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The string theory is a fast moving subject, both physics wise and in the
respect of mathematics. In order to keep up with the discipline it is impor-
tant to move with new ideas which are being stressed. Here I wish to give
extracts from new papers of ideas which I have recently found interesting.
There are six papers which are involved:

1:‘Strings formulated directly in 4 dimensions” A.N. Schellekens
I1. “Remarks on 4D strings” C.Bachas
M1. “Informal introduction to extended algebras and conformal field
theories with c=1"" F.Ravanini
IV. “Skein relations and braiding in topological gauge theory” and
“Modular geometry and the classification of rational conformal field
theories”” S.Mukhi
V.“Chern-Simons theories” E.Witten
VI. “Duality and the rol of nonperturbative effects on the world—sheet”
J.Lauer, J.Mas and H.P. Nilles

I. STRINGS FORMULATED DIRECTLY IN 4-
DIMENSIONS

“What is meant by a consistent (closed, fer-
mionic) string theory in d dimensions, is a theory
based on a two-dimensional field theory with the
following properties:

(i) reparametrization invariance

(ii) conformal invariance
(iii) modular nvariance
(iv) world-sheet supersymmetry and superconfor-

mal invariance

v) the presence of d right and left-moving scalars
(Xgr.XL), whose zero modes are the space-time coor-
dinates”’.

“The existing ways of satisfying condition (ii) are
most easily classified by the left-and right-moving
ghost contribution (cLCR)ghost to the central charge of
the Virasoro algebra. The possibilities relevant for
four dimensions are (—26,—26) (bosonic strings),
(—15.—15) (type 11 strings) and (—26,~ 15) (heterotic
strings). The “matter” fields cancelling these conformal
anomalies were traditionally chosen to be 26 bosons
(c=26) or ten bosons and ten Majorana—Weyl ferm-
ions (c=15)".

Now the art of constructing consistent string
theories for d=4 is simply to find the solutions to the
conditions listed above, particularly of item (v). The
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case of d=26 for Bose strings and d=10 for the super-
symmetric strings corresponds to the case where ALL
the Bose fields in the 2—dimensional underlying
theory possess zero modes. This is clearly not neces-
sary and the modern art of constructing consistent
theories for d=4 is simply to postulate only four sca-
lars (X’s) possessing zero modes to correspond to
d=4 space—time coordinates.

One of the promising lines of development is to
consider internal orbifolds for the remaining 6 de-
grees of freedom in the case of the supersymmetric
conformally invariant heterotic theory.

«“Orbifolds were first discussed as singular limits
of Calabi—Yau manifolds, and later started to lead
a life of their own. Their construction has recently
been generalized in several ways, by adding
background fields (“Wilson lines”) or by allowing
left—and right—movers to live on different orbifolds
(“‘asymmetric orbifolds”)”.

“Modular invariant theories (iii) are obtained by
twisting boundary conditions of an already modular
invariant theory, imposing (at least for Abelian or-
bifolds) a ““level matching” condition to ensure that
modular invariance is not destroyed™.

It appears that one can construct a number of theories
with three families and which preserve the standard
model symmetry group SU3)xSUL(2)xU(1)". The
use of Wilson’s lines is particularly important in this con-
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struction, especially in limiting the number of families.

But even so, there are hundreds of thousands, if
not millions, of such theories claimed.

“If all these theories are in fact just different vacua
of the same theory, we are still faced with a bewilder-
ing choice of vacua. Nevertheless, one should not
lose sight of the superiority of string theory over field
theory in this respect. In field theory, one can choose
arbitrary gauge groups, arbitrary (anomaly—free)
representations for all fields, and arbitrary coupling
constants. In string theory, one can choose
world—sheet boundary conditions. In the space of
all possible field theories, the ones that can come
from strings are a subset of measure zero. Most of
the more exotic Grand Unified Theories that have
been proposed in the past cannot come from string
theory”.

A.N.Schellekens

II. REMARKS ON 4-D STRINGS

A question that often arises is whether the huge
number of 4d string models are compactifications of
the known 10d superstrings. The answer is yes, no
or maybe depending on what one means by ‘““compac-
tification”.

Strings seem to evade the wisdom and no—go
theorems of traditional Kaluza—Klein compactifica-
tions, making the problem of obtaining chirality and
enough gauge symmetry in 4d surprisingly easier.
Finally, if one asks whether they can be thought of
as strings moving on MyxK;, where My is 4d Min-
kowski space—time Ks some 6d internal space, the
answer is perhaps, but to some extent irrelevant. The
reason is that strings invalidate our geometric intui-
tion is so many ways, that one is quickly lead to the
conclusion that Riemannian geometry is not the right
context for discussing string propagation. So let us
start by illustrating this point with a few examples.

Firstly, strings are extended objects that can wind
around a compact space. For instance on a circle of
radius R, string states are characterized both by a
momentum p=— 'zl‘R' quantized in multiples of half
the inverse radius, and a winding number w=mR
quantized in multiples of the radius. The mass of the
state, in appropriate units of order Mpjanck, is given

by:
2
1/ n .
T _ 2= + Y  (left oscil. fregs)
M 3 <2R + mR)
= 1_ o mR>2 + X (right oscil. freqgs)
2\2R

(2.1)
which shows that for radii of order one, winding is
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as important as momentum.

One consequence of this is the appearance of new,
unexpected from a point-field-theory point of view,
massless states. Consider for example the bosonic
string compactified on a circle of radius

R: My — My¢ x Si(R) (2.2)
The massless spectrum contains always the tradi-
tional Kaluza-Klein gauge bosons, coming from the
reduction of the graviton and antisymmetric tensor:

(BxdXH + 0XHBx)|0 > (p=1,...,25)

(2.3)

where x is the compactified coordinate. However at
the special radius R=715 , four extra massless charged

gauge bosons: XHln=m = 1 >and 9 X¥|n=
—m = +1 > appear. The net result is an enhance -

ment of the gauge symmetry from U(1) x U(1) to
SU2) x SU(Q2).

