THE STRUCTURE OF $[Pt_3(ReO_3) (\mu-dppm)_3]$ $[ReO_4],2$

A. A. Torabi

Department of Chemistry,
Faculty of Sciences, University of Zanjan
P.O.Box 45195/313, Zanjan, Islamic Republic of Iran

Abstract

A cluster [Pt₃ (ReO₃) (μ-dppm)₃] [ReO₄], 1[ReO₄], 2 [dppm= Ph₂PCH₂PPh₂] with oxidation of [Pt₃Re(CO)₃ (μ-dppm)₃][PF₆] is prepared. Crystals are triclinic, $p\overline{1}$; a= 14.154(4)Å, b= 14.213(3)Å, c = 20.522(4)Å, α = 78.938(14)°, β = 75.812(19)°, γ = 74.957(22)°; V = 3828.9(15)Å³, Z=2; Enraf-Nonius CAD4 diffractometer with Mo-Kα radiation, λ = 0.71073Å; R = 0.069, R_w = 0.077 for 284 parameters and 5414 reflections with I≥3σ (I).

Introduction

The cluster cation [Pt₃(μ-ReO₃) (μ-dppm)₃]* in 2 contains both a high oxidation state Re(VII)O*₃ fragment and a low oxidation state Pt°₃ (μ-dppm)₃ unit. The compound is formed by reaction of dioxygen with [Pt₃Re(CO)₃ (μ-dppm)₃]*, 1, under forcing conditions. Complex 1 [15] can be obtained by reacting the parent

cluster [Pt₃(μ -CO) (μ -dppm)₃]⁺² with [Re(CO)₅]⁻ (Scheme 1).

The structure of 2 has been determined by X-ray diffraction and the results are presented in Table 1 and

Keywords: Characterisation; Cluster; Oxidation; Preparation; Structural model

Figures 1-3. The crystals contain $[Pt_3(ReO_3)(\mu\text{-dppm})_3]^+$ cluster cations based on a tetrahedral Pt_3Re core and $[ReO_a]^-$ anions.

Scheme 1. Reaction with dioxygen

Table 1. Selected bond distances (Å) and bond angles(°)

(a) bond distances			****		
Pt(1)-Pt(2)	2.598(2)	Pt(1)-Pt(3)	2.609(3)	Pt(2)-Pt(3)	2.600(3
Pt(1)-Re(1)	2.720(3)	Pt(2)-Re(1)	2.748(3)	Pt(3)-Re(1)	2.711(3
Re(1)-O(1)	1.74(3)	Re(1)-O(2)	1.70(3)	Re(1)-O(3)	1.77(3)
Re(2)-O(4)	1.71(4)	Re(2)-O(5)	1.80(4)	Re(2)-O(6)	1.67(3)
Re(2)-O(7)	1.68(4)				
(b) bond angles					
Pt(2)-Pt(1)-Pt(3)	59.9(1)	Pt(1)-Pt(3)-Pt(2)		59.8(1)	
Pt(1)-Pt(2)-Pt~(3)	60.2(1)	Pt(2)-Pt(1)-Re(1)		62.2(1)	
Pt(3)-Pt(1)-Re(1)	61.1(1)	Pt(3)-Pt(2)-Re(1)		60.9(1)	
Pt(2)-Pt(3)-Re(1)	62.3(1)	Pt(1)-Re(1)-Pt(2)		56.7(1)	
Pt(1)-Pt(2)-Re(1)	61.1(1)	Pt(1)-Pt(3)-Re(1)		61.5(1)	
Pt(1)-Re(1)-Pt(3)	57.4(1)	Pt(2)-Re(1)-Pt(3)		56.9(1)	
Pt(1)-Re(1)-O(1)	88.8(8)	Pt(1)-Re(1)-O(2)		146.7(9)	
Pt(1)-Re(1)-O(3)	95.2(8)	Pt(2)-Re(1)-O(2)		95.7(9)	
Pt(2)-Re(1)-O(1)	142.7(8)	Pt(3)-Re(1)-O(1)		94.1(9)	
Pt(2)-Re(1)-O(3)	90.8(8)	Pt(3)-Re(1)-O(3)		145.0(8)	
Pt(3)-Re(1)-O(2)	92.9(9)	O(1)-Re(1)-O(3)		107.7(12)	
O(1)-Re(1)-O(2)	109-9(12)	O(4)-Re(2)-O(5)		103.5(17)	
O(2)-Re(1)-O(3)	104.4(12)	O(4)-Re(2)-O(7)		107.6(17)	
O(4)-Re(2)-O(6)	111.4(16)	O(5)-Re(2)-O(7)		110.7(17)	
O(5)-Re(2)- $O(6)$	113.5(16)	O(6)-Re(2)-O(7)		109.8(15)	

