , ν , $\eta \in S^{LMC}$ with $\eta^2 = \eta$, we have

$$\mu\eta\nu(f) = (\mu\eta) * \overline{\nu}(f) = \mu\eta(T\nabla f) = \zeta_{\mu\eta}(\overline{\nu})(f)$$

$$=\zeta_{\mu}(\zeta_{\eta}(\overline{v})\ (f\)=\zeta_{\mu}\ (\overline{v})\ (f)=\mu v\ (f\)\quad (f\in F).$$

Thus $f \in D(S)$ for each $f \in F$.

(b) Suppose that (ψ, X) is a P_2 -compactification of S. Since $\Sigma(S, S^F)$ is a group, ζ_{η} is the identity function on S^F for each $\eta \in S^{LMC}$ with $\eta^2 = \eta$. Suppose that $v \in S^{LMC}$, then we have

$$nv(f) = n \overline{v}(f) = \zeta_n(\overline{v})(f) = \overline{v}(f) = v(f) \quad (f \in F),$$

thus $F \subseteq SD(S)$.

(c) Suppose that (ψ, X) is a P_3 -compactification of S. Since $\sum (S, S^F)$ is the trivial singleton semigroup, we have

$$\zeta_{\varepsilon(s)}(v) = v \quad (s \in S, \ v \in S^{RZ})$$

and

$$f(st) = \varepsilon(s)\varepsilon(t)(f) = \zeta_{\varepsilon(s)}(\varepsilon(t))(f) = \varepsilon(t)(f) = f(t)(s, t \in s, f \in F), thus F \subseteq RZ(S). \square$$

Let C_1 and C_2 be the classes of all compactifications (ψ , X) of S such that X has a right identity and an identity, respectively. It is clear that (ε , S^{MD}) and (ε , S^{LZ}) are in C_1 , and (ε , S^{GP}) and (ε , S^{SAP}) are in C_2 .

Suppose that (ψ, X) is in C_{γ} , i = 1, 2. By Remark 2.3 (c), $(\sigma, \Sigma(S, X)) \cong (\psi, X)$; thus by Proposition 1.1, we have the following theorem.

Theorem 2.7. Let S be a semitopological semigroup. Then

(a) (ε, S^{MD}) is universal among P_1 -compactifications in C_1 .

- (b) (ε, S^{GP}) is universal among P_2 -compactifications in C_n .
- (c) (ε, S^{LZ}) is universal among compactifications in C_1 for which $\Sigma(S, X)$ is a left zero semigroup.

It is an immediate consequence of Theorem 2.7(b) that (ε, S^{SAP}) is universal among P_2 -compactifications (ψ, X) in C_2 for which $\Sigma(S, X)$ is a topological semigroup.

We would like to mention that Lawson [4] contains interesting and detailed results concerning the interrelation between flows and compactifications. Our results however, have a different orientation and are of independent interest.

References

- 1. Berglund, J.F., Junghenn, H.D. and Milnes, P. "Analysis on semigroups", Wiley, New York, (1989).
- Junghenn, H.D. Distal compactifications of semigroups, Tran. Amer. Math. Soc. 274, 379-397, (1982).
- 3. Lau, A.T. "Action of topological semigroups, invariant means, and fixed points", Studia Mathematica, T. XLIII., 139-156, (1972).
- J.D. Lawson, J.D., "Flows and compactifications", J. London Math. Soc. 46, 349-363, (1992).