Both the spectrum and the entire S—matrix are
unchanged under the duality transformation Re—),l—l—-
which inverts the radius of a circle and interchanges
momentum and winding (n < m).Thus from the
string theory point of view, the size of our (nearly)
flat universe could equally well be a few Gigasparsecs
(~1010light years ~ 10?28 cm), ora tiny—tiny fraction
of an angstrom (~ 1078A); in this latter picture a
highly energetic proton or electron zooming down
an accelarator, would correspond to a string state
winding around our tiny universe zillions and zillions
of times.

Not only singularities, or the size of space but even
its dimension can be an illusion in string theory. This |
is best illustrated by the SU(2) Wess—Zumino— Wit-
ten model, with action:

S=kf<G;'ng(2) naﬂ + BS-U(z) Eaﬁ) aaXiaﬂxjd2 2
(2.4)

where G,js U and Hiy= gj('i[ijlc]are the appropriately
normalized metric and, completely antisymmetric
3—form on the SU(2) manifold. This action describes
the propagation of a string on a 3—sphere, in the
presence of an antisymmetric tensor field background
with a Dirac type singularity. What is surprising is
that for k=1 the entire spectrum of string states and
their interactions are identical as_those of a string
moving on the special circle (R=—) that exhibited
gauge symmetry enhancement! Put differently, a 26d
bosonic string compactified on a circle is identical to
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a 28d string compactified on a 3—sphere.

The fact that for some sizes we can identify a
smooth circle, a singlular orbifold and a
three—sphere indicates that Riemannian geometry
is totally inadequate for describing the symmetries
of even the bosonic string near the Planck scale.

Firstly, as was clearly demonstrated by the hetero-
tic string, left—and right—moving string excitations
need not live on the same geomtric space. Secondly,
there is world—sheet supersymmetry: at the critical
dimension this is implemented by adding to the
space—time coordinates X#, which are world—sheet
bosons, superpartners ¢)# which are world—sheet
fermions. ‘

2d string world—sheet (not valid for, say, mem-
branes) that there is no intrinsic difference between
fermions and bosons. We can thus trade the six inter-
nal coordinates X°,... X 10for twelve fermions without
destroying world—sheet supersymmetry. Equiva-
lently we may bosonize the six fermions )3 ...4)10
and obtain a nine—dimensional flat internal space on
which strings can move, wind around, etc. Itis thanks
to this esoteric equivalence between 2d bosons and
fermions that one can ‘“evade” a traditional no go
statement of Kaluza—Klein compactifications, i.e.
one can obtain chirality and partial breaking of super-
symmetry down to N=1, by what look like simple
torus compactifications.

2.1 Conformal field theory (CFT)

What seems at present to replace Riemannian
geometry as the proper language for describing string
propagation is 2d conformal field theory CFT. For
instance, the space of compactifications of the hetero-
tic string down to 4 flat dimensions is the space of
all modular invariant CFTs with (1,0) supersymmetry
between (left, right) movers and corresponding cent-
ral charges c=(9,22).

The simplest and hence first CFTs studied in this
context are free or Gaussian: toroidal and orbifold
compactifications and free fermionic constructions.
Despite their simplicity they exhibit an unexpectedly
rich structure and illustrate most of the features of
strings below the critical dimension: gauge symmetry
enhancement and breaking through flat potential di-
rections, chirality and anomaly cancellation, and
N=0,1,2 or 4 supersymmetry in 4 dimensional group
manifolds, collections of minimal models from the
discrete series, and Liouville modes and generaliza-
tions. These replace the old constraints of the 70’s,
i.e. renormalizable interactions and cancellation of
anomalies, and will relate in principle the masses and
couplings of all string modes. Along the horizontal
line, 26th dimension T is compactified on a circle of
radius R.
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X isolated vacua | | R otbifold
X
X ¢ 1 @ } =(sing?
SU(2)? symmetry /tricritical point
il
Vi Vi >
R torus
Fig. 1
The phase space of c=1 models.
All of these coexist at; a) the self—dual
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SU(2)%*—symmetric point R= /3> and b) the “tricrit-
ical” point R.=V?2, and its dual.

All c=1 models, including the tensor product of
two c=% Ising models, are Gaussian, i.e. can be
written in terms of a (single) free boson X.

If Gaussian models do not exhaust the phase space
of string compactifications down to 4 Minkowski di-
mensions, we would of course need a more general
classification of CFTs.

The prototype is the well known algebraic classifi-
cation of c<1 (minimal) models. Crossing symmetry
and unitarity completely fix the allowed central
charges

6

] — m=34..
¢ m(m+ 1) m '

(225

and conformal weights of primary fields:

2
dm(m+ 1)

(2.6)

while modular invariance restricts the allowed mul-
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tiplicities of the latter. Analogous results for ¢>1
have up to now been based on particular extensions
of the (conformal) Virasoro algebra.-

A rational CFT has a Hilbert space that decom-
poses into a finite number of representations, under
some (unspecified) chiral integer—spin algebra. This
is believed to be an inessential restriction. Let
04,...,0m be the corresponding primary fields, i.e.
highest weight states on which these representations
are built, and which we take real for simplicity. Now
3—point interactions are characterized by the fusion
or superselection rules:

Njx=# of distinct decompositions of 1 ® Jinto k.

These satisfy the duality condition:

Z Nijk Niem = E Nigk Nijm (2.7)
k k

which means that the M MXxM martrices N (i)z
Nji, commute mutually and, hence, are simultane-
ously diagonalized by some matrix S. Verlinde’s cru-
cial observation is that S is precisely the generator
of the modular transformation T —1/7 on the torus,
acting on the characters (or partition functions)
Xi...Xum of the corresponding representations. This
matrix satisfies:
§2=(ST)*=1 (2.8)
where T is the generator of the 7— 7+1 modular
transformation, which only depends on the central

charge c and conformal weights hy...hy of the O;:
e2imhi 0
T = ¢ "%
0 e2i1rh M
(2.9

We thus obtain a very general constraint on the
allowed conformal weights and fusion rules, or in the
language of strings, the masses and 3—point coupl-
ings of particles!

Even if we cannot predict anything new, or ‘“post-
dict” the parameters of the standard model, it would
still be a big step forward to show that these paramet-
ers are consistent with the stringy constraints that
guarantee the unification of gravity.

