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Abstract
In this paper we shall apply modules of generalized fractions to extend the
notion of the grade of an ideal, and to obtain characterizations of Gorenstein

rings.

Introduction
Let A be a commutative Noetherian ring. The grade
of a proper ideal & of A was defined by D. Rees in [5]

as the least integer i > 0 such that Exts (4/a, A) #0. It
is well known that the definition of grade of an ideal &
of A can be generalized by defining the grade of @ on
a finitely generated A -module M such that OM =M
both as the maximum of lengths of M - sequences con-
tained in ¢ and the least integer i > 0 such that Exts (A/
aM)=0.

In this note, we shall extend the above definition of
grade to non-zero A -modules M which have the prop-
erty that whenever O is an ideal of Aand x, ..., x,is a
poor M -sequence contained in @ such that @
CZM/Z4Ax)M ) then acp for some PeAss,
(M ]Z%4 Ax)M ). (In this note, for an A-module N,
the set of zero divisors on N is denoted by Z(N}.) Our
extended definition of grade is based on the theory of
modules of generalized fractions which was intro-
duced by Sharp and the author in {7]. Indeed we shall
show that if M is an A-module with the above prop-
erty, then the set U, = {(x, .. . X, 1) 1 X, e ) X isa
poor M -sequence} is a triangular subset of A"'§ for
all i 2 0, and, for an ideal & of A with aM = M, the
length of all maximal M-sequences contained in @ is
the least integer i 2 0 such that

{(xe UiIM:ax=0}=0,
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wherelU 5 M is the module of generalized fractions of
M with respect to U, , ,. Also, in this note, we shall use
modules of generalized fractions to obtain character-
izations of Gorenstein rings.

Let us recall briefly the main ingredients in the
construction of modules of generalized fractions.
Throughout this note, A will denote a commutative
ring (with identity). For an ideal @ of A and an A-
module M, we shall denote the submodule {mM:
am=0)} by ann (&,M). When discussing modules of
generalized fractions, we shall use the notation of [7],
except that we shall use a slightly different notation
concerning matrices, in that round brackets will now
be used instead of square ones, we shall agree to use n
tuples (a, ,...,a, ) of elements of A and / X n row matri-
ces (a,,...,a, ) over A interchangeably.

We still use T to denote matrix transpose and, for n
€N, D,(A) to denote the set of all n X n lower triangu-
lar matrices over A.

A triangular subset of A” is a non-empty subset U/
of A” such that (i) whenever (x,,....x,)eU, then
(x,...,xZ")eU for all choices of o, ... , o, e &Y, and
(ii) whenever x,ye U, then there exist ze/ and H, Ke
D, (A) such that H,r=K,r=zT Given such a U and an
A-module M, one can construct (see section 2 of [7])
the module of generalized fractions U M ={ J‘—}: aeM,

xeU}, where J—‘} denotes the equivalence class of
(a2 .x)e Mx U under the equivalence relation ~on MxU
defined as follows. For a, be M and x,ye/ we write

(ax) ~(b)y) if and only if there exist (z,, ... , z,): =
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zeU and H,KeD, (A ) such that
n-1
Hyr=zT=K;rand|H| a-|K|be (Y, AzM.
i=1
Now U™ M is an A-module under the operations
abtlaKIG e ra
Xy z X x

for reR,a,beM,x,yeU and any choice of zelU
and H KeD, (A) such that Hyr=zT=K7.

The above concept is indeed a generalization of the
familiar concept of ordinary module of fractions: see
[7.3.1].

Results

Throughout this section, M is an A-module. We say
that a sequence x,,...,x, of elements of A is a poor M-
sequence if

Ax, + ...+ Ax; JM:x; = (Ax; + ... + Ax)M

for all i =1,.., n; it is an M-sequence if, in addition M
#(Ax, + ...+ Ax M.

The following theorem, which is proved in {4, 3.2]
by elementary means, plays an important role in this
note.

Theorem 2.1. Let x,,...,x, be a poor M-sequence
and let y,,...,y, be a sequence of elements of A such
that

HO e 3,0 = Oy 27

for some He D, (A). Then the map from M/ ZLAy)
M to M/(Zi1Ax%) M induced by multiplication by 1H!
is a homomorphism, and y,,...,y, is also a poor M-
sequence.

