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Abstract

Nuclear level densities and spin cut-off factors have been deduced for nuclei in the
mass region 24<A<63, from a microscopic theory, which includes nuclear pairing
interaction. Single particle levels for both Seeger and Nilsson potentials were used in
the calculations. Level densities extracted from the theory are compared with their
corresponding experimental values. It is found that the overall agreement between
experimental level densities and the microscopic theory with pairing is very good.
The calculational procedure to account for an odd particle system blocking, as well
as the effect of such blocking, is also discussed.

1. Introduction
In all statistical theories the nuclear level density isthe
most characteristic quantity and plays an essential role in
the study of nuclear structure. The Fermi gas model [1]
has often been used in the study of statistical treatment of
nuclear properties. f

However, computation of level density parameter ‘a’
from neutron resonance datausing anoninteracting model

shows marked shell effects [2]. The use of single particle
levels obtained from the shell model calculation in the
evaluations of nuclear state densities has been discussed
by various authors [3,4].

Furthermore, the superconductivity theory [5] predicts
the existence of the transition energy, below which the
Fermi gas model is invalidated. In fact in this
superconducting phase the energy temperature relation is
much different from that expected from the later model
and the level density is much smaller than is expected by
the extrapolation from normal phase. In this way the
prediction of the low energy behaviour of level densities
has been much improved [6].

Since detailed and high resolution (n, ¥) and transfer
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reaction data has become available, the authors have
considered it worthwhile to apply the statistical approach
to examine the effects of BCS pairing interaction in order
to see to what extent the pairing interaction is needed to
give agreement between measured and calculated level
densities. In addition we would like to find out what
influence the discrete structure of single particle spectra
has on the behaviour of the nuclear and state densities, and
whether one set of single particle energies is better than
another for calculating level densities. In section 2 the
general theory will be discussed, in section 3 the actual
calculational procedure will be presented and in section 4
the results obtained will be compared with their
corresponding experimental values and discussed.

2. Level Density Formulas

Consider a system of nucleons interacting with the
pairing force. For a spherically symmetric nuclei, in
addition to being characterized by energy &,, the single
fermion states are also characterized by the projection of
the angular momentum on the z-axis, m,. In the
superconducting theory, the nucleons having angular
momentum (m,, - m,) couple o as to form a quasi bound
particle.

The state density of such an N nucleon system of
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energy E is related to the logarithm of the grand partition
function {7],

2
Q (@, P = -PL ecA-Egr 23 Inl1+exp(-LE)L-B %— M

where arand fare two Lagrangian multipliers assocxated
with the nucleon number and energy, E,= [(g,-A)+A%]"?is-

the quasi particle energy, &, the single particle energy, A

the gap parameter, A= ¢ Bis the chemical potential and G
~ is the strength of pairing,

The quantities A, A and f(= I/T, T is the nuclear
temperature) are connected through the following gap
equation:

;1 tmhﬁ. o i

The summation is over doubly degenerate orbitals

designated by ‘k’.
The state density is the inverse transform of the grand
partition function,

N, E)= (5-1—7)2 $da $dfZ(a, P) exp (-oN+BE) G
Tl

The above contour integrals can be evaluated by the
method outlined previously [8-10], the result is:

oN, E)= 226 @
2nD'? ,

here the emropy S can ‘be written as:
S= 2% ln{l-:-exp( -BEO 2,8; W 5

rn,‘.

and ‘D’ is 32 determinant with its el’emems ngen in
terms of thé second derivations of the grand partmon
function.

The statistical properties of-a nucleus defined in terms of ;

the nuclear mathber N and energy E are given by:

NedZIen g
S G &M(=¥%k k- é... )]

- ‘:e

-where the occupauon pfobabxhty ‘n is given by
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The statistical properties of a nucleus is defined in terms
of its neutron and proton numbers N and Z and the total
energy E. Because of the additive properties of energy and
nucleon number, we can extend the above derivation to
include a nuclear system. For a nucleus of N neutrons of
energies €, with magnetic quantum numbers m, and Z
protons of energies €,, With magnetic quantum numbers
m,, the constants of motion are then neutron and proton
numbers given by (6) and the total energy E= E +E,
given by (7).

The total state density for a system of N neutrons and Z
protons at an excitation energy U= U+U,is

: S
. o, Z, U):'"(E;f)%gﬁ(b'zi‘/‘z- ®

here §= §, +S is the total entropy and ‘D’ is now a 3x3
determinant.