It is very easy to construct semirealistic models
with, say, one of the standard GUT groups (SU(5),
0(10) or Eg) and enough (<3) chiral families. Con-
sider the ferminonic formulation of 4d heterotic
strings. The four space time coordinates X#and their
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left-moving superpartners P* are supplemented by
44 nght fermions pnA4 and 18 left fermions y Iy,
w (I 1,...6).

2.2 How to obtain the jnasses of known particles

In terms of Mpy,p these masses are truly infinites-
imal (£10~17): they are presumably related to a small
breaking of various approximate low —energy sym-
metries: gauge, chiral and super.

Space—time supersymmetry is much tougher to
break. To be precise these are two recent results
which seem to exclude classical breaking at scales
much less than Mpjnq: (i) with an assumption of
analyticity continuous supersymmetry breaking can
be excluded in all string compactifications, and (ii)
for Gaussian compactifications one can more gener-
ally exclude the very existence of a slightly massive
gravitino or gaugino, unless some internal radius R
becomes huge in units of Mpjane !

C.Bachas

III. INFORMAL INTRODUCTION TO EX-
TENDED ALGEBRAS AND CONFORMAL
FIELD THEORIES WITH c=1

3.1 A classification of all possible CFTs would list
all classical vacua of string, as well as all universality
classes of two—dimensional critical phenomena.
Another reason of this interest lies certainly in the
beautiful mathematical structure of CFT. Many areas
of Mathematics such as infinite dimensional algebras,
Riemann surfaces, monodromy, braid group, etc...
are involved and some still mysterious links seem to
arise among these structures.

The stress—energy tensor is the generator of con-
formal transformations in the sense that if we take
its Laurent expansion

T(z):EZ—ﬁ-‘;”T ie. L, f T(z)zm’]
ncZ
(3.1

then the mode L, generates the mfmlteSImal confor-
mal transformation z — z+€2™} In particular L_;
generates the translations in the 2 direction, Lo+ Ly
generates the dilations, Ly — Lg the rotations.

In particular the OPE of T with itself reads as

c/2 2T (w)

T(2)T(w) = ) + 72w

oT(w)

2 —w

+ regular terms  (3.2)
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The number c s called conformal anomaly and plays
a central role in the following. Eq. (3.2) implies for
the modes of the Virasoro (Vir) algebra

[Lm,Lal = (m—n)Lpsn+

/.3
(™
where the constant ¢ appears in the central exten-
sion term. We shall use the so called radial quantiza-
tion, where the time is taken as log|z| . In this descrip-
tion g+ f,gis the Hamiltonian, and its eigenvalues
must be bounded below.All the states of aCFT must
lie in some irreducible representation of the algebra
Vir @ Vir.

These representations are known as highest weight
representations (HWRs). Vir is a rank 2 algebra, i.e.
its irreducible representations are labelled by two
numbers; for HWRs these are ¢ and A

(3.3)

- m) 5m+n,0

('H=AE%NA,5VirC(A)®ViT(z§) (3.4)

Ny A count the multiplicity of each representation
in H, this implies they must always be non—negative
integers.

In particular to the HWR there correspond some
fieldg, 5 ( z, z)that transform under the conformal

group as
Aoz \*
A= = <-5;> <—8—2—> PA(2',2)
(3.5)

They are called primary fields. Their OPE with the
stress—energy tensor is given by

Ay 5 (w, D)
T(2) s 4 (w, D) =—%—;‘—f‘_—1—":—)21+

BUI¢A,A(w7 71))

Z2—w

+ regular terms (3.6)

(called secondaries) can be obtained by applying
strings of L,,n<0to/A). The commutation relations

imply
LoLX|AY = (A + nk) LE|A) (3.7)

Lo eigenvalues organize the space Virg(A) (often
called a module) so that the states lie on a “ftair”
whose N-th step (called the N—th grade) has

Lo=A+N

* We prefer the name grade to the other often used level to avoid
confusion with the level of a Kac-Moody algebra.
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states level Lg
L3|AYL oL 4|AYL3,|A) 3  A+3
"L_3|A)L2,|A) 2 A+2
L_; ‘A) 1 A+1
|A) 0 A
(3.8)

1. for ¢<0 no representation is unitary
2. for 0<c<1 the following set of Vir. (A} is unitary

6
T mmeny M2% mel
(3.9
A=qu[(m+1)p—mq]2—l
4m(m+1) ’
1<¢g<p<m—-1 pqgel (3.10)

3. for ¢>1 all representations are unitary.

Negative A’s or ¢ is automatically non—unitary.
Unitarity is an essential requirement in string theory.
Also many statistical systems enjoy it but there are
well known cases (percolation, Lee—Yang edge sin-
gularity) where unitarity does not hold (i.e. the
Hamiltonian is not real).

The OPE algebra of primary fields reads as

$i(z,2)¢;(0,0) =

Dol zh A R4,(0,0)
& (3.11)

where now the indices i,j,k run over all primaries of
the theory and[ ¢« (0,0)] means contribution from
the whole conformal family [ ¢], which can be seen
as an expansion over all secondaries of [Pk ], whose
coefficients are also (in principle) fixed by conformal
invariance. The only objects that remain unfixed are
the structure constants C‘!‘j . Were these known, one
could reduce via iterative applications of OPEs (3.11)
all the correlators among primaries to 2 and 3 point
functions, which are fixed by projective invariance

(b1(21,51) b2 (22,32)) = Bia2ip 23 (3.12)
(d1(21,21) Pp2(22,22) P3(23,23)) =
Chzly 2B 2y 3y 2 (3.13)
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where 2,5 = 24 — 2b, Yab = Ac — Ay — Ap With
a#b#canda,b,c=1,2,3.

