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Abstract
We have calculated the phonon frequencies of KCl along symmetry directions
using an approach which is a combination of the frozen phonon and force constants
methods. We also calculated Griineisen parameters for all modes at X and L points
in the Brillouin zone. Finally, the slope of acoustic dispersion curves around zone

center were used to calculate the three independent elastic coefficients c,,, ¢

11’ Y44’ ch as

well as the Bulk modulus. Our ab initio calculations are based on pseudopotential
density functional theory within the local density approximation.

Introduction

Althoughmany phenomenain condensed matter physics
can be understood on the basis of a static lattice model with
atoms distributed on a fixed, immobile periodic array,
there are also considerable numbers of physical properties
of solids which can not be explained other than in the
framework of lattice dynamics. As an example, to study
phase transitions between different crystal structures under
temperature and pressure, the phonon spectrum must be
known in order to calculate Gibbs free energy. Phonon
dispersion spectraare interesting notonly for theirrelevance
to properties of pure materials, but also as ingredients of
approximate calculations for complex systems, such as
crystals containing impurities, alloys, and quantum
microstructures [1]. Traditionally, empirical methods have
been used to calculate dispersion curves, butin the past few
years ab initio approaches based on density functional
theory have become manageable by using powerful
computers [2,3].

Ionic systems, and in particular alkali halides, because
of their. wide-ranging importance in condensed matter
physics, have historically attracted considerable attention
for theoretical and experimental studies. But in spite of
their importance, most theoretical studies are confined to
model calculations and few attempts have been made to
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determine their vibrational and structural properties based
on first principle calculations. Ab initio calculations of the
phonon spectra for alkali halides will not only give an
accurate database for related constituent substances, but
also provide stringent tests of various empirical models.

We report here the results of a phonon frequency
calculation for KCl as a prototype, using an approach
which is a combination of frozen phonon [4] and force
constant [5] methods. Additionally, by investigating the
variation in phonon frequencies at X and L points with
pressure, the Griineisen parameters for different modes
were estimated. Finally, by calculating low energy
acoustical phonon velocities around zone center the three
independentelastic coefficients of the solid were calculated
and compared with experimental results. The calculations
are based on pseudopotential-density functional theory
with local density approximation (LDA) [1,6].

The paper is organized as follows: Section II contains
the computational details. Results and discussion are
presented in section III.

Computational Details
In order to calculate phonon frequencies we need to
calculate the forces on individual atoms in the solid. Ab
initio force calculations can be done using the Hellman-
Feynman theorem which connects the derivative of the
quantum mechanical expectation value of the total energy



Vol.8 No.2
Spring 1997

to electrostatic forces. To calculate the forces for every
ionic displacement, the valence electrons are allowed to
adjustthemselves self-consistently to this new environment
through an iteration technique based on conjugate gradient.
The attainment of the electronically self-consistent ground
state in this approach is treated as a global minimization
problem, in which the total energy functional is minimized
with respect to the plane-wave coefficients of the occupied
orthonormal orbitals [2]. Using the Hellman-Feynman
theorem formulated for pseudopotential method the total
force on each atom is calculated {4,7]. It contains two
terms. One is the force contributed from other ions and the
second term is the force contribution from the valence
electrons. The first term is calculated using Ewald sum [8].
For the second term, the valence electrons distribution is
calculated using density functional theory with LDA.
Once the force is calculated for each atom for a given
displacement, the force constants can be obtained.

There are two commonly used approaches in lattice
dynamics to calculate phonon frequencies using force
components on atoms: frozen phonon and force constants.
In the frozen phonon method, the ions in the solid are
displaced corresponding to a particular normal mode, and
the increase in energy or forces are measured to give
frequency for that phonon, while in the force constants
method, one atom at a given time is displaced and the
forces exerted on all atoms are measured to find the force
constants. As in the frozen phonon method, the phonon
polarizations obtainable from group theory serve as a
prerequisite for frequency calculations, hence this method
can only be used for highly symmetric points in the
Brillouin zone. On the other hand, in the force constants
method what we have to dois to calculate all the interatomic
force constants in the crystal. We can either diagonalize
the resulting dynamical matrix directly to get all the
frequencies and eigenvectors simultaneously or form the
Fourier transformed dynamical matrix (FTDM) for every
wavevector and diagonalize a much smaller size matrix to
get the frequencies at that wavevector. This method, even
by using FTDM, has the disadvantage of requiring large
amounts of cpu-time; hence we used a method which is a
combination of frozen phonon and force constants and is
described in detail below:

