THE ANALOGUE OF WEIGHTED GROUP ALGEBRA FOR SEMITOPOLOGICAL SEMIGROUPS

A. Rejali

Department of Mathematics, University of Isfahan, Isfahan, Islamic Republic of Iran

Abstract

In [1,2,3], A. C. Baker and J.W. Baker studied the subspace \(M_a(S) \) of the convolution measure algebra \(M_b(S) \) of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of \(C \)-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup algebra \(M_a(S, \omega) \), where \(\omega \) is a weight function on a \(C \)-distinguished semitopological semigroup \(S \). We will show that this subspace is a convolution measure algebra. As a corollary, this answers in the affirmative a question raised by J.W. Baker and H. Dzinotyiweyi in [6].

Definitions and Preliminary Results

Throughout the paper, \(S \) [resp. \(X \)] will denote a Hausdorff semitopological semigroup [resp. topological space]. Let \(k_t \) denote the strongest topology on \(X \) which agrees with the original topology on the compact subset of \(X \). The topological space \(X \) is said to be a \(k \)-space if \(k = T \). By \(T \) we mean the weakest topology on \(X \) such that whenever a bounded real valued function which is continuous with respect to the topology \(k \) is then it is continuous with respect to \(T \). All notations and terminology in the subject of measure theory are as in [4] and [7]. We denote by \(K(X) \) [resp. \(B(X) \)] the set of all compact [resp. Borel] subsets of \(X \). Also by \(C_b(X) \) [resp. \(C_b(X, k) \)] we mean the set of all real-valued bounded continuous functions on \((X, T) \) [resp. \((X, k) \)]. We denote \(C_b(X) \subseteq C_b(X, k) \) and denote \(\|f\|_\infty = \sup \{|f(x)| : x \in X\} \), for \(f \in C_b(X) \). If \(C_b(X) \) separate points of \(X \), we say \(X \) is \(C \)-distinguished. Clearly, the family of \(C \)-distinguished spaces contain all completely regular spaces.

Let \(M_b(X) \) [resp. \(M_b(X, k) \)] be the set of all bounded Radon measures on \((X, T) \) [resp. \((X, k) \)]. If \(\mu = \mu^* - \mu^* \) be the Hahn decomposition of \(\mu \in M_b(X) \), then we write \(\mu^* = \mu^* - (\mu) \), where \(\mu^* \) is the unique extension Radon measure of \(\mu^* \) on \((X, k) \) which agrees on compacta, (see [4, p. 18]). We recall that \(K(X, T) = K(X, k) \) and \(B(X, T) \subseteq B(X, k) \), so \(\nu(E) = \sup \{ \nu(K) : K \subseteq E \} \), for \(\nu \in M_b(X) \) and \(E \subseteq B(X, k) \).

In the following we give an alternate proof to a Glicksberg's result for general case, (see [9], [11]), noting that Glicksberg's proof can be modified, by using this method, to get this extended version.

For easy reference, we mention the following consequence of [4, p. 20-21].

(1.1) Lemma. Let \(X \) be a Hausdorff space and \(f : X \to [0, + \infty] \) be an arbitrary function. Then,

(a) \(\) Let \(A_{\alpha} = \{x \in X : f(x) > \frac{1}{2^n}\} \) and \(f_n = \sum_{\alpha=1}^{\infty} \frac{1}{2^n} \chi_{A_{\alpha}} \). Then

(b) \(\) The sequence \(f_n \) converges to \(f \) in measure; that is, for any \(\epsilon \),

(c) \(\) The sequence \(f_n \) converges to \(f \) pointwise; that is, for any \(x \),
0 ≤ f_n ≤ f and f_n increases to f. In particular if f is lower semicontinuous function, then there exists a sequence \(s_{n,k} = \sum_{k=1}^{\infty} \frac{1}{2^k} X_{s_{n,k}} \) of simple lower semicontinuous functions such that \(\lim_{n \to \infty} \lim_{k \to \infty} s_{n,k} = f. \)

(ii) If a net \((f_n)\) of lower semicontinuous functions \(X \to [0, +\infty]\) is increasing with \(\sup_n f_n = f\) and \(\mu \in M_0(X)\), then

\[
\int_X f d\mu = \sup_{\alpha} \int_X f d\alpha = \lim_{n \to \infty} \int_X f_n d\mu.
\]

(iii) Let \(f: X \to [0, +\infty]\) be a Borel-measurable function and \(K(X)\) be directed by inclusion. If \(\mu \in M_0(X)\), then

\[
\int_X f d\mu = \sup \int_X f d\mu : C \in K(X)\).
\]

(1.2) Theorem (Glicksberg’s Extended Version).
Let \((X, T_X)\) and \((Y, T_Y)\) be Hausdorff topological spaces and \(F: X \times Y \to IR\) be a bounded separately continuous function. If \(\mu \in M_b(X)\) and \(\nu \in M_b(Y)\), then

(i) The map \(x \to \int_Y F(x,y) d\nu(y)\) [resp. \(y \to \int_X F(x,y) dx\)] is \(k\)-continuous.