Constraints on C,,-'k come from the requirement of

associativity of the OPE—algebra, which is equiva-
lent to ask duality of the 4—point functions So in
general Ck can be computed if we know the 4—point
functions.
3.2 Minimal models exist for c<1 only (there is a
theorem by Cardy that prevents from the possibility
to construct a model with finite number of Vir(A)
for c¢=1). More precisely umtary mlmmal models can
exist only for the values of c= , 5 y 7, given
by the formula (18) and they canobe bullt up using
only the Vir,(A) representations such that A is con-
tained in the Kac—table given by Eq. (3.10). In Fig.2
we give the Kac—tables for the first 3 minimal models
m=3475 (m=2i.e. c=0is the trivial model contain-
ing 1 only). Values of A for m =3 give the critical
indices of the Ising model, for M =4 those of the
tricritical Ising model, for m=>5 those of the 5-RSOS
model (full table) and of the 3 states Potts model
(g—odd lines only).
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It is possible to give a complete classification of
minimal models through the requirement of modular
invariance of the partition function on the torus,
which can be constructed mapping the plane into a
strip with periodic boundary conditions (i.e. a cylin-
der) through the ¢onformal transformation
exp(2miw/w,), under which the stress—energy tensor
transforms in such a way that

Z,:

278, gl Cy = 2, 0l €
eyl __ p _ eyl __ Z N (P =
L— (L 24)’L—1 - gy (L 24)

(3.14)

i.e. translation on the cylinder are related to dilations
on the plane. The constant term —c/24 arises as a
Casimir effect due to the boundary conditions.

In the case of minimal models ¢<1 a general for-
mula has been given

1

3

1 1 | 2

10 15 | &

T ER 2L (1s

16 =0 | © 30 |40 | 8
A1 z | B 2 |7

0|2 U115 |2 O 5|5 |8
_ 1 -1 =4
€=z T €=5

Fig.2

Kac—tables for the first 3 minimal models. In these
tables the values of Apq are reported. p grows horizontally, q grows vertically.

/

Fig

Dividing the complex plane by the lattice generated
by two vectorsw,w2,(Fig.3) one defines a parallelogram with periodic
boundary conditions, i.e.a torus. Think w1 as a space direction andwas a time direction.
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YEL

[2m(m+1)+(m#l)p-—mq]2—l

4m(m+1)

XA= Xp,q nr;—.—?l (1 . qn) kez{q

}

The requirement of modular invariance amounts
then to the equations

Z(r+ 1) = Z(=1/r) = 2Z(r) (3.16)

In the case of minimal models, characters transform
as unitary representation of the modular group

x(t+1) =Tx(7), x(-1/1)=8x(7)

12 m(m+1)+(m+1)p—mg|2 -1
4m(m+1)

—q (3.15)

(3.17)
where
. c
Tas — 5A,Ac2"*(L_§—4— (3.18)
Sy a= Spepa =2 _2_._('_1)(p+q)(p’+q')
o m(m+ 1)

mpp’ . mqq’
sin
m m+ 1
CFT are theories with an infinite number of con-
served currents. In general theories with infinite
number of currents can be integrable, provided the
currents carry enough information on the structure
of the Hillbert space. The conserved quantities L,
are not yet powerful enough to provide all the infor-
mation necessary to solve the theory exactly. More
currents are needed.
Consider a 0—model on a group manifold G with
action

So

sin

(3.19)

k

= /d2 2T'1(0.9(x) 8“9(05)_1)
167

(3.20)

This model is not conformally invariant, but if we
add to the action a Wess—Zumino term

S=Sp+ ;kz / d3yf“”cTr(g“8«19)(9’1 0bg)

(97" 0:9)

where fabe are the structure constants of G and k is
an integer, then conformal invariance can be restored
as follows. The model (30) enjoys a local invariance
G ® G namely g(z,2)— Q(2)g(2.2)11(2).QEG,Q E
G generated by the currents

k ; k
I%2) = —5(8°)g™", Fo(z) = —597 (8%
(3.22)

(3.21)
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One can write down for this invariance Ward iden-
tities similar to conformal ones. These in turn imply
the following OPE between the currents J(z)

K6%/2  fIo(w)
(z —w)?

J(2) T (w) = ——

+ regular terms (3.23)

The number k appearing in the central extension of
this algebra is called the level. Unitarity as well as
consistency of the model requires k positive integer.
The modes J3 of the currents J%(z), defined through

the expansion Jé(z) = Zne z ;—i’:r, satisfy a G
Kac—Moody algebra

b b (329)

by _ ;¢ab7yc
IJr‘:anl""‘fg Jm+'n 2
The stress—energy tensor can be shown to have the
form

1

T oon GiJa(z)Ja(z)i (3.25)

T(z) =

where $ *denotes ordering w.r.t. the modes of J(z).
It modes give a Vir algebra with

k dim G__
k+cox G

~ =
“

(3.26)
Therefore the model is also conformal invariant.

3.3 These models can be thought as minimal models
of a conformal algebra enlarged by an internal con-
tinuous symmetry G & G. The G primary fields
have dimensions

_p-(p+2p)
P” k+cox G
For the particular case of G=SU(2) these formulas
simplify to

3k
T k+2’

(3.27)

Wi+ 2)

| = —F") =0,1,...k
Ak +2)

(3.28)

For G=SU(2) an exhaustive classification of solu-
tions £ is known. This classification is better de-
scribed in terms of simply—laced simple (A,D,E
type) Lie algebras. One can first associated to any
solution £ a simply—laced simple Lie algebra whose
Coxeter number is equal to k+2.

Consider a free massless boson. compactified on
a circle of radius Ri.c. a U(1) ® U(1) abelian o
—model with action

c
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with equation of motiond, 9; $(z 2)=0which admits
solutions of the kindg( 2, 2)= tp( 2)+@(Z)This is CFT
with c=1, as can be easxly seen form the OPE of the

stress—energy tensorT(z)*-‘x& (8,p) Liwith itself,

that can be easily calculated using Wick theorem and
{(p(2)p(0))= log z . The equation of motion impl-
iesthat the spin 1 current J(2) = 18;¢p(2) (andits
right analog J(z) = 10,@(Z)) is conserved. The
vertices (primary fields) o

Vi(2) = eiap(?.) . (330)

with U(1) charge (i.c. exgenvalue ofap) ¢ and cop-
formal dimension Aa = a2 /2 They have the prod-
uct rule

e10P(2) .. (iBR(0) . 208 . iop()+iBp(0) .