Results and Discussion

Each Pt-Pt edge is bridged by a dppm ligand, forming the well known latitudinal $Pt_3(\mu$ -dppm) $_3$ moiety. A face of the Pt_3 triangle is μ_3 -bridged by the $Re(1)O_3$ unit. Re(1) thereby adopts a highly distorted octahedral coordination which retains local C_3 symmetry, with Pt-Re(1)-Pt angles of 56.7(1)-57.4(1)° and O-Re-O angles of 104(1)-110(1)° (see Table 1). Thus, the cation in 2 is closely related structurally to $[Pt_3Re(CO)_3(\mu$ -dppm) $_3]^+$, 1, with oxo ligands replacing carbonyl.

Each Pt, P, C ring adopts a distorted envelope conformation with a CH, group at the flap position. Two of the methylene carbon atoms lie on the same side of the Pt, triangle as Re(1) and the third methylene carbon [C(2)] is displaced to the other side of the Pt, triangle. The conformation of the Pt, P, C, unit brings two axial and four equatorial phenyl substituents to the side of the two CH, groups, affording a cavity which is occupied by the ReO, group. The cavity on the other side of the Pt₂(µ-dppm), fragment, defined by four axial (A, D, I, L) and two equatorial (F, G) phenyl substituents, encloses a loosely bound [ReO₄] anion (Fig. 1). The ability of the M₂(µdppm), fragment in related complexes to attach and loosely bind an anion to one face of the M, triangle has been observed previously [6, 12]. Thus, for example, the short Pd-O distances [2.77(1)-2.92(2)Å] involving the µ- CF_3CO_2 anion in $[\text{Pd}_3(\mu_3\text{-CO})_3~(\mu\text{-CF}_3\text{CO}_2)~(\mu\text{-dppm})_3]$

[CF₃CO₂] [6] are considered indicative of some degree of covalency. In 2, however, the shortest Pt-O distances [3.37(3), 3.41(3), 3.98(3) Å] (Table 1) are too long to indicate a covalent bonding interaction.

The Pt-Pt distances in 1 are nearly constant [2.593(1)-2.611(1) Å], [15] and virtually identical values are found in 2 [2.598(2)-2.609(3) Å] (Table 1). The Pt-Re distances in each cluster are rather less regular, the values in 2 (Table 1) are slightly longer than those found in the parent compound 1[15]. The Re(1)-O distances in 2 are in the range of 1.70(3)-1.77(3) Å (Table 1) and compare well with corresponding values in the compounds $[C_{o}H_{10}N_{6}BReO_{3}]$ [1.707(2)-1.720(2) [C₁₀H₁₈NReO,] [1.678(5)-1.705(4) Å1[81, $[ReO_2(O_2C_6H_4)_2]$ [1.681(7) Å] [5] and $[Re_2O_6(\mu_2-\mu_3)]$ OH), C, H, O,] [1.694(6)-1.720(5) Å], [7]. The O-Re(1)-O angles in 2 [104.4(12)-109.9(12)°] lie between the values found in the compound C₉H₁₀N₆BReO₃ [103.9(1)- $104.3(1)^{\circ}$] and those in $C_{10}H_{18}NReO_3[119.1(3)-119.5(1)^{\circ}]$. Bond distances and angles in the perrhenate anion are normal and agree with previous studies [13].

