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: Abstract
We have applied the method of integration of the Heisenberg equation of motion
proposed by Bender and Dunne, and M. Kamella and M. Razavy to the potential

V(g) = %vzq2 - -31- (q® with linear and nonlinear dissipation. We concentrate our

calculations on the evolution of basis set of Weyl Ordered Operators and calculate the
mean position, velocity, the commutation relation [q, p], and the energy of particle.
According to our results, the particle which is confined in the well at t= 0, has some
oscillations before tunneling. If dissipation is proportional to velocity it inhibits
tunneling but when it is quadratic in velocity it facilitates tunneling. Thus, we can
continue our calculation easily for every power of velocity. '

I. Introduction

Quantum tunneling is an important physical
phenomenon that occurs in a variety of different physical
systems, so it is natural that many people show an interest
in studying it. Moreover, since there is no true absolute
isolated system in the universe, quantum tunneling in the
presence of dissipative forces has also been extensively
studied [ 1-3]. Phenomenologically the frictional forces are
often assumed to have a simple dependence on the velocity
of the particle. Although we have included the nonlinear
dissipation quadratic in velocity,in ourcalculation because
of theimportance of ohmic systems, the formeris discussed
in more detail.

M. Kamela and M. Razavy [6] have shown that for the
problem of quantum tunneling with an anharmonic
potential, one can use the time evolution of Weyl Ordered
Operators introduced by C. M. Bender and G, Dunne [4-5].
They then integrated the Heisenberg equation of motion
and found the solution of operator differential equation.
~ Numerical results obtained show that the particle which is
initially located at some point Q,, first goes toward the
minimum of the potential, similar to classical dynamics,
and then, after spending a short time in the well, escapes
from it. We followed the same general procedure but our
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numerical results are in some sense more interesting, i.e.
the particle has someoscillations in the well before tunneling
occurs. We found a very interesting result for the trajectory
trajectory of the particle in phase space. The constancy of
energy and equal time commutation relation, ETCR, in the
absence of dissipation (which is the same for both linear
and nonlinear dissipation) were used to check the validity
of ourresults. Although linear dissipationinhibits tunneling,
it scems that when the dissipation term is quadratic in
velocity, itfacilitates tunneling. Thissurpising phenomenon
in some sense corresponds to the results of Nieto and
coworkers [7].

It may be noted that in this formulation there is no need
to construct a Lagrangian or a Hamiltonian for the system.
In addition to this advantage, the Heisenberg equation of
motion is much more effective to use in solving problems
than the Schrodinger equation in quantum field theory.
Although we have applied the method of integration of the
Heisenberg equation of motion to a simple example, we
hope that by generalizing it we can solve some previously
unsolved problems in field theory.

The calculational procedure is explained in Sec. II. In
Sec. I we apply the method to an anharmonic potential.
Finally, in Sec. IV we briefly discuss our results.
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I1. Position and Momentum and the Time
Evolution of the Basis Set
Our purpose istosolve the operator differential equations
of motion of a particle with unit mass:

4P - . Ap+f(g; 49= {1
at p+f(@; ety 8]

subject to the initial conditions p (0) =p_,  (0) =g, such
thatin the absence of damping, they preserve the equal time
commutation relation [q(t), p(D] = i, where in (1) A is the
damping coefficientand f(q) is any polynomial in q, so that
the only possible singularities in the solution of (1) are at
fixed poles.

C. M. Bender and G. Dunne introduced the following
Weyl Ordered Operators {4-5]:
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which by using ETCR relation has the equivalent form:
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They also showed that these basis sets T_, form a
closed algebra under multiplication and saosfy some
interesting commutation and anticommutation relations.

For example, the following was proved (form, n,1,s e Z*):
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From the definition (2) or (3) we obviously have: q (t)
- Tg, l(t)’ and p(t) = Tl‘o(t)'

To solve (1) we start with the identity:

q(t) = e g(0) e &)

where His the Hamiltonian, This relation can be written as:

2 2
a8 - g(0) + (.;?_?. Ao+ %9;* Cah..  ©

ae

We now write qand pin termsof T 's and denote the
time jAt by t, with j an integer, we finally have:
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The calculational procedure is as follows if {T
(t)} sareknownatt thenq(t )andp(t )canbecalculated

from (7) and (8). Usmg these we can obtam T,.. @ J”) from
(2) or (3):
T la@).pe)1=T,, (tﬁ,) )

Using T, (t L) wecancalculate p(t ,)andq (t Jat(2+
DAL Therefore if we have {T__ (0)} s we can find
positxon and velocity atany time by i 1terat10n Note that the
core of the above procedure is finding the C_ ’s which are
the time dependent real coefficients:

q=%,,C,. 0OT, © (10
p() = Zm,,Cm(t)T © 1n

For dissipative force quadratic in velocity the operator
differential equations are:

[~

i

dp dq
dt dt

= - Ap* + f(q); p (12

In this case, we obtain the following Taylor series
which are more complicated than (7) and (8):

2
4(t,)=T, (r>+(AoT,o(t>+(A° [- AT, (00+ £(T, ()]

3
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P(L,) =T, (1) + (A) [-AT, (1) + K(T,, Q)+ ‘=

22T, ()- A [T, () £(T,, @) +£(T,, AN T,, ®)] +«;-{'r
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(14)
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The above procedure and the general form of the final
relations (10) and (11) do not change for a nonlinear one,

-Ap’. However, it is clear that the coefficients C,.and ém_n
are different in the three cases: no dissipation, linear and
quadratic velocity and dependent dissipative forces.