(ii) \(\int_X F(x,y) d\mu(x) = \int_Y \int_X F(x,y) d\mu(x) d\nu(y)\).

Proof. Without loss of generality, we can assume that \(F, \mu,\) and \(\nu\) are positive.
(i) Let \(x^*\) denote the point mass at \(x \in X\). Then by (1.1),

\[
\int_X F(x, y) d\mu(y) = \nu(x, F), \text{ where } x, F(x, y) \equiv F(x, y) = \sup \{ F(x, y) : D \in K(Y)\}.
\]

But the map \(x \to \int_Y F(x, y) d\nu(y)\) is continuous on each compact subset \(C\) of \(X\), by the Glicksberg theorem, (see [9]). Hence the map \(x \to \int_Y F(x, y) d\nu(y)\) is \(k\)-continuous on \(X\), for each \(D \in K(Y)\). Since the family of functions

\[
\{x \to \int_Y F(x, y) d\nu(y) : D \in K(Y)\}
\]

is directed upward to \(x \to \int_Y F(x, y) d\nu(y)\), so the map \(x \to \int_Y F(x, y) d\nu(y)\) is \(k\)-lower semicontinuous, by (1.1) (ii).

Similarly, the map \(x \to \int_X F(x, y) d\mu(x)\) is \(k\)-lower semicontinuous. Since \(\{x \to \int_X F(x, y) d\mu(x) : D \in K(Y)\}\) is directed upward to \(x \to \int_X F(x, y) d\mu(x)\), so the map \(x \to \int_X F(x, y) d\mu(x)\) is \(k\)-lower semicontinuous.

Therefore, the map \(x \to \int_X F(x, y) d\mu(x)\) is \(k\)-continuous.

By the same argument, the map \(y \to \int_X F(x, y) d\mu(x)\) is \(k\)-continuous.

(ii) Since the family of \(K\)-continuous functions \(\{x \to \int_Y F(x, y) d\nu(y) : D \in K(Y)\}\) is directed upward to \(k\) continuous map \(x \to \int_Y F(x, y) d\nu(y)\), by (i), so \(\{x \to \int_X F(x, y) d\mu(x) : C \in K(X)\}\) is directed upward to the integral \(\int_X F(x, y) d\mu(x)\) by (1.1) (iii). But the measures \(\bar{\mu}\) and \(\mu\) are concentrated on a \(\sigma\)-compact set and \(\bar{\mu}\) agree with \(\mu\) on compacta.

Hence

\[
\int_X F(x, y) d\nu(y) d\mu(x) = \sup (\int_C \int_D F(x, y) d\nu(y) d\mu(x) : C \in K(X), D \in K(Y)) = \int_C \int_D F(x, y) d\nu(y) d\mu(x) : C \in K(X), D \in K(Y)) = \int_Y \int_X F(x, y) d\mu(x) d\nu(y).
\]

(1.3) Corollary [11]. Let \(X, Y\) be Hausdorff completely regular topological spaces and \(F: (X, T_X) \times (Y, T_Y) \to IR\) be a bounded separately continuous function. If \(\mu \in M_b(X, T_X)\), \(\nu \in M_b(Y, T_Y)\), then

(i) The map \(x \to \int_Y F(x, y) d\nu(y)\) [resp. \(y \to \int_X F(x, y) d\mu(x)\)] is \(T\) continuous.

(ii) \(\int_X F(x, y) d\mu(x) = \int_Y \int_X F(x, y) d\mu(x) d\nu(y)\).

Weighted Convolution Measure Algebras \(M_b(S, \omega)\)

In [9], I. Glicksberg showed that \(M_b(S)\) with the usual convolution is a Banach algebra, when \(S\) is compact. Later, C.J. Wong [18] studied the space \(M_b(S)\), where \(S\) is a locally compact semitopological semigroup. Also, H. Kharagani [12] considered \(M_b(S)\) on \(\mathbb{C}\)-complete spaces included in locally compact and complete metric semitopological semigroups \(S\). It is to be noted that H. Dzmitrovich [5] showed that \(M_b(S)\) is a convolution measure algebra on a large class of \(C\)-distinguished spaces containing all completely regular topological semigroups \(S\). Finally, A. Jansen [11] proved \(M_b(S)\) need not be a Banach algebra with usual convolution under the assumption that \(S\) is a completely regular semitopological semigroup. In this section, we will introduce a convolution \(\star\) for which \((M_b(S), \star)\) be a (non associative) Banach algebra.

Let \(\omega : S \to (0, +\infty)\) be a Borel measurable weight function, that is \(\omega(s) \leq \omega(s) \omega(t)\), where \(s, t \in S\) for which \(1/\omega\) is bounded on compacta. Various authors have considered the space of weighted measure algebra \(M(\omega)\) consisting of all complex measures \(\mu\) such that \(1/\omega \in M_b(S)\). (see for example [8], [14]). The space \(M(\omega)\) need not be complete and the norm-algebra \(M(\omega)\) is different
from \(I_1(S, \omega) = \{ f : S \to \mathbb{IR} \mid \sum_{x \in S} |f(x)| \omega(x) < \infty \} \), where
\(S \) has discrete topology. For these reasons we have chosen a different definition for the weighted convolution measure algebra \(M_b(S, \omega) \).