Corollary 2.2, Let U be a triangular subset of A”
which consists entirely of poor M-sequences. Let me
M and (x,, ..., x,)e U. Then

—_—m
(x1 P x,.)
in U™ M, if and only if me (X%} Ax) M.
Proof. (=) Suppose that —L— = (. Then there
(Xi ,...,Xn}
exist (y,....y,)eUand H = (h;';)EDn (A) such that

:(),

n-1

H (X) s X,) = e x,) T and IH I me (Y, Ayi) M.
i=1

Now, h x,+..+h, x =y, hence

n-1 n-1

Biger By 1 On- 2 Imp)me (3 ApM.
i=1 =1

We may now use {7, 2.2] to see that
n-1 n-l

By By 1 ME (Y ADM:y,= (3 AM.
i=1 i=1

Therefore by 2.1, me (371 AxdM.

n-ln

Zakeri

309

Yol.4 No.4
Autumn 1993

(<) Use [7, 3.3(11)].

We shall need to use a result of A. M. Riley con-
cerning the saturation of triangular subsets. For an ar-
bitrary triangular subset U of A", the set

U ={xe A" : xH eU for some HeD (A)}

is called the saturation of U; it is easily seen to be a
triangular subset of A" containing U, Riley proves, in
[6, Chapter I1, 2.9], by direct calculation that the natu-

ral homomorphism UM — U™M is an isomorphism.
(The reader is referred to [2, 2.3] for another proof of
this).

The next theorem provides an explicit description,
in certain situations, of the elements of a submodule of
a module of generalized fractions which is annihilated
by an ideal of A.

Theorem 2.3. Let & be an ideal of A4 and let U be
a triangular subset of A" which consists entirely of
poor M -sequences. Suppose that there exists x =
(X}, ) €U such that x,,...x, €eqa. Then each ele-

ment of ann (&,(UX {1}7-1M ) can be written in the
m
(x1 yeors Xty 1)
Proof. By the above result of Riley and 2.1, we can
suppose that U is saturated. Let

X=—b _cann@Ux{1)™'M),
1 ey 1)
where beM and (y,..., Y€ U. We may assume

that there exists H € D, (A ) such that
H (1 s Xn) = 1Y)

form forsome meM.

Then, by [2, 3.2], (X} seees X;, X 1, Vigp Yigg o0 )
€U for each i=0 ..., n; hence (X; ..., X; , Yy 5o V)
€ U by virtue of the fact that U is saturated and

T T
QL youey Xy Xid Vind s Yis2 sy Y1) =D (X1 geers X3, Vit 3oeer Yi) 5

where D is the diagonal matrix diag (1 ,..., 1, x; },
1,....1).

Su)ppose, inductively, that i is an integer with 0<i
< n and it has been proved that

X = L
(xl seees Xi Yia1s0ees Yny 1)

for some m ;€ M. This is certainly the case when i = 0.
We have that x, .. X =0. Hence by 2.2,

i+1
x;,,ynl:xlm'l + ...+x,-m',» +y,~+,m';,1 + ...+y,,m',,

for some m’|..., m’, € M. Therefore, again by 2.2
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- Xiz1Mivy

(—x! poreXis X i1 Yie b Y is2eosYom 1)
. Yiri m,i+1

(X pseeX s Xia1 Vistr Y is2sere Y o 1)
= m'iy

(xb""xid-b}’i-ﬂ seees Vs 1)

This completes the inductive step and the result is
proved by induction.

Theorem 2.3 has some immediate consequences
which we record here.