Each cation in **2** has closely associated with it an [ReO₄]⁻ anion which blocks the free face of the Pt₃ triangle: the Re(2) atom is nearly equidistant from Pt(2) and Pt(3) [4.97(8) & 4.96(2) Å respectively] and is slightly further [5.29(2) Å] from Pt(1). The anion is

Figure 1. A view of the $[Pt_3(ReO_3) (\mu-dppm)_3]^+$ cation in 2 and its associated $[ReO_4]^-$ anion. 50% probability ellipsoids are displayed. For clarity hydrogen atoms are omitted, as are all but the *ipso* carbon atoms of each of the twelve phenyl rings.

oriented so that the Re(2)-0(7) vector points towards the midpoint of Pt(2)-Pt(3). The resulting short 0(7)... Pt contacts, as mentioned before, are however clearly nonbonding.

The overall transformation of 1 to 2 involves the replacement of the three carbonyl ligands in 1 by the three terminal oxo ligands in 2. Since both CO and the terminal oxo lignad are formally two-electron donors, the overall cluster count in 1 and 2 are the same. Both are coordinatively unsaturated 54-electron clusters and the similarity displayed by the cluster cores of the two cations is therefore to be expected.

The bonding in both 2 and 1 can be understood in terms of the donation of electron density from three filled Pt-Pt bonding orbitals, having a_1 +e symmetry, of the Pt₃(μ -dppm)₃ fragment to the three vacant acceptor orbitals, also having a_1 +e symmetry, of an Re(=0)⁺₃ or Re(CO)₃ fragment. In this formulation, the platinum and

rhenium atoms in 2 may be considered as Pt(0) and Re(VII). Even through this is an extreme interperetation, the oxidation states of platinum and rhenium in 2 are clearly very different, to an extent which is unprecedented in transition metal cluster chemistry.

The ReO₃ fragment is present in several other unusual compounds, such as MeReO₃, $[(\eta^5-C_5Me_5)ReO_3]$ and $[Me_2PCH_2PMe_2)_2Cl_2Re-ReO_3]$. The first two of these are considered as Re(VII) complexes [2]. There is a useful analogy between complexes 2 and $[(\eta^5-C_5Me_5)ReO_3]$, since the donor orbitals of both the $Pt_3(\mu$ -dppm)₃ fragment and C_5Me_5 -ligand have a_1 +e symmetry and so may be considered to be isolobal [1]. The analogy, together with proven compatibility between the ReO_3 and $Pt_3(\mu$ -dppm)₃ fragments, suggests several other possibilities for preparing clusters, by substitution of $Pt_3(\mu$ -dppm)₃ units for C_3Me_5 -ligands derived from known $(C_5Me_5)MX_n$ complexes. Since the vast majority of organometallic oxo

Figure 2. Space-filling diagram for the $[Pt_3(ReO_3)(\mu-dppm)_3]^+$ cation in 2. Here and in Figure 3 the platinum atoms are shown in black and the oxygen atoms are dotted. The cation is viewed along the normal to the Pt_3 plane from the side cotaining the $[ReO_4]^-$ anion which is not shown.

complexes contain cyclopentadienyl ligands [3], the preparation of other Pt₃ fragments based on oxide clusters should be feasible.

Experimental Section

All X-ray measurements were made at 23°C using a small block-shaped crystal. The accuracy of the analysis has been adversely affected by the high mosaicity and low diffracting power of the crystal specimen. Three reflections, (-1 7 1, 4 5 10 and -7 -1 4), were used to monitor the stability of the crystal and diffractometer. Their mean intensity showed a linear decline of up to 7.3% over the 144 hours of data collection. Empirical absorption corrections were made by the method of Walker & Stuart [14] at the end of the isotropic refinement. The internal agreement factor, R_{int}, for merging 566 duplicate intensities was 0.039 before and after correction for absorption. The structure was solved by the heavy atom method. The positions of the non-hydrogen atoms were obtained using Patterson and difference Fourier methods. The isotropic Uij parameters are extremely large for some of the carbon atoms of rings B and K; this suggests positional disorder of these rings although alternative atomic sites were not obvious from difference maps. Crystallographic data for compound 2 is given in Table 2.

