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Abstract

A C *-algebra A is called an ideal C *-algebra (or equally a dual algebra) if it
is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and
quotients of ideal C*-algebras are also ideal C *-algebras, that a commutative
C *-algebra A is an ideal C *-algebra if and only if it is isomorphic to C(2) for
some discrete space Q. We investigate ideal J*-algebras and show that the
above results can be generalized to that of J*-algebras. Furthermore, it is
proved that if A is an ideal J*-algebra, then sp(a* a) has no nonzero limit point
for each ¢ in A and consequently A has semifinite rank and is a restricted

product of its simple ideals.

Introduction

A J*-algebra is a closed complex subspace A of
the space of all bounded linear transformations from
one Hilbert space to another such that ae*a € A when-
ever ¢ € A, J*-algebras were introduced by Harris in
[91, {101, where it was shown that the open unit ball of
J*-algebras are bounded symmetric homogeneous do-
mains and that many holomorphic properties of these
domains can be expressed in terms of the algebraic
properties of the associated J*-algebras. Harris also
established an algebraic theory for J*-algebras in
analogy to that of C*-algebras [11].

A C*-algebra A is called an ideal C*-algebra if it
is an ideal in its bidual A**, Ideal C*-algebras were
defined and studied by F.C.M. Berglund [4], who
proved that subalgebras and quotients of ideal C*-
algebras are also ideal C*-algebras, that a
commutative C*-algebra A is an ideal C*-algebra if
and only if it is isomorphic to the space C(£2) of all
continuous complex-valued functions vanishing at
infinity on a discrete space £2. The object of this paper
is to investigate ideal J*-algebras and show that the
above results can be generalized to that of J*-
algebras. It is also shown that if A is-an ideal J*-
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algebra, then sp(¢* a) has no nonzero limit point for
each « in A and consequently A is a restricted product
of its simple ideals. For similar results in J B*-triples
see the recent paper by Bunce and Chu {2].

Definitions and Preliminaries
Suppose H-and K are complex Hilbert spaces, Let
B(H, K) denote the Banach space of all bounded trans-
formations from H to K with the operator norm. For
each element g in B(H, K) there is a uniquely deter-
mined element ¢* in B(H, K) such that

(ax, yy=(x,a*yyforallxe Hand y€ K.

One calls g* the adjoint of .

A closed subspace A of B(H, K) is called a J*-
algebra if qu® ¢ € A, whenever ¢ € A, Examples of J*-
algebras are C*-algebras, JC*-algebras and ternary
rings of operators [14]. Furthermore, by the Gelfand-
Naimark theorem we may regard B*-algebras and C*-
ternary ring [14] as examples of J*-algebras.

Suppose 4 and B are J*-algebras. Amap ® 1 A —
B is called a J*-isomorphism if @ is a bounded linear
bijection of A onto B satisfying

O(aa* u)y= P(a) S (a)*P(a).
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for all ¢ € A. Note that if @ is a J*-isomorphisin, then
@ is an isometry and conversely every surjective lin-
car isometry & of A onto B is a J*-isomorphism (9,
Theorem 4].

Let the map @ : B(H, K) = B(H ® K) be defined
by

(b(a):[()()} ae BULK). .
u()

Then @ is a linear isometry of B(//, K) into B(H & K))
satistying,

O(ub* ) = D(a) D (bY*D(c),

for all ¢, b. ¢ in B(H. K). Hence, every J*-algehra
may be considered as a J*-subalgebra of some C*-
algebra. This fact was used in the following theorem
to prove that the bidual of a J*-algebra is also a J*-
algebra.

Theorem 2.1. Let A be a J*-algebra. Then there is
a J*-isomorphism @ of A onto a J*-algebra ®(A)
with the property that (identifying & (A) with its ca-
nonical image in @ (A)**) the identity map on ®(A)
extends to an isometry of ©(A)** onto the weak clo-
surc B of ®(A). This isometry is a homeomorphism in
the w*-topology of ®(A)** and the weak operator to-
pology of B.

Since the weak closure of a J*-algebra is also a
J*-algebra, it follows from the above theorem that we
can regard A¥* = ®(A)** as a J*-algebra which con-
tains A as a J*-subalgebra.

Suppose A is a J*-algebra, then by [11. Proposi-
tion 1], ab* ¢ + cb* a €A, whenever ¢, b, ¢ are inA. A
J*-ideal in A is a closed subspace J of A such that if ¢,
b. ¢ e A, then ab* ¢ + ¢b* a € J whenever b e J or ¢
eJ. A J*-algebra A is simple if the only J*-ideals in A
arec {0} and A. For example, the set of all compact
transformations is a J*-ideal in B(H, K).

