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Abstract
The main purpose of this paper is to consider Adomian’s decomposition method
in non-linear Volterra integro-differential equations. The advantages of this method,
compared with the recent numerical techniques (in particular the implicitly linear
collocation methods), and the convergence of Adomian’s method applied to such
nonlinear integro-differential equations are discussed. Finally, by using various
examples, the accuracy of this method will be shown.

1. Introduction

Adomian’s decomposition method [1-3] is a
mathematical method which can be applied to the solution
of linear or nonlinear differential equations, deterministic
and stochastic operator equations, and many algebraic
equations [2,11]. In this method, the solution is found as
an infinite series which converge rapidly to accurate
solution. (The most important work on convergence has
been carried out by Y. Cherruault [4,5]). This method is
well-studied for physical problems, since it makes
unnecessary linearization, perturbation and other
restricitve methods and assumptions which may change
the problem, sometimes seriously. We know that the

decomposition method can be considered as an extension
to the successive approximation method, while being
much more powerful [6]. Such a method is certainly
efficient and easily computable.

Recently, Y. Cherruaultand B. Some [5,7] applied the
Adomian’s method for Hammerstien nonlinear integral
equations. In the present paper, we consider the Adomian’s
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decomposition method for nonlinear Volterra integro-
differential equations of the form

t

x @O =fx®)+ J k@, s) G(s, x(s))y ds, 0<t<T

0

M

subject to the initial condition x(0)=y. In this equation,
fand G are assumed smooth and known functions, and

fit, v), G(t, v) to be nonlinear in v. These equations have
also been solved by different numerical techniques
[12,15,16], which verify both the correctness of the
solutions as well as the quickness of the Adomian’s
method.

We also study the convergence of Adomian’s method
applied to such nonlinear integro-differential equations.
And finally, by using various examples, the accuracy of
this method will be shown.

2. Preliminaries
Let E be a Banach space, and consider the general

“functional equaiton

y=Tx, 2)
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where T is an operator from E into E, y is a given function
in E, and we are looking for x € E satisfying (2). We
assume that (2) has a unique solution for x € E. Note that
the Banach space E is not necessarily a finite-dimensional
space, and it can be a functional space. Throughout this
paper, we suppose E is a Banach space of L? functions.

We assume that in operator 7, involving both the
linear and nonlinear terms, the linear term is decomposed
into L+R, where L is easily invertible and R is the
remainder of the linear operator. L is taken as the hi ghest
order derivative avoiding the difficult integrations which
result when complicated Green’s functions are involved.
The operator T is then decomposed: T= L+R+N, where
N represents the nonlinear term.,

Thus, Equation (2) is written:

y=Lx + Rx + Nx. 3)
Then the solution x of (2) or (3) verifies
x= L1y - L'Rx - LNz, 4

where L is the inverse of the linear operator L.
The Adomian’s method [3,11] consists of representing
X as a series,

X = Xn .

n=0

The nonlinear operator is decomposed as

Nx = z An >
n=0
where A represents the special polynomials of XXy X,
defined by Adomian, that we obtain by writing

z= Z /'{ixi, N (20;0 )vin) = Zo;l A'A; R
i=0 '

with A being a parameter introduced for convenience.

Definition. Adomian’s Polynomials

LetN be an analytical function and X.x» a convergent
series in E. The Adomian polynomials are defined by

A,.=L_L[N(5:A‘x,-)] . 1=0,12,.... (5
i A=0

nl dA” i=0

Generally, it is possible to obtain exactly A, asa
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function of x ,x,,....x from the nonlinearity N, see [6, pp-
47-48]. By these decompositions, formula (4) can be
written

T xa=Ly-L'R(T x)-L(T 4. 6
n=0 n=0

=0
Taking x,= L'y, we can identify the other terms of the

series Y xn by the following algorithm,

n=0

x,= -L'Rx, - LA,
x,=-L'Rx, - LA ;

x=-L'Rx ,-L'A_,.

Thus, all components of x can be calculated once the
A, are given for n= 0,1.2,... . Then we define n-term

approximate to the solution, x by @. (x)= X7 x;, with
lf'_r)n ¢ (x)=x . (For the basic concepts of the

decomposition theory see [6]).

3. Adomian’s Method Applied to Nonlinear
Integro-Differential Equations
We consider a nonlinear Volterra integro-differential
eqaution of the form

1

xO=f@x (t))+[ k@, ) Gis.x () ds, 0<t<T

0

)

subject to the initial condition x(0)= y in a Banach space
of L? functions. In this equation, fis assumed smooth and
k, G are L? integrable and known functions, and fitv),
G(t,v) to be nonlinear in v.

This initial value problem may be written as

t

x (t>=y+[f(s,x(s»ds+fﬂ(z, 5) G (s, x (5))ds
0

0

®

where

H(t,s)=]k(r,s)dr,0$s$tST. )]
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Equation (8) may be viewed as a special case of a
generalization of the Volterra-Hammerstien integral
equation.