Let \(C_b(S, \omega) = \{ f : S \to \mathbb{IR} \mid \frac{f}{\omega} \in C_b(S) \} \). Then \(C_b(S, \omega) \) with the usual addition and the following multiplication,

\[
f \cdot g(x) = \frac{f(x)g(x)}{\omega(x)}, \quad \text{for } x \in S \text{ and } f, g \in C_b(S, \omega)
\]

with the norm, \(\|f \|_{C_b} = \sup \{|\frac{f}{\omega}(x)| : x \in S\} \), is a Banach algebra. Also the map \(f \mapsto \frac{f}{\omega} \) from \((C_b(S, \omega), +) \) onto \(C_b(S) \) with pointwise multiplication is an isometric isomorphism.

In [5], H. A. M. Dziowntyewiyo showed that \(M_b(S, \omega) = C_b(S, \omega)^* \) as Banach algebra, where \(C_b(S) \) is \(C_b(S) \) with the strict-topology. In the following, we define \(M_b(S, \omega) \) such that the identity \(M_b(S, \omega) = C_b(S, \omega) \).

Let \(M_b^*(S, \omega) \) be the set of all Radon measures \(\mu \) on \(S \), that is inner-regular and finite on compacta, such that \(\mu \omega \in M_b(S, \omega) \).

In general, \(\varphi \) need not be injection. Following [15], let
"\(\sim \)" be an equivalence relation on \(M_b(S, \omega) \) defined by,

\[
(\mu, \nu) \sim (\mu', \nu') \text{ if and only if } \mu + \nu = \mu' + \nu' \text{ and } [\mu, \nu] \text{ is the equivalence class of } (\mu, \nu), \text{then we define,}
\]

\[
\mathcal{M}_b(S, \omega) = \{ [\mu, \nu] : \mu, \nu \in M_b(S, \omega) \}.
\]

Let also \(C_b(S, \omega) \) denote \(C_b(S, \omega) \) with the \(\omega \)-strict topology, in the obvious way. One can show that \(M_b(S, \omega) \) with the norm \(\|\mu, \nu\|_{\omega} = \|\mu \omega, \nu\|_{\omega} \) and regard \(M_b(S, \omega) \) as a norm space over \(\mathbb{IR} \) is a Banach space isometric isomorphism to \(C_b(S, \omega)^* \).

Let us turn our attention to make \(M_b(S, \omega) \) into a convolution measure algebra. Since \((C_b(S, \omega), +) \) is a Banach algebra, thus one can define a multiplication on \(C_b(S, \omega)^* \) and so \(M_b(S, \omega) \) such that it be a Banach algebra. In the following, we define a convolution "\(* \)" on \(M_b(S, \omega) \), where \(S \) is C-distin guished semitopological semigroup, such that

\[
\mu^* \nu = \int_S \chi_x(y) \mu(dy) (x) \nu(y), \quad \text{for each compact set } K \subseteq S \text{ and } \mu, \nu \in M_b(S, \omega).
\]

Since \(\frac{1}{\omega} \) is bounded on compacta and \(\mu = (\mu \cdot \omega) \frac{1}{\omega} \), so each measure \(\mu \in M_b^*(S, \omega) \) is \(\sigma \)-finite. Let \(\mu, \nu \in M_b^*(S, \omega) \) and,

\[
\lambda(C) := \int_S \chi_x(y) d\mu(x) d\nu(y), \quad \text{for } C \subseteq K(S).
\]

Then the family of \(k \)-continuous maps \(\{ y \to \int_S \chi_x(y) d\mu(x) d\nu(y) \} \) is directed downward to the map \(y \to \int_S \chi_x d\mu(x) d\nu(y) \), by [7, p. 174]. Hence, the map \(y \to \int \chi_x d\mu(x) d\nu(y) \) is \(k \)-upper semicontinuous function on \(S \). Thus the family \(\{ \int f(x) d\mu(x) d\nu(y) : f \in C_b(S) \text{ and } f \geq \chi_x \} \) is directed downward to \(\lambda(C) \), see (1.1). In other words, \(\lambda(C) = \inf \{ l(f) : f \in C_b(S) \text{ and } f \geq \chi_x \} \), where \(l(f) = \int_S f(x) d\mu(x) d\omega(y) \), for \(f \in C_b(S) \). But \(l \) is a positive linear functional on \(C_b(S) \). Thus by the same argument as is used in [4, p. 36], one can show that \(\lambda \) is a Radon-content, that is

\[
\lambda(C_1) \leq \lambda(C_2) = \sup \{ \lambda(C) : C \text{ is a compact subset of } C_2 \setminus C_1 \},
\]

where \(C_1 \subseteq C_2 \). It is to be noted that,

\[
\lambda(C) = \int_S \int_S \frac{1}{\omega} \chi_x(y) d\mu(x) d\omega(y) \leq
\]

\[
\|1\|_\omega C \cdot \|\mu\|_\omega \|\nu\|_\omega
\]

is finite, for each \(C \subseteq K(S) \).