Consequences 2.4. (1) Let the situation be as in
2.3. Then, in view of 2.2 and 2.3, the A -homomor-
phism

X

¢:(§n:Ax.-)M:CI-—>ann(d,(Ux{1})”‘"M)

i=1

given by ¢(m)=—->= is surjective and ker

Xpaeees Xn, 1)
=21, Ax)M . Hence

a n
G AxIM:a/Q Ax)M =ann(@,Ux{1)"'M).
=] =1

(2)Forz =(z,...,m) € A" let U;={(z* ..., 2%): ;...
o, € N} (a triangular subset of A"). Let the situation be
asin 2.1, and let V be the saturation of U,. (Note that,
in view of {7, 3, 9] and 2.1, each element of UV and
U, is a poor M -sequence.) Let @ be an ideal of A and

suppose that y ,..., y, € &. Then, by (1),
ann(Q,(Uyx{1)"M)=

(iAy,-)M:a/(iAy,)Ms:« ann(@,(Vx{1)™M)=
i=l

=]

n E
G AM:a/T AYM = ann(@,Uxx {1)™"' M).

=) i=]
For the remaining part of this section, we shall as-
sume that A s Noetherian and that, whenever & is an
ideal of A and x,...., x,, is a poor M-sequence contained

in @ such that acZ(M/(Y. ., Ax) M), then ac p for

i=l

A
some P € Assa (M /(Y Ax) M). At this stage, under
i=
the above assumptions, we can establish the following.
Theorem 2.5. For all positive integer n, let V, be
the set of all poor M-sequences of length n. Then
(i) V, is a triangular subset of A” forall n e N;
(i) if a is an ideal of A such that aM =M, then the
lenght of a maximal M-sequence in @ is the least

integer i (2 0) such that ann (@, UM ) =0,
where U, =V, x {1}.forall neNand U, = {1}
Proof, (i) First note that, for all n €N, (1,...,1) eV,
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and that, in view of [7, 3. 9], (x,...x/*) €V, when-
ever (X1 pmXa)eVaandty ..taeN. Thus, we have to
check the second condition of the definition of trian-
gular subsets. We shall do it by induction on n. It is
clear that V| is a triangular subset of A !.

Suppose, inductively, that n >1 and we have
proved that V, , is a triangular subset. Let (x, ..., x,),
Oy ses ¥,) €V, Then, by the induction, there exixts

(zy seer 2,1, €V, such that

z€ QAR (X, Ay)
j=1

P
for i =1...., n -1. Since

n-l n-1 Bl
Z (Ax;)M:ZAxs=(ZAxi)M,
il pa i=l

it follows from 2.4(2) that

n-1 n n-l
Y (Az)M: 2Ax;= (Z Az)M;

i=] i=] i=]

hence X Axi  p for all p €4 ss, (E), where
n-1

E=M X5y Az) M. Similarly, Ti Ay: ¢ p for all p
eAss, (E ). Therefore, in view of the above assump-
tion which we imposed on M, there exists

2n € Ui Ax) N (ZigAy)) such that z & Z (E ). This
completes the inductive step.

(ii) Let a be an ideal of A such that aM # M. Let
X|,....X, be a miximal M-sequence in Q. Then (Ax,
+ot AX;) M:Q= Ay +..+A)M for all i =0,..., n -1,
and, by virtue of the assumption which we imposed on
M, (Ax; + ... + Ax )M: @ # (Ax, + ... + Ax,) M. Hence,
by 2.4(1), n is the least integer i such that ann
QUi M)=0.

Now that 2.5 has been proved, we can give the
following definition.

Definition 2.6. For all n2 0, let U, _, be the set of
all (x,..., x,, ,1)e A1 such that x,,..., x,, is a poor M -
sequence. Let @ be an ideal of A such that aM 2 M.,
Then the grade of & on M, grade (G, M ), is the length
of any maximal M-sequence contained in & (they
have the same length by 2.5 (ii)) and also the least
integer n(>0)suchthatann M: ann (Q,U;2 M) %0,

It is easy to see that the above definition of grade
has the following property.

Proposition 2.7. Let a,...., @, be ideals of A such
that a;M = M forall i =1,..., 7. Then

grade ({'\l Q;, M) =grade (Il q, M)
=min {grade (&, M):1<i<r}.
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The following propositions, for which we shall as-
sume that A is local with maximal ideal m and dim A
= n, provide characterizations of Gorenstein local
rings. The reader is referred to {1] and [3] for several
equivalent definitions of Gorenstein rings. In particu-
far, recall that A is Gorenstein if and only if, equiva-
lently, either the injective dimension id, (A) of A isn
or A is Cohen-Macaulay and dim ,m((u:m)/a)=1 for
some (respectively, any) parametric ideal Q of A.