If we assume that Equation (8) has the functional
equation form, Tx=y, where ‘

t

Tx(t)=x() -lj f (s, x (s))ds -J H (@, $)G (s, x (s))ds,
0

0

(10)

then note that the operator T can be decomposed as: T=
L+N, where Lx=x is the linear term and
! { .
Nx =- If (s.x ($))ds - IH . )G (s, x s)ds is the
0 0
nonlinear term, with f and G nonlinear.
So (10) can be written as

Lx + Nx=y,
or
X + Nx=y. (11)

According to Adomian’s technique, the solution x of

(1)is:x = Z X, where the terms x_are calculated by the

=0
following algorithm:
xX=y
x=A,
x'z= A
x=A

1"

For obtaining the Adomian’s polynomials A , we
have

t

N3 Ax)=- J f(s, 3 A'xi (s)) ds -
i=0 0 i=0

(12)

i=0

I H(, $G (s, 3 A'xi (Sj) ds =y, A"An,
. pery

where A is a parameter introduced for “convenience”
From (12) we obtain
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n!A,:d‘i"n[N(Z A"x,-)]ho:ji"_

i=0
[- H@, 5) G (s, Z A (s)) ds}
i=0 =0

and finaily,

t

f(s, Y, Alxi (s)}ds - ’
. U=

[

An=-L
n!

} L (165, 3 AN s o+
dA i=0
0 (13)

] H (1,5) iﬂ-[G(s, Y Alxi (Ndsl, 1.
. di i=0

According to the above algorithm, we see that the
solution x of Equation (8) can be determined by the
calculation of A s, and we have

x=Y xa=y+ Y An
n=0 n=0

Obviously, numercial computation of (13) is not
expensive. (See section 5)

Remark. Application of projection methods (Galerkin
and collocation methods) for (8) leads to a system of
nonlinear equations. Usually, the numerical solution of
these systems by iterafion methods is complicated and
expensive to implement, because the n definite integrals in

nonlinear system need to be evaluated at each step of the
iteration method. Kumar and Sloan [8] give a new
collocation type method for numerical solution of
Hammerstien integral equations. One of the advantages of
this method, compared to the standard collocation method
[16], is that the integrals which appear in the nonlinear
system need to be calculated once only, and the resultis a
closed set of algebraic nonlinear equations for the n
unknowns. H. Brunner [12] applied this method (which is
referred to as the implicitly linear collocation method) to
nonlinear Volterra integral equations. In section 5, by
comparing the numerical solution of nonlinear integro-
differential equations by Adomian’sdecomposition method
and other numerical treatments cited above, we can see
that Adomian’s method avoids the cumbersome integrations
of these methods.
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4. Convergence of Adomian’s Decomposition
Method

In recent papers [4,5,6] Y. Cherruault, B. Some and L.
Gabet gave theorems for convergence of the Adomian’s
decomposition method. Y. Cherruault [4] has given proof
of the convergence of Adomian’s method by using fixed
point theorem. He introduced a new formulation of the
method by setting S, = x +x,+...+x, and proving that § is
a solution of the fixed point equation

N(x,+S)=S.

B.Some[7] givesaconvergence theorem for application
of Adomian’s method to the Hammerstien integral equaiton,
using the properties of the entire series substituted in
another series. This theorem can be easily extended to
nonlinear Volterra integral equations. If we do this
substitution, and set A= 1 because Nx can be developed in
a Taylor series, we obtain an array or double series where
i-row of this array converges to the A, defined as in (13).
(For details see [5]).

Now we consider the nonlinear Volterra integro-
differential equation (7) and Adomian’s polynomial (13),
we also assume thatf and G are analytical functions in
(0,T).NotethateachA dependsonly onx,(£),x,(),...x (t).
(See [S]). We prove that by hypothesis of [6], X A is a
decomposition series which converges.

Letx=3" xnandz: ()= 2, A"xa. (Abeing a
real number). Obviously z (4), converges for A= 1 and its
sum is analytical over the open disc with center o, and
radius r(D(o,r)), thus z (A) isanalytical over D(o, r). Since
fand G are analytical, by using composition theorem we
have (f+G) 0z (A) is analytical over D(o, r). Also note that

limz (3)=x and lim (f+G)o z(A)= fis, x)+G(s.x ). If the

series Ex” be convergent, then ZA" converges and its sum

is:
foz (1) +Goz(1)=f(s,x) + G(s, x),

that is the decomposition series EA,, weakly converges.