Therefore, the Radon-part \(\lambda_0 \) of \(\lambda \) is a Radon measure, by [4, p. 18]. We define,

\[
\mu^* \nu(E) = \lambda_0(E) = \sup \{ \lambda(C) : C \text{ is a compact subset of } E \} \text{ and } \mu. \nu(E) = \int_S \int_S \chi_x(y) d\mu(x) d\nu(y), \text{ for } E \in B(S).
\]

\[(2.1) \text{ Definition. Let } \mu, \nu, \mu', \nu', M_b(S, \omega) \text{ and } \lambda \in \mathbb{IR} \text{. Then}
\]

\[(i) [\mu, \nu] + [\mu', \nu'] = [\mu + \mu', \nu + \nu']
\]

\[(ii) [\mu, \nu]^* [\mu', \nu'] = [\mu^* \mu' + \nu^* \nu', \mu^* \nu + \mu^* \nu^*]
\]

\[(iii) \lambda(\mu, \nu) = \begin{cases} \lambda(\mu \cdot \nu) & \text{if } \lambda \geq 0 \\ \lambda(\nu, \mu) & \text{otherwise} \end{cases}
\]

It is easy to show that \(M_b(S, \omega) \) is a vector space.
Let \(\{ G_n \} \) be a family of open sets directed upward to \(G \). Then the family of \(k \)-lower semicontinuous maps \(\{ y \mapsto \int_G \chi_x (xy) d\mu (x) \} \) is directed upward to the \(k \)-lower semicontinuous map \(x \mapsto \int_G \chi_y d\mu (y) \), by (1.1). Hence, by (1.1) (ii), the family \(\{ \mu, \nu (G_n) \} \) is directed upward to \(\mu, \nu (G) \), that is, \(\mu, \nu \) is a \(\tau \)-smooth measure. In general, \(\mu, \nu \) is not Radon measure, by [11], so \(\mu, \nu \neq \mu^{*} \nu \). But \(\mu^{*} \nu \) is the maximal Radon measure on \(S \) coincide \(\mu \) on compacta. If \(S \) is \(\mathcal{C} \) compact space, that is \(S \) is a \(\mathcal{C} \)-set in the Stone \(\mathcal{C} \) compactification of \(S \), then every \(\tau \)-smooth measure is Radon-measure, see [13]. In particular, if \(S \) is either a locally compact or complete metric space, then the inner-convolution \("_{**} \) is equal to the usual-convolution \("_{*} \). In the following we give an alternative proof for the equality of \("_{**} \) and \("_{*} \), in this case, without using the Stone \(\mathcal{C} \) compactification.

\(2.2 \) Theorem. Let \(S \) be either a locally compact or complete metric semitopological semigroup. Then \((\mu, \nu (S, \omega)) \) is a convolution measure algebra.

Proof. (i) Suppose \(S \) is a locally compact space. Then for each \(x \in S \) there exists a relatively compact neighborhood \(V_x \), say. Let \(G \) be the family of all finite union of these \(V_x \), where \(x \in S \). If \(G = \bigcap_{k=1}^{n} V_a \in \mathcal{G} \), then \(\overline{\bigcap_{k=1}^{n} V_a} = \overline{G} \) is compact. Let \(\mu, \nu \in M_{\mu}^{*} (S) \). Then,

\[
\mu, \nu (S) = \sup \{ \mu, \nu (G) : G \in \mathcal{G} \} \\
\leq \sup \{ \mu, \nu (\overline{G}) : G \in \mathcal{G} \} \\
\leq \sup \{ \mu, \nu (C) : C \in \mathcal{K} (S) \} = \mu, \nu (S).
\]

Thus \(\mu, \nu (S) = \mu^{*} \nu (S) \). Let \(E = \{ E \in B(S) : \mu, \nu (E) = \mu^{*} \nu (E) \} \). One can show that \(E \) is a \(\sigma \)-algebra containing closed sets, so \(\mu^{*} \nu = \mu, \nu \). Since each measure in \(M_{\mu}^{*} (S, \omega) \) is \(\sigma \)-finite, so it is easy to show that \(\mu^{*} \nu = \mu, \nu \) for all \(\mu, \nu \in M_{\mu}^{*} (S, \omega) \).

(ii) Suppose \(S \) is a complete metric space. Then for each \(n \in \mathbb{N} \), define \(G_n = \bigcap_{k=1}^{n} G_n \), where \(x \in S \). Then it is clear, \(G_n \uparrow S \), so \(\mu, \nu (S) = \sup \{ \mu, \nu (G) : G \in G_n \} \). Hence for each \(\varepsilon > 0 \) and \(n \in \mathbb{N} \), there exist \(G_n \in G_n \) such that \(\mu, \nu (S \backslash G_n) < \varepsilon / 2^n \).