Figure 3. Space-filling diagram for the cation in 2. Viewed normal to the Pt, plane from the ReO, side.

Table 2. Crystallographic data for $[Pt_3(ReO_3)(\mu-Ph_2PCH_2PPh_2)_3]$ $[ReO_4]$

Empirical formula	$C_{75}H_{66}O_7P_6Pt_3Re_2$		
Formula weight	2222.8		
Space group	P1		
a, Å	14.154(4)		
b. Å	14.213(3)		
c, Å	20.522(4)		
•	78.938(14)		
α, deg.	· ·		
β, deg.	75.812(19)		
γ, deg.	74.957(22)		
V, Å3	3828.9(15)		
Molecules in unit cell	2		
Deale, g cm ⁻³	1.928		
Crystal dimensions, mm	$0.20 \times 0.18 \times 0.15$		
Temperature, °C	23 .		
Radiation	ΜοΚα		
Wavelength, Å	0.71073		
μ(MoK _n), cm ⁻¹	88.8		
Data collection range, θ(deg.)	3.1-26.3		
Absorption factors (on F)	0.78-1.32		
Unique reflections			
with $I \ge 3\sigma(I)$	5414		
Parameters refined	284		
Discrepancy factor, R	0.069		
	0.077		
R _w	0.07		
Largest shift/esd ratio	V.U7		
Range of values in final	244 20		
difference synthesis, eÅ-3	2.4 to- 2.0		
Land the second			

The GX program package [11] was used for all calculations; atomic scattering factors and anomalous dispersion corrections were taken from the International Tables for X-ray crystallography (1992).

References

- Albright, T.A., Burdett, J.K. and Whangho, M.H. Orbital interactions in chemistry, Wiley, New York, (1985).
- Ara, I., Fanwick, P.E. and Walton, R.A. *Inorg. Chem.*, 31, 3211-3215, (1992)
- Bottomley, F. and Sutin, L. Adv. Organomet. Chem., 28, 339-396. (1988).
- 4. Degnan, H.A., Herrmann, W.A. and Herdtweck, E. Chem. Ber., 123, 1347-1349, (1990).
- Dilworth, J.R. Ibrahim, B.K., Khan, S.R. Hursthouse, M.B. and Karaulov, A.A. Polyhedron, 9, 1323-1329. (1990).
- Ferguson, G., Lloyd, B.R., Manojlovic-Muir, Lj., Muir, K.W. and Puddephatt, R.J. *Inorg. Chem.*, 25, 4190-4197, (1983).
- 7. Fischer, V.D., Krebs, B. and Hoppe, R. Z. anorg. ally.

- Chem., 491, 73-82, (1982).
- Herrmann, W.A., Kuhn, F.E., Romao, C.C., Huy, H.T., Wang, M., Fischer, R.W., Kirprof, P. and Scherer, W. Chem. Ber., 126, 45-50, (1993).
- 9. Herrmann, W.A., Serrano, R.A. and Bock, H. Angew. Chem. Int. Ed. Engl., 23, 383-385, (1984).
- International Tables for Crystalloghraphy. Kluwer Academic Publishers, Vol. C, Dordrechl, the Netherlands, (1992).
- 11. Mallinson, P.R. and Muir, K.W. J. Appl. Crystallogr., 18, 51-53, (1985).
- 12. Manojlovic-Muir, Lj., Muir, K.W., Loyd, B.R. and Puddephatt, R.J. J. Chem. Soc. Chem. Comm., 1336-1337, (1983).
- 13. Tsany, B.W., Reibenspies, J. and Martell, A.E. *Inorg. Chem.*, 23, 988-994, (1993).
- Walker, N. and Stuart, D. Acta Crystallogr., A39, 158-166, (1983).
- Xiao, J., Vittal J.J., Puddephatt, R.J., Manojlovic-Muir, Lj. & Muir, K.W., J. Amer. Chem. Soc., 115, 7882-7883, (1993).