Finally, the total level density for a nuclear system at
an excitation energy U= E-E growa 1S given by

PN, Z, U)= &N, Z, U)I(2ra®)'? (10)
where o is the total spin cut-off parameter defined as:
ol=02+ 0}
with

_;- "{, me sinh? (1 fE (1D

and a similar relauon for cr2 where £, and m are the

single particle energies and magnetic quantum numbers
respectively. ‘

3-1. Energy Gap and Critical Temperature

In view of the importance of the pairing energy .in
nuclear level density, we have calculated its dependence
onnuclear temperature. Foranuclear system Characterized
by its single particle energies &, and magnetic quantum
numbers m,, calculations are done in the following way.
(i) At zero temperature, Equations 2 and 6 are solved for
A(0) and the pairing strength G for known particle number
Nand gap parameter A. The initial values of gap parameters
were obtained from the newest mass table of Audi ef al.
[11].(ii) Thecritical temperature, T, and the corresponding
chemical potential, 4, are evaluated by setting A= 0 and
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solving the same equations for specified nucleon number
N and pairing strength G. (iii) The quantities A(T) and
A(T) are then evaluated for a given value of T by solving
(2) and (6) with the values of N and G from (i). These
values of A(T) and A(T) are used to compute other
thermodynamic quantities which will be discussed in the
following sections.

It is worth noting that the pairing strength G depends
on the number of single particle levels which are included
in the calculation. However, for a given value of A the
final results are not sensitive to the number of single
particle levels as long as sufficient levels are included so
that the levels of largest ‘k’ have very small occupational
probabilities. Temperature dependence of the energy gap
parameters for both the neutron and proton systems for
*Fe nucleus are shown in Figure 1. It is seen from this
figure that the energy gap parameter decreases rapidly
with increasing temperature and vanishes altogether at
the critical temperature,

3-2. Excitation Energy and Entropy

The excitation energy of the nuclear system with
temperature T can be evaluated as follows: (i) the intrinsic
energy of the ground state, E (0) is obtained from (7) for
known values of A(0) and G obtained in section 3-1. In the
same way, the intrinsic energy E (T) is obtained from
known values of A(T) and A(T) obtained again in section
3-1. Thus, the excitation energy of the neutron system at
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temperature Tis givenby U =E (T)-E (0). The excitation
energy of the proton system is obtained in the same way,
U = E p(T) - E (0), thus the total excitation energy at
temperature TisU=U,_ + U,

The excitation energy for the neutron and proton
systems for Fe nucleus is plotted as a function of
temperature in Figure 2. The arrows indicate the energies
of the phase transition from the superconducting state to
the normal state. By examining this figure we see that the
functional relationship of the excitation energy and
temperature is quite different above and below the critical
temperature.

The entropy of the neutron and proton systems is
evaluated from Equation § at temperature T from the
values of A(T) and A(T) obtained in section 3-1. From the
additivity property of entropy, the total entropy is obtained
as S= §, + § . The entropies are plotted as a function of
temperature in Figure 3 for *Fe nucleus. Againthearrows
indicate the phase transition from superconducting state
to the normal state.

The calculational procedure just outlined is for even
particle systems where the index ‘k’ sums over doubly
degenerate levels.

3-3. Odd Particle Systems
For an odd particle system, blocking is important and
must be included. When a level near the Fermi surface is
occupied by an odd particie, the effect of the pairing
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Figure 1. Temperature dependence of the neutrons and
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Figure 2. Intrinsic excitation energy for *Fe is plotted as a
function of the temperature

correlation is reduced. The reduction necessary depends
on which level is occupied. The change in A between the
even and odd case due to the blocking of one level by the
odd particle is estimated as [10],

1 i
(55

where k’indicates a state occupied by the odd particle.
The actual calculation, in which the blocking effect has
been included, indicates a difference in A between the
even and odd system of the order 0of 20%. These results are
roughly in agreement with Equation 12.

We have investigated the blocking effect by two
different methods. (i) By reducing the strength of pairing
parameter A. The change in A leads to a change in the
in A, the odd particle system is treated in a way analogous
to the even particle system. (i) By adjusting the ground
state for nuclear pairing. The statistical functions here
were calculated from the adjacent doubly even nucleus
and then the energy scale was shifted by an energy
equivalent to that required to produce one quasi-particle.

A4(Q) == Aven(Q) - —1 (12)

@ O
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Figure 3, Relation between the entropy, S, and nuclear
temperature, T(MeV), for *Fe. The arrows indicate the neutron
and proton critical temperature.

It turns out that the results of both procedures give
generally identical level densities especially at higher
excitation energies. This will be shown inthe next section.