Put \(G_0 = \bigcap_{n=1}^{\infty} G_n \). Then,

\[
\mu, \nu (S \backslash G_0) \leq \mu, \nu (S \backslash G_n) \leq \sum_{n=1}^{\infty} \mu, \nu (S \backslash G_n) \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.
\]

Also \(G_0 \) is totally-bounded, so \(G_0 \) is compact. Hence,

\[
\mu, \nu (S) = \sup \{ \mu, \nu (C) : C \in \mathcal{K} (S) \} = \mu^{*} \nu (S).
\]

Therefore \("_{**} \) coincides with \("_{*} \). The rest of the proof is routine.

We now state the main theorem of this section.

\(2.3 \) Theorem. Let \(S \) be a \(C \)-distinguished semitopological semigroup such that either

(i) \(K^2 \) is compact, for each compact \(K \) in \(S \), or

(ii) \(x^2 \) and \(Kx^2 \) are compact, for each compact \(K \subseteq S \).

Then \((\mu, \nu (S, \omega), *) \) is a convolution measure algebra.

Proof. (i) By a similar argument as is used in [7, p. 6-7] is immediate.

(ii) Let \(\mu, \nu, \eta \in M_{\mu}^{*} (S) \) and \(K \subseteq S \) be compact. Then,

\[
(\mu^{*} \nu) \ast \eta (K) = \int_{K} \chi_{\eta} (z) X d\mu (y) d\eta (x)
\]

\[
= \int_{K} \mu, \nu (Kz) d\eta (x)
\]

\[
= \int_{K} \mu, \nu (Kx) d\nu (y) d\eta (z)
\]

\[
= \int_{K} \mu, \nu (Kx) d\nu (y) d\eta (z)
\]

\[
= \int_{K} \mu^{*} \eta (x^{-1} K) d\mu (x)
\]

\[
= \mu^{*} (\nu \ast \eta) (K).
\]

By inner-regularity, \((\mu^{*} \nu) \ast \eta = \mu^{*} (\nu \ast \eta) \). Thus \("_{**} \) is associative.

Let \(k = \sum_{i=1}^{n} a_i \chi_{k_i} \), where \(a_i \in \mathbb{R}^+ \), \(n \in \mathbb{N} \) and \(K_i \) be compact subset of \(S \), for \(1 \leq i \leq n \). Let also \(\mu, \nu \in M_{\mu}^{*} (S, \omega) \).

Then,

\[
(\mu^{*} \nu) (\omega \chi_k) = \sup \{ \int \omega \chi_k X d\mu (x) d\nu (y) : k \leq \omega \chi_k \}, \text{ see [4, p. 36-37]}
\]

\[
= \sup \{ \mu, \nu (k) : k \leq \omega \chi_k \}
\]

\[
\leq \mu, \nu (\omega \chi_k) = \int \omega \chi_k (xy) d\mu (x) d\nu (y)
\]

\[
\leq \| \mu \|_\omega \| \nu \|_\omega \text{ for each compact } C \text{ in } S.
\]

Therefore \(\| \mu^{*} \nu \|_\omega \leq \| \mu \|_\omega \| \nu \|_\omega \). The rest of the proof is easy.

\(2.4 \) Corollary. Let \(S \) be a \(C \)-distinguished topological semigroup, or semitopological group. Then \((M_{\mu} (S, \omega), *) \) is a Banach algebra.

The following example shows that the measure algebra \(M(\omega) \) is not complete.
Example. Let \(S = (\mathbb{N}, +) \) with the discrete topology and \(\omega(\alpha) = e^{\alpha} \), for \(\alpha \in S \). Then \(M(\omega) = I_1(\mathbb{N}) \cap V_1(\mathbb{N}, \omega) \) is not complete.

Proof. Let \(\lambda_n = e^n / n^2 \), for \(n \in \mathbb{N} \), and \(f_k(n) = \begin{cases} \lambda_n & \text{if } n \leq k \\ 0 & \text{otherwise} \end{cases} \). Then \((f_k) \) is Cauchy in \((M(\omega), \|\cdot\|_\omega) \), which is not convergent [for, if \(f_k \to f \), then \(f = (\lambda_n) \) and
\[
\sum_{n=1}^{\infty} |f(n)| = \infty, \text{ so } f \notin I_1(\mathbb{N}).
\]

The following example shows that "**" need not be associative.

Example. Let \(S, \mu, \nu, \ast \) be as in [11, p. 77] and \(\eta' = e, \) where \(e : = (e_\alpha) \) and \(e_\alpha : [0, 1] \to [0, 1] \) be defined by \(e_\alpha(x) = 1 \), for \(x \in [0, 1] \). Then,
(i) Let \(C = \{\epsilon\} \). Then \(\mu \ast (\nu \ast \eta') (C) = \mu \ast (\nu \ast \eta') (S) \neq \mu \ast (\nu \ast \eta') (C) \).
(ii) Let \(l(f) = \int f(x) \, d\mu(x) \, d\nu(y) \), for \(f \in C_b(S) \). Then \(l \) is not strictly continuous, (c.f. [7], p. 6-7).