(3.31)

The modular invariant partition function on the
* torus can be written directly from the action

. (96)1/24
Z{(R) = - .
(B) = = — b = ¢»
+00
E g /A BB G/ A —mR)
nm=—00 (3.3

that shows the duality Z(R)=Z(1/2R). At the
self—dual value R=1/V2 two new operators of con-
‘formal dimensions (A,A)=(1,0) (and two right
analogs (0,1) appear, thus enlarging the symmetry
algebra to SU(2)

In fact this point coincides with the SU(2)x=1 WZW
model, which has indeed c=1. We can also construct
an orbifold of the bosonic theory, identifyingp=-.
It can be shown that the partition function on the

orbifold line (which describes the critical line of the

“Ashkin Teller model) can be written as

’ 1
Zob( R) = —;—[Z(R) +22(V2) - Z(ﬁ)}

(3.34)

One can ask if it is possible to construct algebras
. that combine conformal symmetry with global dis-
crete symmetries, for example with Zy symmetries.

Analogously, we can define similar variables in'the -

Z; models, the well known 3—state Potts model by
considering the products oy ~ 9,0 ,ua ~ 1/) ,
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o 1/) and C}'Jf o~ ’d)t ¥ andep’ have conformal
dimension ( 2 7,0)and P, have (0, 5 2y. It can be
shown in general that any conformal field @ of the
type (A ,0)satisfies 6z¢ 0 (and conversely if éis
of type (0,A) then g, ¢ 0). So ¥, Al (and¢ W‘
for the right part) are conserved currents of spin 3. s
called parafermions.

More generally, we can define parafermions for
any Zy model, and construct an algebra for each case.

There is a remarkable link between SU(2), WZW
model and Zy parafermionic theories that allows to
compute the correlation functions of the latter.
Namely, if we take a free boson ¢ and a Zy paraferm-
ion Y1 not mutually interacting, the currents

To(2) = 1 (2) 1 VIR .
J_(2) =9](2) : e“\/%“’(‘) :

Jo(2) = Vkd.p(2) (3.35)

generate a SU(2) Kac—Moody algebra at level k, as
can easily be seen from OPEs of the boson vertices
and of parafermions.

We conclude that the following decomposition
holds

SUQ)L _ A o
WZW model - parafermion
free
boson (3.36)

One can also generalize this construction to every
Lie algebra G and to rank G free bosons:

Gy - Gy Gepner
WZW model parafermion ®
rank G dimensional
free boson (3.37)

thus defining new parafermionic theories with more
complicate abelian symmetries. These models and
their extended algebras are presented.

Therefore we are “conquering” some points in the
CFT space of theories, above the wall ¢=1 estab~
lished by Cardy theorm.

It is possible to construct a lot of CFTs starting
from the WZW models. Given a certain simple Lie
algebra G, we can consider its Kac—Moody extension
G and build up a model out of the HWRs of G at a
certain level k, namely the already described WZW
model.



Vol. 1, No.3

J.Sci.l.R.Iran Abdus Salam Spring, 1990
coset algebra models c
SU(2)x SU(2) SU2) WZW K3
Gn G G WZW g
sm;;iii?h Vir minimal 1 - ooy
su;ztjju(gi{:]ggz)z Sca N=1 Susy 2(1 - }?(‘TiTz')’)
SUUg 2(}1&)%(1> Sca, N=2 Susy 3(1 - -2,;;)
(;U)M(%ii( 24 Ss S3;—symm. 21 — 727)
%%ﬁ AL coset 251 - ;2%—%%)
§_g%ﬂ_ Zy Z.,—parafer. ZSI_V"%D
S Zc Gepner paraf. Nd _r
sUg;Um(%i%gS)x W; Z;—symm. 2(1 - &3 +1))
W W, Z,—symm. | (n—1)(1 — ,%(%%)
gé'-?%‘ Wf coset L+Q( 1 v?iggs:i)))
Table 1

Some GKO constructions and the corresponding Ext algebras and coset models.
Here Q=cox G, d=dim G, r=rank G andm =N+Q.

Theorem 1 If G=A ® B then the quantity T'( G )
= T(Ay) + T(B;) satisfies a Vir algebra and
therefore can be considered as the stress—energy ten-
sor of a conformal field theory with e( (Ikl) =
c(Ag) + c(By)

Theorem 2 If H is a sub—algebra of G, then the
quantity TIGW/H))=T(Gy) — T(H;) also satisfies a
Vir algebra with o(GW/H}) = o(Gy) — o(Hy). Further
T(G/H;) commutes with T(H) and with all the
H;Kac—-Moody currents.
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These two theorems give the possibility to con-
struct CFTs starting from any coset space G/H (Table

1).

3.4 Free boson with screening charge: the Feigin-
Fuchs (FF) construction

Another very important tool in the research on
CFTs for both c<1 or ¢l is the celebrated FF con-
struction.

Let us add to the free boson stress energy tensor
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a total derivative term (that does not change the
dynamical properties of the model, but only the
boudnary conditions at infinity). This can be done
adding a second derivative term to the stress—energy
tensor of the free boson, i.e. turning on a so-called
screening charge at infinity o

T(2) = —5: (Bep)? < +icoplp  (338)

Therefore this deformation of the free bosonic theory
is still a CFT. The central charge is modified from
c=1toc=1-24 a% . By suitable choosing

1
a4y = 3.39)
"7 2 vmim+ 1) (

one can reproduce the formula for the ¢ values for
the minimal series. To realize primary fields, we use
vertex operators V,(2) =: ¢*®#(2) having confor-
mal dimensions A, = %a(Z 00— ) = Aqq_,
Any correlator (Vi ,..., Va,) of the free bosonic
theory is different from zero only if the U(1) charge
is conserved: 9 ...; @& =0 When we turn on the
screening charge this is modified to

n
E Q= 2010
i=1

In particular consider the 4—point correlator

(VaVaVaVZao._,,,> (341)

It never satisfies condition (3.40). On the other
hand this correlator must be non—zero as V, and
V2 a-alrepresent the same operator. To solve this con-
tradiction we introduce the so called screening
operators i.e. operators of conformal dimension zero,
so that they do not change the conformal properties
of the correlation functions when inserted in them,
but can restore the charge conservation (3.40). These
operators have the integral form

S = f dz2Vp(2)
C

Since S are required to have conformal dimension
0,dz has dimension -1, Vg must have dimension 1,
hence 3 must be chosen to satisfy the equation % B(B
- 2ap) = 1, which has two solutions

(3.40)

(3.42)

1
ai=i—(ao:i: a(2)+1) (3.43)