3-4. Nuclear State and Level Density

In performing calculations of state and level density,
the energies and spins of the single particle levels were
first calculated with a program and parameters of Nilsson
et al. [12]. The quantities ¥ and p which enter the Nilsson
potential were taken from reference [12]. The relative
energies and spins obtained from a Seeger program for
two of the nuclei *Fe and ®Ni for twenty-eight doubly
degenerate levels are given in Table 1 and for **Fe they
are displayed in Figure 4. Note that the Fermi energies are
indicated for neutron and proton components. In actual
calculation however, many more single particle levels
were introduced.

Nextthe valuesof E,, S, and XN, U ) were calculated
from (7), (5) and (4) using the values of A(T) and AT
obtained in section 3-1. The spin cut-off factor o2 is
calculatedusing (11) from the known values of eigenvalues
€, and their corresponding magnetic quantum numbers
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Table 1. Relative energies of single particle level of Seeger for Fe and *Ni
5Fe /]
K State Neutron State Proton State Neutron State Proton
Energy Energy Energy Energy
1 Is,, 0.00 Is,, 0.00 Is,, 0.00 1s,, 0.00
2 1p, 8.07 1p,, 7.52 1p,, 7.89 1p,, 7.2
3 8.07 7.53 7.89 7.27
4 Ip,, 12.20 1p,, 10.74 p,, 11.93 p,, 10.38
5 14, 16.38 14, 14.97 14, 16.01 4, 1447
6 16.38 14.97 16.01 14.47
7 16.38 14.97 16.01 14.47
8 2s,, 20.59 id,, 19.23 2s,, 20.13 4, 18.59
9 1d,, 21.85 19.23 1d,, 2135 18.59
10 21.85 2s,, 19.83 2135 2s,, 19.17
11 1f,, 24.75 s 2232 £, 24.19 1f,, 2157
12 24.75 2232 24.19 21.57
13 24.75 2232 24.19 2157
14 2475 2232 24.19 21.57
15 2., 2943 £, 2734 2., 28.76 1, 2642
16 2943 2734 28.76 2642
17 £, 31.20 2734 %, 30.50 2642
18 31.20 2p., 28.20 30.50 2p,, 27.26
19 31.20 28.20 28.29 27.26
20 2, 32.20 lg,, 29.56 2., 3147 1g,, 28.57
21 lg,, 33.11 29.56 1g,, 3236 28.57
22 33.11 29.56 3236 28.57
23 33.11 29.56 3236 28.57
24 33.11 29.56 3236 28.57
25 33.11 %, 3037 3236 », 2935
26 2, 38.20 1g,, 35.20 2d,, 3734 1g,, 34.03
27 38.20 35.20 3734 34.03
28 38.20 35.20 37.34 34.03

67



Energy MeV)

Vol.10 No.1

Winter 1999
50 -
F i d
L mn
[ 13
s fpromsnen———— % o2
o ——118
[ i )
i o2 3
b 12
wfp === % 1
¥{7 e e &F
: n m
20 |- " i
s 52
[ ”n
10} 172
b 3& m
3
s Sspe
0 i Neutron Proton
S.P. Levels S.P. Levels

Figure 4. Energies of Nilsson single particle levels for 20
doubly degenerate levels with their spins

m. Then the calculations are repeated for proton
component. Finally, the quantities 6%, (N, Z, U) and p(N,
Z, U) are calculated with (11), (9) and (10), the total
excitation energy U= U + U, In Figure 5 the logarithm
of the state density is plotted as a function of excitation
energy for *Fe nucleus. Again the effect of pairing energy
and shell effect is quite apparent at lower energies.

3-5. Spin Cut-off Factor
Spin cut-off factor 6* is usually determined by counting
the levels with given spins and by fitting the spin
distribution with

FU) = exp (L) - exp (DY, (13)
202 202

Some preliminary results have been presented in our |

previous paper [13]. In the present calculation, the spin
cut-off factor is calculated with the microscopic theory
from the known values of the single fermion energies g,
and their corresponding magnetic quantum number m,.
This is done using [14]
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Figure 5. The logarithm vof the state density as a function of
excitation energy for *Fe, with the levels of Seeger et al. [16]
and Nilsson et al. [12]

0= L (Emisink’k o) + Eml sink' L BE019)

which is made up of the sum of the neutron and proton

components. .
We have compared the results with those obtained on
the basis of the macroscopic theory given by [15]

o* = 0.0888arA%* (15)

where the nuclear temperature, t, is related to excitation
energy through (16),

U= af-t (16)

here ‘a’ is the level density parameter. The value of a = %

is used in the present calculation.