Weighted Convolution Measure Algebra \(M^*_\omega(S, \omega) \)

A.C. Baker and J.W. Baker in [1,2,3] introduced and studied the convolution measure algebra \(M^*_\omega(S) \), absolutely continuous measures, analogous to the group algebra \(L^1(G) \), for a locally compact topological semigroup \(S \). Later, several authors studied this algebra, for example [5] and [16]. In particular, in [6] Dzintiyiwek asked whether \(M^*_\omega(S) \) can be made into a convolution measure algebra, whenever \(S \) is a semitopological semigroup.

In this section, we give an affirmative answer to this question and show that this space has the advantage that if \(\mu \in M^*_\omega(S) \) and \(\nu \in M^*_\omega(S) \), then \(\mu \ast \nu = \mu \ast \nu \). For a suitable definition of \(M^*_\omega(S, \omega) \) analogous to \(M^*_\omega(S) \), see [7]. Also \(M^*_\omega(S, \omega) \) is a solid and left ideal of \(M^*_\omega(S, \omega) \).

Let \(\eta = [\mu, \nu] \in M^*_\omega(S, \omega) \). Then \(\eta \omega(\alpha) = \mu \omega(\alpha) - \nu \omega(\alpha) \in M^*_\omega(S, \omega) \), so by the Hahn decomposition theorem, there exist unique \(\xi, \xi \in M^*_\omega(S, \omega) \) such that \(\eta \omega = \xi + \xi \) and \(\xi \perp \xi \).

Put \(\eta^+ = (\xi^+) ^\frac{1}{2} \) and \(\eta^- = (\xi^-) ^\frac{1}{2} \). Then \(\eta = [\eta^+, \eta^-] \) such that \(\eta^+ \perp \eta^- \). Let \(l \eta = \eta^+ \ast \eta^- \) and \(A \subseteq M^*_\omega(S, \omega) \). If \(A \) satisfies the following conditions, then \(A \) is called (weighted) convolution measure algebra.

(i) \(A \) is a norm-closed subalgebra of \(M^*_\omega(S, \omega) \).
(ii) \(A \) is solid, that is if \(\eta \in M^*_\omega(S, \omega) \) and \(\xi \in A \) such that \(l \eta \in l \xi \) implies \(\eta \in A \).

We define, \(M^*_\omega(S, \omega) = \{ \eta \in M^*_\omega(S, \omega) : l \eta \in M^*_\omega(S, \omega) \} \), where \(M^*_\omega(S) = \{ \mu \in M^*_\omega(S) : \text{The map } x \to [\mu(x) \cdot C \) is continuous for each \(C \in K(S) \} \). Similarly, one can define \(M^*_\omega(S, \omega) \) and \(M^*_\omega(S, \omega) = M^*_\omega(S, \omega) \cap M^*_\omega(S, \omega) \).

Throughout this section, \(S \) is a C-distinguished semitopological semigroup endowed with the \(k \)-topology (or k-topology).

Lemma. Let \(h : S \to [0, +\infty) \) be a Borel-measurable function and \(\mu \in M^*_\omega(S) \), \(\nu \in M^*_\omega(S) \). Then,
(i) the map \(x \to \int_S h(x) \, d\nu(y) \) is \(k \)-lower semicontinuous (k-l.s.c.),
(ii) \(\mu \ast \nu(h) = \mu \ast \nu(h) = \int_S h(x) \, d\mu(x) \, d\nu(y) = \int_S h(x) \, d\mu(x) \, d\nu(y) \).

Proof. (i) Let \(E \subseteq S \) be a Borel set, \(x \in S \). Then by (1.1)(iii).
\[\bar{x} \ast \nu(E) = \sup \{ v(x) K : K \text{ is a compact subset of } E \} \]

But the map \(x \to x(\cdot \cdot K) \) is \(k \)-continuous, so the map \(x \to x(\cdot \cdot E) \) is \(k \)-lower semicontinuous (k-l.s.c.).

Let \((s_{\eta, \omega}(x)) \) be a sequence of positive, Borel measurable simple functions increasing to \(h \), pointwise. (see (1.1)). Then \(\int s_{\eta, \omega}(x) \, d\nu(y) \) increasingly converges to \(\int h(x) \, d\nu(y) \). But the map \(x \to \int s_{\eta, \omega}(x) \, d\nu(y) \) is \(k \)-lower semicontinuous. Hence (i) follows.

(ii) Let \(E \subseteq S \) be a Borel set and \(K(S) \) be directed by inclusion. Then the family of \(k \)-continuous functions \(x \to x(\cdot \cdot C) \) is \(k \)-lower semicontinuous (k-l.s.c.). Hence (1.1)(ii).

Therefore, \(\mu \ast \nu(E) = \sup \{ \mu \ast \nu(K) : K \text{ is a compact subset of } E \} = \mu \ast \nu(E) \).

By a standard argument and applying (1.1)(ii) is immediate.

We now state the main theorem of this paper. As a corollary this answers the open question raised in [6].

Theorem. \(M^*_\omega(S, \omega) \) is a Banach algebra, left ideal and solid in \(M^*_\omega(S, \omega) \).