Proposition 2.8. Let U, | = {(x ,..., x,, 1)! x,...,
x, is a poor A -sequence}. Then the following state-
ments are equivalent:

(i) A is a Gorenstein ring;
(i) dim,, , (ann (M, U A)=1;
(i) UA' A is a non-zero injective A -module.

Proof. The case in which n =0 is clear. So, sup-
pose that n >0. By 2.4(1) and the above observations
we have that (i) < (ii). Also, if (iii) holds, then A is
Cohen-Macaulay and, for a parametric ideal ¢ of A,
the ring A/qis self injective,since A/q=ann (Q,U:5' A)
by 2.4(1) and the later A/g-module is injective. Hence
(i) follows, Therefore, in order to complete the proof,

we show that (i ) = (iid).

-n-1
Let b be an ideal of Aand letf: b —U A be an
A-homomorphism. Since b is finitely generated, there
exists and A-sequence x,,..., x, such that

foycA—1 .
(Xt sorr Xn, 1)
Also, by Artin-Ress Theorem,

b (X Ax)*is (X, A% b

for some ¢ > 0, Therefore, in view of 2.2, we have that
imfc ann(Q,UitA)andb N qckerf,
where q=2", Ax*!. Hence f induces an A/Q-homo-
morphism
f* (b+q)/q— ann(q, UATA).

On the other hand, it follows from the hypothesis and
2.4(1) that ann(q,U;AA) is an injective A/g-module.
Thus, there exists X € ann(QU;%1A) such that f(y)=
F¥fO)=r*(q+y=yXforallyeb. It therefore follows
that U, A is an injective A -module.

It is a well-known change of rings theorem that if
xem/Z (A),X =A/Ax, and M is an A-module such that

xe ZM).thenids M /xM)=ids(M)-1. Next, we shall
apply this Theorem to give a characterization of
Gorenstein local rings in terms of injective dimension
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of certain module of generalized fractions. To do this,
we need to introduce some further notations. For a
sequence x,...., x; (i 2 0) of elements of a commutative
ring R, we shall use U(x), , to denote the triangular
subset

i+]
{0 x 1) : oty 056 N}

of R™! Note that if i = 0, then U(x)

i+1

= {1} and
U, R=R.

i+l T

Proposition 2.9. The following statements are
equivalent:

(i) A is a Gorenstein ring;

(1) if x,..., x; is a subset of a system of parameters for
~i-1

A, then id A (U, A)y=n-i.

Proof. (i) = (ii) We prove this by induction on n.
The case in which n = 0 is clear. Let n > 1, and sup-
pose that the result is true for n -1. Let x,,..., x; be a
subset of a system of parameters for A. Let U, be as
in 2.8. If i = n, then, with the aid of [8, 3.6] and 2.2, it
is easy to see that the natural A-homomorphism

-n-1 -n-1
Ux) A —>Un’;A is an isomorphism; hence, by 2.8

-n-1
and hypothesis, U(x),_, A is an injective A-module. So,

we may assume that i < n. Let x;,; €A be such that
X5 X; » X;,, TOTms a subset of a system of parameters
for A, and let y: A — A/Ax; , be the natural homo-
morphism. Then y (A4) is a Gorenstein ring of dimen-
sion n-1 and ¥ (x)),..., ¥(x,) is a subset of a system of
parameters for y (A). Hence, by induction,

-
idw( @ U ym),, yA)=n-1-i
Next, using 2.2, it is easy to see that
PR A (U(x)?:llA) and that the relation
-1 -i-l
0:UR), A - U(y),, y(A)
given by

o( a - v(@)
O x® 1) (W)™, w0)%, w(1))

-l
is an A-epimorphism and ker ¢=x U(), A. There-

fore, by the above mentioned change of rings theorem,
ida (U(x)ii'x’A Y=n-i. The result now follows by induc-
tion.

(ii) = This is clear by Bass’ fundamental theorem
in [1]. Note that it follows from the hypothesis that
id,(A) = n.
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