Suppose now to insert in (3.41)P —1 operators of
type Vo, and g—1 of typeV,_.Eq. (3.40) is modified
by these insertions to
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2a+(p—-Day +(g—Da_=0 (3.44)
This constraints A to take the values
p g 1
A=Ay =—af+ [—2—a+ + Ea_] (3.45)

Inserting for ag its value (3.39) we get Eq. (33.10).
Even further, one can generalize the construction
including the Gepner parafermions

GL Gepner rank G dimensional

®

parafermion screened boson

Gy8Gy
= Gyl
coset models

(3.46)

All the minimal models of Ext—algebras as well
as GKO and FF models, have the fundamental prop-
erty that their Hilbert spaces are finitely reducible
in some set of quantum numbers 1

H= ® MNMUeU;

i( finite)

(3.47)

where U;, U; are some (generally reducible) rep-
resentations of Vir. We formalize this property cal-
ling rational CFT (RCFT) every theory that enjoys it.
Theorem 3 For each RCFT, blocks always satisfy
an ordinary differential equation of degree N, fuch-
sian at 0,1, and at a finite set of other “apparent”
singularities. , ,

Let f;...1, be the blocks: every 4—points correlator
f must be a linear combination of them (forget the
x part, i.e. consider it as part of the coefficient)

N
F=3 NF (3 .48)
r=1
Consider the determinant
Wo(zx) = det =
f h f2 N
of dfi 0fz e ofn
6N;1f aN—-lfl aN—:l f2 aN-:l fN
oNf  NA A oN fx
(3.49)

The first column in W)y is a linear combination of
the others, so clearly W=0.
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On the other hand, one can compute W with
Laplace rule, and get

(~)NwyoNf+ (DN "Wy oV

+Wif=0 (3.50)

where Kj stands for the minor of Wy where the k—th
row and the first column have been deleted. If we
divide now this relation by Wn we get

_%_,V[TN_._}_aN—lf.Q.....f.(—l)

NI
W
(3.5

i.e. an ordinary differential equation to be satisfied
by the 4—point correlators. The singularities in this
differential equations can be at 0,1, (physical sin-
gularities) and at any other point T, where Wn(Ta)
=0. The physical singularities must be of the fuch-
sian type, otherwise the behaviour of the solutions
cannot be holomorphic times branch singularity,
thus preventing from the interpretation of these solu-
tions as blocks. The singularities at Zo must be appa-
rent,i.e. singularities of the differential equation but
not of its solutions. This means that the exponent at
these must be positive integers.
Two consistent Fusion Algebras are possible:

lL.Logxgp=1

In this case one has N=1 and it is easy to compute
a=—2A,B=—2A,y =0 because the exchanged
field is $p1=1 in each channel p=s,t,u and Ap1=0.
We obtain —4 A =—R thus yielding A=R/4. We have
the following identifications with known models:

Vf — f=0

R=1 A=:11— c=1-58SUk=1WZIW
3
R=3 A=Z c=7 - E;=1WZW
(3.52)
2.pxdp=1+¢

The same procedure as above (now N=2 and
Ap1=0,Ap2=A in each channel p=s,t,u) gives the
restriction A=(R—1)/5 and we can predict in this
case that the lowest value of A is —1/5. We identify
the following known models

1 22
R=0 A=—-- ¢=—— — Lee — Yang
25 iy 5 singularity
R=37 A=§' C=—-5——>G2k=1WZW
3 2
R=4 A=—5— c=—£—+F4k=1WZW
5 (3.53)
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Theorem 4 The matrix S diagonalizing the fusion
rules is the same that transforms characters under
the r ——1/ r transformation of the modular group.
Hence S must satisfy S?=C and (ST)’=1,i.e. the re-
lations defining the modular group. Let us stress how
surprising this result is: FAs are something related
to OPEs, i.e. something local. Modular invariance
is dictated by boundary conditions., i.e. it is some-
thing global. A mysterious link between local and
global physics arises in CFT!

The constraint $?=C is not satisfied by all fusion
rules: it acts as a strong selector that tells us that
only a subset of FA are good for CFT. The other
constraint (ST)>=1 puts constraints on cand A that
become particularly powerful when combined with
the previously mentioned ones. For example one
could consider FAs of the type ¢gx¢=1+ ngfor all
n=0,1,2,... If we combine these constraints and those
from (ST)?=1, we discover that the two are compat-
ible for n=0,1 only. All the FAs of this type with
n_>>2 are inconsistent.

1. For Abelian groups on the r.h.s. of the fusion
rule it appears only one representation. Hence all
“one operator” (having only one field on the r.h.s.)
are exhaustively classified: they are in one to one
correspondence with finite abelian groups.

2. For non abelian groups we have the partial result
that for all the cases examined so far S>#C so that
it seems that all these FAs do not give (if not enlarged
by introduction of some other operator) consistent
CFTs. Is this rule general? In this case it would pro-
vide a very strong selection rule: all FAs that can be
constructed from a non—abelian finite group are in-
consistent. But this is far to be proven.

3. Not all FAs are generated by finite groups. As
a counterexample we can give the Ising fusion
algebra.

4. There are very recent links with the Theory of
Graphs.

There are a lot of other issues in this rapidly de-
veloping field, such as the link to two—dimensional
quantum gravity and the perturbation of CFT to go
off—criticality, or the link with 3—dim. Chern—Si-
mons gauge theories. What arises from the present
research is that CFT has a very deep and beautiful
mathematical structure. We think this reason would
be enough to continue studying it.

F.Ravanini

IV. ALGEBRAIC ASPECTS OF TOPOLOGI-
CAL GAUGE THEORIES

4.1 Skein Relations and Braiding in Topological
Gauge Theory
We derive the skein relations in Chern—Simons
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Witten (CSW) topological gauge theory in three di-
mensions, for arbitrary integrable representations of
SU(2)x. These are of order N=2j+1 for braids of
isospin j, generalizing the usual quadratic relations.

Recently, another remarkable relation of knots
and links to physics has been found. It has been
shown that in a three—dimensonal gauge theory with
Chern—Simons action, the expectation values of Wil-
son loops are polynomial invariants for the corres-
ponding knots. The relationship of this theory (which
we henceforth refer to as Chern—Simons—Witten
(CSW) theory) to rational conformal field theory
(RCFT) has also been discussed in these papers. In
particular that the braiding matrix for conformal
blocks in RCFT is §1ven by the expectation value in
CSW theory, on §°, of a tetrahedral Wilson graph,
suitably framed. In what follows, we always deal with
CSW theory defined on S°, although the theory on
other 3—mainfolds can also be studied using surgery.

