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Abstract
We assume that each valence quark in a nucleon is in a phenomenological

modified harmonic oscillator potential of the form: %(1+}; ) (ar*+br+cr’+dr*), where

a, b, ¢ and d are constants and 7, is one of the Dirac matrices. Then by making use of
a suitable ansatz, the Dirac equation has a very simple solution which is exact. We
then have calculated the static properties of the nucleon in the ground state with and
- without center of mass correction. The results are encouraging. PACS index 12.35

kW and 13.40 fn.

1. Introduction

An important step towards a better understanding of
quark dynamics was made with the introduction of the
MIT bag model. Here the relativistic motion of the quarks
in the aforementioned potential is described more
satisfactorily. The static properties of the nucleons with
zero orbital angular momentum come out quite well in our
model, except for the nucleon charge-radius which is
somewhat large, and this is due to the tail of the wave
function outside the nucleon [1]. When making the quark
system less relativistic, the nucleon charge radius decreases
and reaches the actual value. However, the corresponding
properties of higher excited states can not be easily
calculated within this framework. One easily sees that a
potential of the form (1+¥,) M(r) has the desired properties.
Physically this is an equal admixture of a scalar potential
and the time component of a vector potential. The MIT
square-well potential is all scalar while a one-gluon
exchange would contribute to the time component of a
vector potential. In our model, we have an equal admixture
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of both.

In section (2), we have used this potential to calculate
the relativistic wave function for valence quarks. By using
this wave function, we can calculate the recoil-corrected
wave function.

In section (3), we have calculated some of the static
properties and the effective radius of the nucleon, in the
zero orbital angular momentum state.

2. Relativistic Wave Function for Three Valence
Quarks in a Nucleon
The Dirac equation for a single valence quark in a
central potential U(r) is:

[ye+i7.y-(m+ U@y (@®=0 D
where we take U(r) to have the following form:
U(r)=§(1+ ay) M(r) )

The parameter a can take any value. We take it to be equal
to 1. This case is important because it leads to an exact
SU (2) symmetry and hence to spin-orbit doublet
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degeneracy [2, 3, 4], as it was studied by Bell and Ruegg
[3]. For a= 0, the potential is scalar only [5, 6, 7]. In
general, M(r) can be taken to have any form [3, 4], but it
should be small in the baryon center (asymptotic freedom),
and should be infinite beyond some distance from the
center of the nucleon (quark confinement)[8,9]. Here, we
work with the following phenomenological potential M(r):

M(r) = ar’+ br+ cr® + dr* 3)
Now, we write the solutions of equation (1) in the form
gy
Vi <r>=(»¢‘)\=N I @
X ifi®) ¥j, 5
where
1

i 1; 11+ -1 1 1, L1ys s
yi”:(lzk 22'”—”))"2r)(())+(12J3 22"”3)"1 ’

(r)((l’)

Here (1) indicates the familiar Clebsch-Gordan coefficients.
Substitution of (4) into (1) yields:

. dk ©, K+l (- mfc@=2fc ()
T ) (5)
d f,k(r) +:KE L @ - (m+ M) ©) = - e ©)
r

We climinate f (r) between these two equations. The
resulting equation is

g, M+ —%—g'k @) *['—15—(1-:21'—2+e2 -m- (e+m) M(r)] g =

0

©
If weletg ()= %4& (r), then we get:
.0+ [_“.(5}2 +€2- - e+ m) M(r)] 8,() =0

I

@)
Let
A=g*-m? ®)
M,(0) = (e + m) M(r) )

a=(+m)a;b=@E+mb;c=(e+ m)c, d=(e + m)d
(10)

Rajabi and Golshani

J.Sci.I.R. Iran

Then Equation (7) reduces to

¥ 0+ A-Mo-<E D 0 = (11)
where

M@ =ar+brcr+dr (12)

Here a, ¢, and d, are postive and b, is negative.