Now suppose Exu and Zy" are two series having the same
sum x, and the Adomian’s polynomials are respectively

AX, A}, then we have

Z Ai=foz(1)+ Gozfl)=f(s,x) + Gfs, x)=

n=0

foz()+Goz(l)=Y A7,

n=0
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50 the sum of the Adomian decomposition series depends
only on the sum of the considered series, and the
convergence is strong. Thus, we have the following
theorem:

Theorem. If fand G are analytical functions of xin (0, T),
then the Adomian’s polynomial series (2, A,) in (13) for
the nonlinear Volterra integro-differential Equation (7),
define a decomposition series, that converges.

5. Numerical Results and Discussion
We consider four examples. The first one is linear
integro-differential equation and the others are nonlinear.
All computations were carried out on an IBM-PC using a
program written in the symbolic language Mathematica,
version 2.1 and long double precision. (Only Example 3
has been solved using single precision).

Example 1. Consider the linear integro-differential
equation

t

x )=1—2t33"2+[ @t -st)e™. x(s) ds, 0<t<5
0

x(0)=0

the exact solution of this problem is x(#)= .
This initial value problem may be written as

1

x(t)=t-l+(1+t2)e"2+[ . e x (s)ds, 0St<§

0

When applying Adomian’s method, we have

Xo(t)=t-1+ (40

x,(t) =A0=j 2o, X, (s) ds,

0

2.2
=[erf(%)+ erf(.;.)]w V. &
8

sl ar-De? e Lrdra
4 4

andsoon... (erf(t)=-2§ &% )
ﬁ/o
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Table 1. Comparison between exact solution and approximate
solution by two iterations of Adomian's method for Example 1

t Exact solution " Adomian’s method
with two iterations
0.0 0.0 0.000000000
0.5 0.5 0.499434917
1.0 1.0 0.971420023
15 1.5 1.379273389
20 20 1.824789885
25 2.5 2337918871
30 3.0 2.869041322
35 35 3.396446364
40 40 3.917792677
45 4.5 4.434179799
50 50 4946823984

The approximate solution involving two terms is:
x(t)=x,(t) + x,(t)

Table 1 gives a comparison of our results and exact
solution.

Example 2. From [16]

!
x(t)=1+x (t)-te"z-Z[ tseOds, 0<t<1
0

with exact solution x(#)=¢.
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We write this problem in the form

t

= -l. l.'tz 3 -
x(t) t7+2e +’Ox(s)ds

&~

2 I k (t, $)e™0 ds, 0<r<l
0

2 3 . . .
where k (¢, 5) = % - 37 After two iterations, Adomian’s

method gives the following results,

xo(t)=t-l+ L
2 2

v 9 8 7 6 5
xl(t)=Ao=_£.erf(t)+.t_.+.t_.-_.2.t_.+_t._+4_t_-
4 36 96 35 12 15
4 2
A S &
4 2 2

and so on .... (Note that in this case and according to the

method applied by Adomain, we approximate 0 =

1- xX(s). See [1, pp. 72]). Thus, the approximate selution
by Adomian’s method is:

x(t)=x,(t) + x,(t)

Table 2 gives acomparison between our results and those
obtained by L.M. Delves and J.L. Mohamed [16].

Table 2. Comparison between the number of iterations of Adomian decomposition method and those
obtained by L.M. Delves and J.L.. Mohamed [16] for Example 2

t Adomian’s method  Delves numerical results Number of iterations
with two iterations with A= 0.1 of Delves method

0.0 0.00000000, 0.00000000 0

0.1 0.09983641 0.10000029 2

0.2 0.19876723 0.20000293 2

03 0.29625674 0.30001155 3

04 0.39248725 0.40003417 3

05 0.48867642 0.50007946 3

0.6 0.58737415 0.60015711 3

0.7 0.69278871 0.70027967 4

0.8 0.81120202 0.80045807 4

09 0.95157721 0.90069319 5

1.0 1.12649013 1.00100103 7
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Example 3.

3 3 !
x’(t)=2—‘--t2+1+—5—-2{ x2(s)ds, 0<t<1
3 x () 0

with solution x(z)= ¢.
This problem may be written as,

¢

4 3 !

()=l _523_ds-2/k(t,s)x2(s)ds,0Sts1
6 3 x(s) lo

0

(14)
where k(1 )=t -s.

Since the application of Galerkin and collocation
methods for this problem can be quite expensive to
implement [see section 3], we solve this problem by the
implicitly linear collocation method. With notation of
[12], we have

t

2
xO=LLare 3k, 966 x () s,
6 3 =l

0
0<e<l
15)

where

k(t s)=s , k(t, s)= -2t -s)
Gyt x (t )= Jr(t_) o Gt x €) =x%).