In the knot theory literature, quadratic skein rela-
tions-are the key to defining tand computing polyno-
mial invariants, since they allow one to systematically
*“unknot’’ knots and links In SU(n ), CSW theory with
lines in the representation n, the braiding matrix has
been computed using the skein relation, and this can
be used in a transfer matrix formalism to evaluate
the expectation value of any Wilson loop.

4.2 Modular Geometry and the Classification of Ra-
tional Conformal Field Theories

If we study all CFTs (Conformal Field Theories)
with finite number of characters, the method involves
writing the most general modular-invariant differen-
tial equation on the moduli space of the torus, and
looking for solutions which satisfy the axioms of con-
formal field theory.

Rational conformal field theories (RCFT) were
discovered by Belavin, Polyakov and Zamolodchikov
(BPZ), although the term “rational” was used in this
context later. These authors constructed a class of
RCFT with Virasoro central charge ¢<1, the so-cal-
led miniroal series. Their procedure starts from high-
est-weight representations of the Virasoro algebra,
and the existence of null-vectors in these representa-
tions. The fields creating highest-weight states are
called primaries, and their descendants under the
Virasoro algebra, secondaries, It is shown that the
constraints due to the presence of null vectors are
strong enough to deduce the primary field content
of the theory.

In this sense, the c<1 RCFT’s are completely clas-
sified and exactly solved on the plane.

The situation is rather different for ¢>1 or for
Riemann surfaces other than the plane.

As to the classification of RCFT, most of the prog-
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ress in the last few years involved finding representa-
tions of extended chiral algebras which include the
Virasoro algebra as a proper subalgebra. Knizhnik
and Zamolodchikov studies RCFT based on affine
Kac-Moody algebras associated to compact simple
Lie groups.

This procedure was also extended to superconfor-
mal, parafermion and W-algebras, among others.

Unfortunately, none of these procedures provided
a general method to classify and construct all rational
conformal field theories.

Two important, and related inputs became availa-
ble more recently. One was the observation, by
Friedan and Skenker, that the characters of RCFT
can be thought of as holomorphic sections of a certain
line bundle over moduli space. The other was the
remarkable discovery, by Verlinde, that the fusion
rules are diagonalized by the matrix S;; which imple-
ments the modular transformation r—— lon the
characters. Verlinde’s result implies certain con-
straints on the values of the central charge and the
conformal dimensions in an RCFT, given the number
of characters and the fusion rules.

An important ingredient that was lacking in ap-
proaches to RCFT based on “modular geometry”
was the fact that, besides forming a section of a line
bundle on moduli space, the characters have another
important property: their power-series expansion in
the variable g = exp(2wir) involves coefficients which
are positive integers. These integers count the
number of secondaries at a given level, with respect
to whatever chiral algebra is involved.

The characters of a conformal field theory are de-
fined by
xi(7) =tr;

2miT

gmF, g=e

(4.1)

where L, is the zero mode operator in the Virasoro
algebra, c is the Virasoro central charge, and the
trace is taken over all states above a given primary,
generated by the action of some (as yet unknown)
chiral algebra.

The partition function of the theory is then con-
structed from bilinears in the characters:

n—1
) %i(F) My (T)

i,j=0

Z(7,7) = (4.2)

Here Mp;; is a constant matrix. In what follows, we
confine our attention to the case when Mjis diagonal .

Under modular transformations, the characters
transform as

* It is known that whenever it is possibie to construct a modular-in-
variant partition function from a non-diagonal combination of
characters, there also exists modular-invariant diagonal combina-
tion.
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Xi(7+ 1) e2mihi~5)

1
Xt’(“;) = S;,'Xj(T) (4.3)
A modular-invariant diagonal partition function Z
(Eq. (64)) will exist if Sj;leaves invatiant the matrix

1
M,

M, (4.4

Mn—l

The numbers M; appearing in the diagonal matrix
M represent the number of distinct primaries in the
theory with the same character.

The fusion rules of a conformal field theory are
defined to be positive integers, Njx which count the
number of distinct ways in which primaries 7and j(or
their descendants) can fuse to give the representation
k.

Verlinde showed that, as matrices acting in the
space of primary fields, the Sjdetermine the fusion
rules completely.

Finally we examine the power-series expansion of
the characters. This must be of the form

o0
xi(T) = ¢ F Y " allq" (4.5
n=0
where h; is the conformal dimension of the primary
field above which the character is built. The impor-
tant point here is that the coefficients ast')must all be
integers >0, simply because they count the number

of states at each level.
S.Mukhi

V. CHERN-SIMONS THEORIES
The basic example seems to be Chern-Simons
gauge theory. So we pick a compact gauge group G
and a positive integer k. We introduce a gauge field
.A%(x) and write the Lagrangian

2
L= _lc_/' Tr(ANdA+ =ANANA)

No metric is needed, so this is generally covariant.
The reason that the quantum field theory is exactly
soluble is that this theory is trivial locally. For in-
stance, at the classical level the Euler-Lagrange equ-
ation for this theory is F;?=0, and implies that A;
can be gauged away locally. Thus, as in twistor
theory, all information is to be encoded globally.

* Actually, the S; which satisfy Verlinde’s identity act in the
space of primaries, which is generically larger than the space
of characters.
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The latter spaces are essentially the Jones braid
representation that are associated with the celebrated
Jones polynomial of knot theory; the relation of these
spaces to conformal field theory was first perceived
by Tsuchiya and Kanie.

More concretely, though, Moore and Seiberg have
recently shown that G/H models may also be inter-
preted as Chern-Simons theories of an appropriate
group (essentially GxH).

The only three dimensional generally covariant
theories I know of that at first sight apear not to be
Chern-Simons theories are general relativity and the
three dimensional reduction of Donaldson theory.
But both three dimensional gravity and the three
dimensional reduction of Donaldson theory have
turned out to be Chern-Simons theories. So one may
conjecture that every three dimensional generally
covariant theory is actually a Chern-Simons theory
of some group of supergroup, not necessarily con-
nected or simply connected.