In Figure 6 we show the variation of 02 , 02 and &
with excitation energy determined from the microscopic
theory for the case of “Ni nucleus. The results from the
macroscopic theory are also shown for comparison. We
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Figure 6. The spin cut-off factor for ®Ni with a microscopic
theory including the nuclear pairing interaction. The
macroscopic calculations are also shown for comparison.

see the role of the nuclear structure effect is quite apparent;
this will be discussed in the following section.

4. Results and Discussion

We have computed the nuclear level densities in
levels per MeV and spin cut-off factors for all nuclei with
24<A<63. Here we present comparisons of level densities
from microscopic theory and experiment for
1841, 185i, 135, 1§ Ar, 30 Ca, 3¢ Feand §§ Ni. The results
of these comparisons are shown in Figures 7-13. Two
different sets of single particle levels are used in the
theoretical calculations, one set is due to Seeger and
Parisho [16] and the other to Nilsson and coworkers [12].

The initial values of A and A for the even-even nuclei
were taken from the literature [11] and then adjusted to
improve the fit to the data. The final values of the pairing
parameters for doubly even nuclei given in Table 2 were
used for both the Seeger and Nilsson single particle levels.

The level density of the odd A nuclei was obtained
using the procedure outlined in section 3-3. For example
the level density of S is obtained from the level density
of *S by shifting the energy scale by A = 2.39 MeV. A

69

Figure 7. Comparison of the experimental level density of %Al
with a microscopic theory including the nuclear pairing
interaction, the theoretical calculations were performed with
the single particle levels of Seeger et al. [16] and Nilsson ef al.
[12]. The experimental data was taken from M. Beckerman [ 18]
and A.S. Ilijnov et al. [17].

Table 2. Proton and neutron pairing parameters used in the level
density calculation

Nucleus AP(MeV) A (MeV)
t3si 2.28 218
12s 2.50 239
1BAr 2.06 220
6 Fe 145 1.08
S53Ni 091 0.86

similar level density is obtained by calculating AL O
from Equation II and doing the calculation for S,
Ascan be seen from Figures 7-13, the overall agreement
between the experimental level densities and the
microscopic theory with pairing is very good for both the
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Figure 12. Same as Figure 7 for 5Fe

Seeger and the Nilsson single fermion levels. The
agreement for most nuclei is slightly better for the Nilsson
single particle levels, whercasin a few cases the agreement
is better with the Seeger single particle levels. The role of
the nuclear structure effects is not directly apparent in the
level density plots in Figures 7-13. For example, the
contributions of the neutrons and protons to the total level
density are comparable for *Fe, whereas the neutrons
make a much larger contribution for *Ni. The reason for
this lies in the strong participation of the highly degenerate

1g, single particle levels in the case of “Ni.
2

The calculated and measured values of the spin cut-off
factor ¢® are plotted in Figure 14 for **Fe. The importance
of the single particle shell structure is shown in this figure
by the independent contributions of o2 and o2. It is
interesting to note the proton contribution 0'3 dominates
for Fe, whereas the situation reverses for Ni where the
neutron contribution o2 dominates (Fig. 6). The result
that o2 is larger than o2 for *°Fe is explained by the
occupational probabilities for the various single particle
levels. The enhancement in 67 is mainly due to the large

7

Figure 13. Same as Figure 7 for *Ni

contribution from the 1f, , proton single particle levels.
The addition of a few neutrons and protons in going from
SSFe to ©Ni completely reverses the importance of the
roles of neutrons and protons. Now the 1f,, proton and
neutron single particle levels are both nearly fully occupied
and make only a minor contribution to ¢%. For “Ni, the
1g,, single particle levels have a sizable occupation for
neutrons. Hence this level makes a major contribution to
o2 resultingin a value of g2 for®Ni which is much higher
than 0'3. The contribution of the higher angular momentum

1g,,, single particle levels is evident also in the o? values
for “Ni.

In summary, by considering the effects of nuclear
pairing as well as the influence of the discrete structure of
single particle eigenstates on the behaviour of the nuclear
state and level densities we have found that the agreement
between the experimental nuclear level densities and the
microscopic theory is very good, for both Seeger and
Nilsson single particle fermion levels. This probability
indicates that the microscopic theory provides more precise
information on nuclear level density and spin cut-off
factors. However, it would be worthwhile to apply the
other statistical models to deduce the state and nuclear
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Figure 14. Comparison of the experimental spin cut-off factor
* for *Fe [19,20] with a microscopic theory. The calculations
were performed with single particle levels of Seeger ez al. and
Nilsson et al. The contributions of the neutrons and protons to
o for the single particle levels of Nilsson e al. are shown also.

level densities and compare the results with the microscopic
theory. Such an investigation is, in fact, in progress.
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