A solution of (11) for M, (r) similar to ours has recently
been obtained by Znojil [ 10], using the method of continued -
fractions. On the other hand, asolution of the Schridinger-
type equation (7) has been obtained for the potential (12)
in a different context [11, 12, 13 and 14]. To solve (7), we
make use of an ansatz similar to that of Ref. [11], i.e. we
let

¢, (1) = exp (h(r) (13)
with
h(r)=-%—ar2 -%Br’-c—ﬁlnr (14)

Inserting (13) into (11), one gets for the ground state, i. €.
k=-1

— Ja b1 3

r)=rexp (- ¥l 24+ 2l 15
¢, (@ p( ) B ) (15)
with

A=¢-m?=3va (16)

and we have the following constraint between the
parametersa, b, c and d;:

c=-b LA (17)
2
b=-4Vd (18)

Hence the upper component of the Dirac spinor confined
by our potential (12) is

g, M=exp-(Var- %r’) (19)

From (5) we can find the lower component f | (r) of the

Dirac spinor. Then the normalized spin Zl, positive parity
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solution of a quark in the potential (12), in the ground state
is*

1
\|111(1‘)=_N_ exp(‘_ﬂrz +
R I 4 by 2
-1m-(-¢1?r+?r2)
b3y 20
0 (20)

Assuming the mass of the nucleon (=938 MeV) to be
the sum of the three valence-quark energies, i.e. neglecting
the center of mass motion (as in Bogolioubov model), one
gets

£=313 MeV or £ =1.584 fm"!

By using g_(r) and f (1), one can calculate the recoil

corrected function g_(r) and f (r) [see Ref. 5].

3. The Static Properties of the Nucleon
3-1. Fitting with the Ratio %%

We have Equation (16) and the wave function (20)
with two unknown parameters a, and b,. If we use the

experimental result g—é = 1.26 as a constraint, we can

calculate a and b,.

3-2.Proton Magnetic Moment and Proton Charge-
Radius

By using the standard definition of magnetic moment,
one can find the general expression for the magnetic
moment of a quark in its ground state, which is

b= %Nezj:ﬁg (@) £ (1) dr @1)

One can show that the proton magnetic moment p is
equal to '

* The wave function y11 (1) does not satisfy Lorentz invariance

in the sense that the small component associated with the center
of mass motion is not treated properly. This is justified as long as
the nucleon as a whole moves nonrelativistically, i.e. if

Ip! < 1, where M is the nucleon mass.
+M

** The corresponding Equation (14) in Ref. [1] is incorrect.

p+
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W, =

w [

W, -

U-)-g-

d=uq

where p and p, are the magnetic moments of uand d
quarks respectively.
The proton charge radius is:

<thn>, = r 2y () w1l () &x 22)
0 22 23

where 1 (r) is the quark wave function, given by (20).
22

1

In Table 1, we have calculated p_and <r%m>1:2) for
various quark masses. The rather large values for the
charge-radius in Table 1 is due to the tail of the wave
function outside the bag. We shall ignore the tail of the
wave function outside the nucleon. Then the charge radius
will be close to the experimental value. On the other hand,
the net effect of recoil corrections works always in such a
way that it effectively reduces charge radius. This result is
consistent with the findings of Refs. [16] and [17].

In the presence of the center of mass correction, the
above static properties can be found as in Ref. [5]. Using
the method of Ref. [5] for the correction of center mass
motion, we get:

121< (B4 <126 @3)
gv

where the index b indicates inclusion of the center of mass
correction. Similarly, one can show that

2408 < (1), < 3.080 4
and
1.112fms<rén>é31.260fm 25)

for various quark masses. These bounds on 2—3, K, and

[y

<rén>p are found by a numerical calculation.

3-3. Proton Effective Radius and Corrected Charge
Radii

We can define an effective radius R for the nucleon
with the aid of the wave function (20). We have takenR to
be the value of r for which the upper component of the
spinor, in the absence of the recoil correction, is a fraction
e of its value for r = 0.

This definition gives the following results for various
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values of quark masses . For 120 MeV < m <312MeV,we
get

1.092fm <R <1.21 fm

If we ignore the tail of the wave function (20) outside
the nucleon and normalize this wave function inside the
nucleon, then the charge radius of the proton will become
very close to the experimental value (Table 4).

This shows that the results are reasonable. The term

Rajabi and Golshani
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Table 1. The static properties and the confin;
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improved the results relative to the simple harmonic case
[Ref. 1]. If we letb =0 then from constraints (17), (18) ¢ =
d = 0, we get the potential and wave function, and the
results of Ref [1].

Conclusion
In this work we have taken the nucleonic quarks to be
under the influence of the phenomenological modified
harmonic oscillator potential.