I11. Tunneling through an Anharmonic
Potential
As a simple exampie to check the validity of the above
procedure we apply it to the anharmonic potential:

V(@) =1vigr- L g 15)
q ) q 3 q

where pu and v are constants. By introducing the
dimensionless quantities:

3
o=n.20=(2)a0.p@=(E)p0 a5
v v
we have:
dP__2p.Q+.9_p (17)
do de
[Q6),P(O)] =iy (18)
T (P,Q0)= (.Fﬁ)(”i)m T, (19)
m,n V2 V 3 X
6
where A'= 4 and y=2
v Vs
We choose the normalized Gaussian wave packet:
L\ 2
vQ-Q)=(-L)  exp @ - Q121 20
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Figure 1. The expectation value of the position and momentum
operators as a function of time 6.= vt. (Q.= 0.6, P.= (), ¥=0.1 and
A'=0). The dashed line refers to momentum and the solid line to
position.
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to represent the particle. In a straightforward manner we
obtain:

Ot 10> =3 Nl Qn DI (k-1) 11 (Lywmeor
< Tm,n Qo kz=0k!(n-k)! Qo (m ) ( ) (2)

x & o, 21

m,cven Kk, cven

The energy of the particle in the absence of dissipation
atb=ois:

<0|H|0>QG=%[}'(1-Qo)+Qo’]--;—Qo’ (22)

Note that although the maximum of the potential is at
Q,=1withaheight of V = 1/6, the position of the barrier is
at Q,=0.9, with a height of 0.167.

With the new dimensionless variables, (9) and (10)
become:

<0IQO)I0>,, =2, d <0l 10> 23)

<OPOI0>,0=2,,d <0l 10>  (24)

where:
= (¥Hon Xy
d, e Erec,

IV. Discussion of the Numerical Results
In usual quantum mechanics, if the initial state of a
particle is an eigenstate of an observable which commutes
with the Hamiltonian, its expectation value does not depend
on the time (stationary states). But if the expectation value
istaken withrespect to a superposition of energy eigenstates

<Q>

[ 0.5 1 25

Time
Figure 2. The expectation value of the position operator as a
function of time 8= vt in the absence of dissipation (A'=0, solid

line) and in the presence of it. (A'=0.1, dashed line), both for Q.
=0.8andy=0.1
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(nonstationary states), which is considered in this paper, it
will involve oscillatory terms whose angular frequency
can be found in every textbook on quantum mechanics.
The earlier works [6] do not show the oscillations. Our
calculationsinclude up to terms of order (A8)° in the Taylor
series expansion (7), (8). As we see from Figure 1, P and
Q have some oscillations before tunneling. We also see
from Figures 1, 2 and 3 that this feature doesn’t change
qualitatively in the absence or presence of dissipation
(linear or nonlinear).

According to our results, tunneling occurs for every
valueof A'. The only difference is that when A'=0 (undamped
motion), the particle escapes faster from the well - as we
may expect, because in this case the probability of staying

<Q>

o] 0.5 1 15 2 2.u

Time

Figure 3. The expectation value of the position operators as a
function of time 8= vt. Solid line for A'= 0 (no dissipation) and
dashed line for A= 0.1 (nonlinear dissipation, quadratic in
velocity), both for Q.= 0.65 and y=0.1.
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Figure 4. The variation of time of tunneling as a function of
damping coefficient X', for linear dissipation.
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in the well increases. This agrees with the earlier works of
M. Razavy et al. [3, 6] and A. O. Calderia et al. [2]. The
dependence of time tunneling of A’ is more complicated,
and there’s no simple relation between time of tunneling
and damping constant A, It is also not possible to define
a critical damping, (Fig. 4).

The greater the value of Q, in the Fortran Program
Code (thus, the greater the energy), the sooner the particle
escapes.

For Q,<0.85,Q,=0.9 (justat the maximum height of
the barrier) or even Q= 0.95, no qualitative change is
observed, which is meaningless in classical mechanics.
Thus, this shows the quantum nature of our results.

Classically, the orbit of a harmonic oscillator with the
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Figure 5. The phase diagram of the particle’s motion in the
absence of dissipation (Q.= 0.6, P.=0,y=0.1 and A=0).
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Figure 6. The phase diagram of the particle's motion in the
presence of linear dissipation (Q.=0.6,P.= 0,7=0.1and A'=0.1).
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Figure 7. The expectation value of equal time commutation
relation as a function of time 8= vt. in'the presence of damping
force, (Q.=0.7, P.= 0, y=0.1 and A=0.1).

Hamiltonian H = %pz + %qz in the phase space is a circle

with a radius of 1’ = p,>+q,%. And, in the presence of
damping, this radius will decrease with time and finally
tend to zero, i.e. the particle comes torest. But in quantum
mechanically, the uncertain relation requires that the
energy never becomes zero, whether dissipation is present
or not. Our results, as shown in Figures 5 and 6, indicate
that the trajectory of the particle in the phase space
diagram illustrates this consistency. The long diagonal
lines in Figures 5 and 6 obviously indicate escaping from
the potential well.

Our numerical results show that when dissipation is
quadratic in velocity, it facilitates tunneling, which is
surprising in classical mechanics. This picture is similar
to the results of Neito et al. [7] which show the existence
of resonances in quantum tunneling in an asymmetric
double well. One possible explanation for this result is
that there may be an effective potential corresponding to
the term - A'p?, so that it changes the width and height of
the barrier of the main potential in such a way that it

72
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Figure 8. The dissipation of energy of the particle in the presence
of dissipation as a function of time 8=vt. (Q.=0.65,P.=0,y=0.1
and A'=0.1).

facilitates tunneling.

Figure 7 shows the variation of ETCR with time with
A'=0.1,and Figure 8 shows the dissipation of energy in the
presence of a damping force.
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