Let z(t)= G (1, x(1)) in (14), thus (15) has the implicitly
linear form,

t

2
Zr(t )= G, (!, t—‘i - -t-3-+ t+ Z ’ ky (t, S) Zy (s)ds) ,r=1,2
6 3 =1

0

(16)
ie. we obtain a system of nonlinear integral equations.
Suppose its solution z(t)= (z (1), z,(t)), then the solution of
(15) is given by

2
x(1)=ﬁ-ﬁ+t+z f ku(t, 5) zu(s) ds.
6 3 pgl

-t
0

a7

Each z (1) (r=1,2) is approximated by an element o)
in the spline space S’ (ITy), such that,
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2
Oltn+ Th) =Y Lit) W 3,
=1

Te 0,1}, r=12

where

2

L= [] £

k=1, k=1 (Cr - Cp)

denotes the Ith Lagrange polynomial with respect to the
collocation parameters { ¢/}, and

4 3 2 nl 2
o)=L L+ Y a3 6% )w®, 8)
6 3 p=1i=0 =l

2 2
Wl =G, { b, Wikt 0+ B3 3 ac) wi‘:’) ,
pel =1

r=12. (19)

The weights {a¥) (0)) and {6 ()} are defined as in
(2.3d) and (2.3¢) in [12], except that k(r, s) is replaced by
kft s). (u=12)

]

After computing the solution (W,,, f } of the nonlinear
system (19) using More and Consard’s method [18], we
have an approximation to x

V{tntOhw)= Yalt,t Ohsy, @) +

2 2 .
Y Y alo el oeo 1)
u=1 1=l

thatrepresents the desired approximation to the solution of
(17). (For N= 10 we gave the numerical solution of (14)in
Table 3).

On the other hand, if we apply Adomian’s method with
two iterations for (14), we have

x(f)= 3.85123 arctan (0.7699 - 1.28565)

+2.49907 log (8.99996F - 30.062152¢ + 40.29756)
+ 1.00185 log (2.99999¢ + 4.02075)
- 0.00061¢"° + 0.0030867 - 0.00396£- 0.0158730¢
+0.04444¢ - 0.33333£ + - 7.13016
Table 3 gives a comparison between Adomian’s results
and numerical solutions by the implicitly linear collocation
method.

Example 4. From [10]

y® =[ (t-s)2 (t2 -2t (5+4) + 52 + 85 + 12)es
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Table 3. Comparison between approximate solutions by two
iterations of Adomian method and the implicity linear collocation
method for Example 3

t " Adomian’s method Numerical results
with two iterations with N=10
0.0 -0.002405 0.000181
0.1 0.097673 0.100342
0.2 0.197812 0.201544
03 0.298033 0301611
04 0.398738 0.400798
05 0.500445 0.500094
0.6 0.604073 0.600192
0.7 0.710922 0.708522
0.8 0.822863 0.800267
09 0.942027 0.901924
1.0 1.071020 1.001887
0 0 <r <10
1+ 2y%s) + 2y (s)
y(0)=1

The theoretical solution is not known, but the exact
solution at x=10is y(10)=1.25995582337. This problem
can be written as

t

4
y (0)= 1+ J (t-5) G-t+s)e* . Y’

0 1+ 2y%s) + 294 (s)
0<:<10

Adomian’s method with four iterations gives:

y)=1

4 .
(= A=LE

-4s%¢ - 9)e

39375
W)=4A= ...

y)=A=
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andsoon .... Suppose y(1)= y,(t)+y,(t)+y,()+y(t), then we
have

4. 8 0\,
y(t)=1+t_€i-w+...

5 39375
and

¥(10) = 1.172477917

E. Hairer [10] has showed that this problem is equivalent
to a 5-dimensional system of ordinary differential equations,
and has solved this sytem. In Table 4, we compare our results
with those of Hairer. (For simplicity, let

y4s)

G(@s) =
142y X5) + 2y4s)

In all these cases (various types of nonlinearity),
Adomian’stechnique gives very goodresults,and comparing
to different numerical schemes, it is not expensive. Note that
since a complicated term y in a nonlinear equation (8) can
cause difficult integrations and proliferation of terms, we can
expand y in a convenient series which is truncated, since in
applied problems (physics orengineering problems, etc.), we
only need accuracy toacertain number of decimal places. [cf.
example 2]

6. Conclusion

In practice, we conclude that:

# The Adomian’s method is a numerical elegant method
that can solve various types of nonlinear integro-differential
equations.

#This method avoids the cumbersome integrations of the
recent numerical methods (Galerkin, collocation, implictly

. linearcollocation, etc.)and inafew iterations gives very good

results.

o Numerical computations of this method, compared to
the numerical schemes are simple and inexpensive.

o The solution is given by afunction, and notonly at some
grid points as in the projection methods.

o In comparison with the successvie approximation
method, Adomian’sdecompositionmethod generally requires
less computation,

eConvergence of the method is very fast.

Table 4. Absolute errors for our results and method of Hairer [10] for Example 4

Absolute error
E. Hairer's results with 67 evaluations of G(s) 776E -3 ’
- Our results with 4 iterations 874E -2
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