In conclusion, if one considers rational conformal
field theories and their cousins, integrable systems,
in two dimensions, one sees that these are extremely
rich systems. There are an incredible variety of ex-
tremely rich facts,related to each other in an incred-
ible diversity of ways. To bring order to this chaos
looks hopeless. But by stepping out of flatland and
looking at things from the vantage point of three
dimensions, one can find a more powerful viewpoint,
where rational and integrable systems can be derived
from a subtler and more incisive starting point. This
step out of flatland, to a higher vantage point from which
wider symmetry can be seen is temptingly akin to
what we need in string theory. What is more, we
have been urged to take yet another step to four
dimensions, the most physcal dimension, the richest
dimension for geometry, and the critical dimension
for quantum field theory. .
E.Witten
VI. DUALITY AND THE ROLE OF NONPER-
TURBATIVE EFFECTS ON THE WORLD-
SHEET

Discussions of string theory at high temperatures
duality enters in a crucial way giving a relation bet-
ween physics at temperature T and 1/T.

We shall actually see, the the physics of string
beyond the Planck scale requires a new form of un-
certainty relation as a consequence of duality.

The same is true for the case of torus-compactifi-
cation even in the presence of arbitrary background
fields. Self dual points in parameter space very often
correspond to multicritical points of the underlying
conformal field theory and also lead to an enhance-
ment of the space-time gauge group.

The nonrenormalization theorems of supersym-
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metry guarantee that duality remains exact in any
order of perturbation theory. :
We here generalize duality to models ob-
tained through orbifold compactification of the
heterotic string. While it is relatively easy 10 see that
the spectra of such theories are dual, it is not clear
whether this also holds for the interactions.

*In the following we shall show that this is not the

¢ase.
| T Pg Ei
,ZmL-—-NL‘f-I'F 5 +2

32 >
Ly =N+ 22 (6.1
o lmoop (6.2)
PR,L““Z’fé:F

(we have used here the usual convention o =112).
At this point there appear new massless states with
P’ =2, P#=0 and the symmetry is enhanced to

SU(Z)XEgXE,g.
Duality can be shown to be a good symmetry for
 heterotic string theories compactified on tori. This
‘can be demonstrated including arbitary background
values for the antisymmetric tensor fields as well as

- Wilson lines. ,
String theories on orbifolds split into two sectors:

- untwisted and twisted. The states in the untwisted
sector belong to a subset of the states of the theory-

~ on the torus, namely those invariant under the twist.
The states in the twisted sectors correspond to those
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 strings which are closed on the orbifold but not on

the torus. They can be obtained through a 7—1/7
modular tranformation from the states in the un-
twisted sector. .
" A duality transformation exchanges p and W,
where as the twist acts on p and w separately. For
example in the Z, case we have as invariant states
~'those created by

1 ,
—*E(Vp’w + V»—p,—-w)

72

Recall, however, that modular transformation mix
twisted and untwisted sector and therefore the inti-
mate connection between duality and modular in-
variance as found on the torus does not seem to
~ extend to orbifolds. -

Let us illustrate our results in case of a simple
‘example: two dimensions compactified on a torus

Vow = (6.3)

J. Séi‘ LR.Iran

3

1 ,
=2 = e + 4 (6.4
€1 \/— €2 \/:.2. % 5
while the dual lattice is given by
V 1 1 2
L L i\/-— (6.5)
V2 Ve 3

Winding vectors are defined by w=n’e;R while
momentum vectors are given by p=m;.e R (with R
denoting the radius of compactified space). On the
torus p and w are conserved. In the presence of the
Z twist, this is no longer true, but a discrete subsym-
metry remains. The twist identifies the generic wind-
ing vector w=nlel+n%; with—w =(n!—n?)e; +n'e,.
As a result we define a new winding number
N=(n'—n?) mod3 which is invariant under the twist.
Similarly we find M=(m;+mz)mod3 as the remnant
of momentum conservation in compactified space
after moding out by the twist.

The value of the three-point coupling G, is for
the Z; orbifold:

3
Cp)w = f

sH(PI+PY) (6.6)

with §=27 and Py g the Narain lattice vectors con-
structed with p and w.

Performing this rotation shows, however, that in
the 3-basis there is no way to uniquely associate rela-
tive winding number N.

In conclusion we still can see that there is no way
to distinguish between large and small R via trilinear
couplings of the form <OOV>.

Before going any further, let us stress once more

" the fact that the existence of duality is a serious hint

about a breakdown of our geometrical concepts for
distances small compared to ¢/ o
This is a new kind of uncertainty relation which is

~ a consequence of duality even at the classical level.

The question of duality can now be rephrased in

" the following way: given two Yukawa couplings, one

defined by the SU(3) root lattice. The twist is chosen

to be a %’-’—;‘rotation. Our results can be easily
generalized to six compacitifed dimensions.

As a basis of the lattice we choose (in complex
notation).
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of order unity and one exponentially suppressed, can
we conclude that the corresponding R is large com-
pared to o/?

This identity is found to be

- 1
Yi(R) -5"e(m

and as a result of it we cannot distinguish between
large and small R. ;

We have shown here the identity in the case of Z;
in two dimensions but the result is easily generalized
t0 Z,, (N=4,6) in d=2 as well as to higher number
of compactified dimensions. We also have restricted

(6.7
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ourselves here to the case without Wilson lines.
Such an uncertainty relation is very similar to the
one derived from string scatterings at ultra-Planckian
energies and a unique feature of string theory. It
shows that our naive geometrical picture of space-
time breaks down beyond the Planck scale. It seems
also to be at the origin of the fact that, for the motion
of closed strings, orbifolds are as good objects as
smooth manifolds. The appearance of duality does
not seem to have anything to do with the existence
of space-time supersymmetry although the nonrenor-
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malization theorems of the latter seem to secure du-
ality to any order of string perturbation theory. Ul-
timately such a symmetry could explain the existence
of a minimal length.

It seems that, duality involves many concepts ap-
pearing naturally in string theories. Since duality is
an inherently “stringy” symmetry it might reveal
some properties of string theories that cannot be
shared by conventional field theories of pointlike par-

ticles.
J.Lauer, J.Mas and H.P.Nilles