Proof. (i) First of all we show that \(M^*_\omega(S, \omega) \) is solid. Let \(\nu \in M^*_\omega(S, \omega) \) and \(\mu \in M^*_\omega(S, \omega) \) such that \(l \mu \in l \nu \). Then
it is easy to show that \(l \mu \omega \ast \mu \omega \). Since the map,

\[
y \to \int_{\mathcal{X}} (xy) d \mu \omega (x) = l \mu \omega \ast \mu \omega (K)
\]

is \(k \)-upper semicontinuous, by (1.2) and [7, p.174]. Thus by a similar argument as is used in [7, p. 10], one can show that \(l \mu \omega \in M^*_k (S) \). Thus \(\mu \in M^*_k (S, \omega) \).

(ii) Now we show that \(M^*_k (S, \omega) \) is a left ideal of \(M (S, \omega) \).

Let \(\mu \in M^*_k (S, \omega) \), \(\nu \in M^*_k (S, \omega) \), and \(K \subseteq S \) be compact, then,

\[
\nu \ast \omega = \int_{\mathcal{X}} \omega (x) (\omega \ast \omega) (x) d \mu \omega (x), \text{by (3.1),}
\]

and the map \(\omega \rightarrow \omega (x) \) is \(k \)-separately continuous bounded function.

Thus by (1.2), the map \(x \rightarrow \mu \ast \nu \) is \(k \)-continuous. But \((\mu \ast \nu) \omega = (\mu \nu) \omega \leq (\mu \omega) \nu \) and \((\nu \omega) \mu \ast \nu = (\nu \omega) (\mu \omega) \ast \nu \) and \(M^*_k (S) \) is solid, by (i), so \((\mu \ast \nu) \omega \in M^*_k (S, \omega) \).

Thus \(\mu \ast \nu \in M^*_k (S, \omega) \). In general, let \(\xi \in M^*_k (S, \omega) \) and \(\eta \in M^*_k (S, \omega) \). Then \(\xi \ast \eta \in M^*_k (S, \omega) \), so \(\xi \ast \eta \in M^*_k (S, \omega) \), by (i).

(iii) \(M^*_k (S, \omega) \) is a closed subalgebra of \(M (S, \omega) \). For, let \(\xi, \eta \in M^*_k (S, \omega) \) and \(\lambda \in IR \). Then \(\lambda \xi + \eta \xi \in M^*_k (S, \omega) \), by (i). Let \(\eta_n = [\mu, \nu] \rightarrow \eta = [\mu, \nu] \) in \(M^*_k (S, \omega) \), \(f, g \in M^*_k (S, \omega) \), \(\mu \ast \nu \in M^*_k (S, \omega) \), and \(f(x) \in M^*_k (S, \omega) \), \(f(x) = (\mu \ast \nu)(x \ast \omega) \), for \(x \in S \) and compact set \(K \). Then \(\| f \ast g \| \leq \| f \| \mu \ast \nu \| \eta \| \), so \(f \) is \(k \)-continuous. That is, the map \(x \rightarrow \| f \ast g \| \) is \(k \)-continuous. Thus \(\eta \in M^*_k (S, \omega) \) and the proof is complete.

(3.3) Corollary. \(M (S, \omega) \) is a convolution measure algebra.

(3.4) Corollary. Let \(S \) be a \(C \)-distinguished \(k \)-space. Then \(M^*_k (S, \omega) \) is a Banach algebra, left ideal and solid in \(M (S, \omega) \).

Remark. The \(k \)-topology is coincided with the original topology for \(k \)-spaces. Thus \(M^*_k (S, \omega) \) is a Banach algebra, when \(S \) is endowed with the original topology. In particular, every locally compact or complete metric space is \(k \)-space, (see [17]). As a consequence, we answer the question raised in [6].

(3.5) Corollary. Let \(S \) be either a locally compact or complete metric semitopological semigroup. Then \(M^*_k (S, \omega) \) is a Banach algebra, left ideal and solid in \(M (S, \omega) \).

In the following, we consider \(M^*_k (S, \omega) \), when \(S \) is a subsemigroup of a group. Let \(m \) be the left Haar-measure on a locally compact group \(G \), and \(S \) be a Borel subset of \(G \). We denote \(L^1 (S, \omega) = (h : S \rightarrow IR \wedge h \) is Borel-measurable and \(\| h \| = \int_S | h | \omega d \mu m \) is finite \). If \(f, g \in L^1 (S, \omega) \), then \(L^1 (S, \omega) \), with following product, is a Banach algebra.

\[
f \ast g (y) = \int_S f (x) g (x \ast y) d \mu (x), \text{for} y \in S.
\]

We will show that for each \(\mu \in M^*_k (S, \omega) \) there exist a unique \(f \in L^1 (S, \omega) \) such that \(\mu (E) = \int_E f d \mu m \), for \(E \in B (S) \).

(3.6) Theorem. Let \(S \) be a subsemigroup of a locally compact group with positive Haar measure. Then \(M^*_k (S, \omega) \) is \(L^1 (S, \omega) \) as a Banach algebra.