U@ = % (1+ %) (ar’+ br + cr’+ dr)

ing potential in a nucleon for (a) without and (b) with center of mass correction, and the

effective-radius of a nucleon for various quark masses
1
m, g% <r2€m>12) M, R M () = a?+b r+c r’+d r*
120 MeV 1.26* 1.50* fm 3271 L.179*fm M (r) = 0.51 1%- 0.03 r + 0.01 r* + 0.00006 r*
1.21% 1.26° fm 2.788"
153 MeV 1.26* 1.41* fm 3.240° 1.167'fm | M,(1)=041r%-051r+0.1627+0.016
1.223° 1.241° fm 2.62°
250 MeV 1.26* 1.22*fm 2.753¢ L131*m | M,(r) =0.09 > 2.551 + 0.382 * + 0.406 *
1.235 1.135° fm 2476
300 MeV 1.26* 1.13*fm 2497 1.098'fm | M(r) =0.0041%-4.21+0.138° + 1.102 ¢*
1.25° 1.113" fm 2450
313 MeV 1.26 1.112 fm 2414 1.092*fm M(r)=-46r+1323r
Table 2. The static properties and the bag-radius of a nucleon for harmonic quark bag model [1]
I
m_ (MeV) ga <D R, f Potential M, = a, 12
X gy s> M, pag 11 otential M, = a,
0 0.93 1.48 fm 4.00 n.m 1.153 M@ =077
120 1.27 1.53 fm 3.546n.m 1.402 M, @) =051r
153 1.28 1.60 fm 344 nm 1.562 M(1)=041 7
201.5 1.45 1.807 fm 3293 n.m 2.045 M) =0239 7
250 1.55 2.275 fm 3.156 n.m 3.33 M, (=009
300 1.65 4.77 fm 2074 n.m 15.15 M, (r)=0.004
310 1.66 10.35 fm 0.569 n.m 71.43 M,(1) = 0.0002
313 1.67 oo fm 0 e M@ =0
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Table 3. Comparison between the results of our model Table 1 and the model [1]
Table 2 for (120 MeV < m < 313 MeV) and the experimental Vvalues of proton

Our model

Harmonic quark bag
model [1]

Experiments

Fitted with 24 = 1.26
gv

1292<8A< 167
gv

1.254 £ 0.004

2414 nm< IS 3271 n.m

0<p <348 nm

2.792 n.m

i
0.805 fm <<t2n>7< 0.87 fm

1
1.57 fm € <Zp>3< oo

0.88 £0.03 fm

1.092 fm <R £ 1.179 fm

1.206 fm <R <o

0.88 £0.03 fm

This table shows that our model has certainly improved the results of
the harmonic quark bag model [1]

1
Table 4. Varian of R and <t>2 with m, ignoring the tail of the value function

m, 120 MeV 153 MeV 250 MeV 300 MeV 312 MeV
R 1.21 fm 1.167 fm 1.131 fm 1.098 fm 1.092 fm
1
2
<r%m>p 0.87 fm 0.862 fm 0.85 fm 0.81 fm 0.805 fm
We have chosen the parameters a, b, ¢, d in a suitable References
b ark masses in the range 120 MeV<m <
manner for the qu s g a; \. Ravndal, E. Physics Letter, 113 B, (1), 5760, (1982).
313 MeV. and we have tabulated them in Table 1. For this . .
) . 2. Smith, G.B.and Tassie, J.J. Ann. Phys.,NY 65,352, (1971).
potential, we have found the quark wave function and then 3. Bell,].S. and Ruegg, H. Nucl Phys., 98B, 151,(1975); Bell,

the static properties of the nucleon without (a) or with (b)
center of mass correction.

Our results, with the exception of charge-radius, are in
good agreement with the experimental values and if we
ignore the tail of the wave function outside the nucleon, the
charge radius will become close to the experimental result.

If we compare the static properties (in cases aand b) in

Table 1, we get the following results. The values for -g-%and

1

<r%m>;2) and p , in the absence of center of mass correction,
are increased by about (0, 5%), (0, 15%), and (0, 22%)
respectively, depending on the quark masses.

This is similar to the results of Refs. (16} and [17].

Now. if we compare the results of Tables 1and 2, we
see that our model gives better results especially when
nucleonic quarks become less relativistic. In this case, the
results of the harmonic quark bag model [Ref. 1] are
unacceptable, while the results of our model are close to
the experimental values.
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