Ideal J*-Algebras

A J*-algebra A is said to be an ideal J*-algebra if
it is a J*-ideal in the bidual A** of A. For example, A
= C(I, K), the set of all compact operators is a J*-
ideal in A** = B(H, K) and consequently A is an ideal
J*-algebra. A C*-algebra is an ideal if and only if it is
isomorphic to a C*-algebra of compact operators {4,
Theorem 5.5]. First, we show the hereditary properties
of ideal J*-algebras.

Theorem 3.1. Supposc A is an ideal J*-algebra. (i)
Each J*-subalgebra of A is an ideal J*-algebra. (i)
Each quotient of A by its closed J*-ideal is an ideal
J*-algebra.

Proof. (i) Suppose B is a J*-subalgebra of A. Re-
garding B < B**, B*¥* c A** and note that if x is an
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element of A which is not in B, then there is a func-
tional fin A* with f(x) = Land fl5 = 0. S0 B** 1 A =
B because B is w*-dense in B**, Take a. b, ¢ in B*,
since A is an ideal J*-algebra, then ab*c + ch*u € A
whenever b € B or ¢ € B. But B** is a J*- algebra and
s0 ub*c + ch*a € B¥* n A = B, and therefore B is a
J*-ideal in B=*. Hence B is an ideal J*-algebra. (i1)
Suppose J is a closed J*-ideal in A, then by [6, Corol-
lary 5] the quotient space A/J is a J*-algebra. Now (ii)
can be easily proved by using the identification (A/
Jy¥*z A** L and the fact that weak closure of a
J*-ideal is also a J*-ideal [11].

Remark. A closed subspace J of a Banach space X
is called an L-summand, if there is a closed subspace
Joof Xsuchthat X =J @ J.and if x € J. y € J', then

il + vl = lxll 4+ fiyll,

A subspace J is an M-ideal in X if J*, the annihilator
of J, is an L-summand in X*. M-ideals are introduced
by Alfsen and Eftros in [1]. If A is a J*-algebra. by [3,
Theorem 3.2], then the M-ideals in A are exactly the
closed J*-ideals of A. Therefore, a J*-algebra A is an
ideal J*-algebra if and only if A is an M-ideal in its
bidual A**. Banach spaces which are M-ideals in their
biduals are introduced and studied by Harmand and
Lima in [8]. Hence, Theorem 3.1 can also be proved
by applving Theorem 3.4 of [&].

If A is an ideal C*-algebra, it is proved in [4. Theo-
rem 5.5] that sp(x) has no nonzero limit point tor each
x = x* €A. In the case of ideal J*-algebra, we have
the following result.

Theorem 3.2. Suppose A is an ideal J*-algebra.
Then sp(a* «) has no nonzero limit point for cach ¢ in
A.

Proof. Supposc ¢ is a nonzero element of A.Let B
be the J*-subalgebra of A generated by a. Then by 112,
Proposition 1.2.1.] B is J*-isomorphic to C,(£2) for
some locally compact Hausdortt space €2.

Suppose @ : B —> C(Q) is a J*-isomorphism.
Then the bitranspose d** @ B** — C (E)** is a
surjective isometry and consequently is a J*-isomor-
phism. Since A is an ideal J*-algebra, it follows from
Theorem 3.1. (i) that B and therefore C,(L2) are ideal
J*-algebras. By [11, Lemma 3.5] and the above re-
mark. sp(a* ) has no nonzero limit point.

A J*-algebra A is said to have semifinite rank 1f
spla* a) has no nonzero limit point for cach u € A
{11]. The next result follows from the above theorem
and {11, Theorems 3.3 and 5.91.

Corolary 3.3. (i) Each ideal J*-algebra has
semifinite rank. (ii) Each ideal J*-algebra is generated



Vol.5No. 1,2
Winter & Spring 1994

by its minimal isometries. (iii) Each ideal J*-algebra is
J*-isomorphism to a restricted product of its simple
ideals. (iv) For each closed J*-ideal J of an ideal J*-
algebra A there is a closed J*-ideal [ such that A =/

@ J.

Commutative Ideal J*-Algebras

Suppose €2 is a locally compact Hausdorff space
and A = C (L) is an ideal J*-algebra, then € must be
discrete. To prove it, suppose E is a compact subset of
QandJ = {fe A;fIE= 0}. Then Cy(£)/J = C(E), and
Theorem 3.1. (i), C(E) is an ideal in C(E)**. How-
ever, E is compact and so C(E) has an identity. So
C(E) must be reflexive and consequently £ is discrete.
A J*-algebra of semifinite rank is called commutative
in [13], if each minimal partial isometry of A is cen-
tral. Since each ideal J*-algebra has semifinite rank,
we have the following characterization of commuta-
tive ideal J*-algebras.

Theorem 4.1. A commutative J*-algebra A is an
ideal J*-algebra if and only if it is J*-isomorphic to
C,(€2), where Q is discrete.

Proof. Apply Theorem 2.2 of [13].
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