Proof. (i) First we show that,

\[
M^*_k (S) = \{ \mu \omega : \mu \in M (S, \omega) \}.
\]

Let \(\mu \in M (S, \omega) \) such that \(\mu \in M (S, \omega) \) and \(\omega = \mu \omega \). Since \(m \in M^*_k (S) \) and \(\mu \omega = \mu \omega \), so \(\mu \omega = \mu \omega \). Hence the map \(x \rightarrow \omega (x \ast \omega) \) is \(k \)-continuous for each compact set \(K \). Thus \(\omega \in M^*_k (S) \).

Conversely, since \(m (S) > 0 \), so \(\supp (m \omega) = 0 \). Let \(\varepsilon \in \mu \omega \) and \(W \) be a relatively compact neighbourhood of \(\varepsilon \), clearly \(m (W) \) is finite. Let also \(\omega \in M^*_k (S) \) and \(\mu \omega = \mu \omega \). Let \(m' (F) = 0 \), where \(m' \) is the right Haar measure of \(G \) and \(F = m' (F) = 0 \), for all \(x \in G \). Thus

\[
0 = \int_{g \in G} \lambda (F \ast x d \mu = \int_{g \in G} \mu (F \ast x \ast \lambda (y) d \mu (x)
\]

\[
= \int_{g \in G} \mu (F \ast x \ast \lambda (y) d \mu (x)
\]

Thus \(m' (y \in W : \mu (y \ast F) > 0) = 0 \), so \(\mu (K) = 0 \). For, suppose \(\varepsilon (\omega) = \mu (K) > 0 \). Since the map \(x \rightarrow \mu (x \ast F) =
\]
\(\nu(x^{1} F) \) is continuous on \(S \), so there exists an open neighborhood \(V \) of \(z \) in \(S \) such that \(\nu(x^{1} F) > 0 \), for all \(x \in V \). Thus \(m^{*}(V) = 0 \), which is a contradiction. Hence \(\mu \neq m^{*} \), also \(m^{*} \neq m \), by [10, p. 272], so \(\mu \neq m \) and the proof of (i) is complete.

(ii) Let \(\mu \in M_{d}^{(S, \omega)}, \). Then by using (i) and the Radon-Nykodym Theorem and the fact that \(\mu \) is \(\sigma \)-finite, there exist a unique \(f \in L^{1}(S, \omega) \) such that, \(\mu(E) = \int_{E} f \, d\omega \), for \(E \in B(S) \). In general, let \(\eta = [\eta^{*}, \eta] \in M_{d}^{(S, \omega)} \) and \(f^{*}\) corresponds to \(\eta^{*}, \eta \), respectively, as above. Then by a standard argument, one can show that the map \(\eta \mapsto f^{*}\cdot f \) is an isometric isomorphism from \(M_{d}^{(S, \omega)} \) onto \(L^{1}(S, \omega) \).

(iii) Let \(\mu, \nu \in M_{d}^{(S, \omega)} \) and \(\mu \mapsto f, \nu \mapsto g \). Then,
\[
\mu \ast \nu(C) = \int_{C} f^{*} g(z) \, dm(z), \text{ for } C \in K(S).
\]
By inner-regularity of \(\mu \ast \nu \) and \(m \),
\[
\mu \ast \nu(E) = \int_{E} f^{*} g(z) \, dm(z), \text{ for } E \in B(S).
\]
In general, let \(\eta \mapsto f \) and \(\xi \mapsto g \). Then,
\[
\xi \ast \eta \mapsto f \ast g = (f^{*} g^{*} + f^{*} g) \cdot (f^{*} g + f \ast g^{*}).
\]
Therefore the proof is complete.

Remark. Prof. H.A.M. Dzintoyiweyi recalled that if \(m(S) > 0 \), then by using [7, p. 16] one can show that the interior of \(S \) is non-empty. Also, every continuous function on an open subset of \(G \) can extend to a continuous function on \(G \). Thus clearly, \(M_{d}^{(S)} = L^{1}(S) \).

The following corollary is the Theorem (19.18) in [10].

(3.7) Corollary. Let \(G \) be a locally compact group. Then \(M_{d}^{(G)} = L^{1}(G) \).

In the following, we find \(M_{d}^{(S, \omega)} \) for a subset \(S \) of \(IR \) in the Euclidean topology of \(IR \), but with a different multiplication, related to the results of this paper. Their proofs can be obtained by using the definition of \(M_{d}^{(S, \omega)} \).

(3.8) Examples. (i) Let \(S = (0, 1), \) where \(x, y = \min \{x + y, 1\} \), for \(x, y \in S, \) and \(\omega \) be a weight function on \(S \). Then \(\omega^{1} \leq 1 \) and
\[
M_{d}^{(S, \omega)} = L^{1}(S, \omega) \oplus \{\lambda \bar{\lambda} : \lambda \in IR\}.
\]

(ii) Let \(S = [0, +\infty) \) with the usual multiplication [resp.,

Acknowledgements

It is a pleasure to acknowledge the help and advice given me by Dr. J.W. Baker in my research. I would also like to thank the University of Isfahan for financial support, the University of Alberta, and especially Professor A.T. Lau, for their hospitality during my sabbatical year there. Finally, I would like to thank the referee for his suggestions and comments that brought about this version of my previous paper.

References