To find the phonon modes of alattice, we need to solve
the equations of motion of N interacting atoms, each of
which has three degrees of freedom. Let's assume that an
infinite crystal is divided into L primitive cells (labeled by
D), each containing r atoms (labeled by k) having mass m,.
Using a similar notation to that of Bruesch [9], the
equilibrium position of each atom is given by:

)V) -
X =X1+ Xk
k
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As the lattice vibrates, each atom is displaced from

equilibrium by an amount 1. Consider an atom k in the I*
primitive unit cell, using harmonic approximation we

have:
. I !’
mkua(l )=- 2 d%,s( ! )up( )
k Bk k k' k'

where

11 ’E
¢w( )= la T
k k aud( ) Bup( )
k k'

E is the total energy of the unit cell. For the above equation
we expect solutions of the form:

ﬁ‘a(;)=?a(; |2,

gis the wavevector.
On substituting this into the previous equation we find:

-mi @2 € = D@E

where the Fourier transformed dynamical matrix is given
by

Dep 1) =3, %e(z I’c) LLMEN

The eigenvalues of D(g) give the frequencies of normal

modes with wavevector 5, and the eigenvectors give the
polarization vectors of each mode. Hence, if all the force
constants of the structure are known, then the phonon
modes at any point in the Brillouin zone can be calculated.
However, the above theory requires knowledge of
interactions between atoms separated by distances up to
infinity, in an infinite crystal, and this is not manageable.
Because of computational limitation, our ab initio
calculations can only simulate one or a few primitive cells,
so we canonly obtain a small number of the force constants.
Since the code employs periodic boundary conditions, this
obstacle canbe overcome by using elongated supercelland
defining effective force constants. Let's assume we have a
supercell containing /, primitive cells in one direction.
Using cyclic boundary conditions we have:
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where n is an integer. The forces exerted on the atoms in
our supercell are therefore given by:

( ) ZZZ I+n11) ( l'+n11)

I'=1 k' p=wo k'

I+nll’

Then we could alternatively define effective force
constants which only relate to atoms within the supercell
by writing:

A2zt h)e)

\P(ll)=2q)( l l'+n11)
k k'l n== k k'

If we use a wavevector :1 which gives the same
periodicity in an infinite crystal as these cyclic boundary
conditions impose, then we can use ¥ and the atoms in the

supercell only, instead of @ and an infinite number of
atoms. This condition on the wavevector can be written:
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k k k

and hence the Fourier transformed dynamical matrix
becomes:

)]
DUk 1D =Y exp (ﬁ-fo)w(" ’)
i k k'

We can thus obtain the exact phonon frequencies by
treating our supercell as an isolated system of r atoms,
connected by springs with force constants given by the
simulation, instead of as an infinite crystal; r is the number
of atoms in the supercell.

The calculations were done using the CASTEP code,
which has been documented in detail elsewhere [2]. It
solves the Kohn-Sham equations by expanding the
wavefunctions in a plane wave basis set with periodic
boundary conditions. We used a norm-conserving, non-
local pseudopotential of the Kleiman-Bylander type,
generated by Lin [9] using the method of Kerker [11].
Plane waves up to a kinetic-energy cutoff of 300 eV are
used, further increase did not change the results
significantly. The calculation is done self-consistently by
using four special k points in the irreducible Brillouin zone
[12].

o[10® rad/s]

Figure 1. Phonon frequencies obtained are theoretically compared with experimental results; triangle§ are our
data, filled circles are experimental data, and solid lines are dispersion curves obtained by using the breathing shell
model [13].
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Results And Discussion

The phonon frequencies calculated along symmetry
directions [001], [011], and [111] are shown in Figure 1
and Table 1. Our calculated results are shown in Figure 1
as triangles. The dots indicating the experimental values
and the dispersion curves are obtained by using the breathing
shell model borrowed fromreference 13. Itcan be seenthat
our results are in excellent agreement with those of others;
the deviation at most is less than 5%. This discrepancy can
partly be attributed to the fact that our theoretical
calculations are done at 0 K, while the experimental data
are obtained at 80 K. Using harmonic approximation, a
limited number of K-points, and low energy cutoff may be
considered as other sources of error in our calculations.
Yin et al. [4], using the frozen phonon method, have
calculated phonon frequencies for Si and Ge. Their results
for LTO at I point are not consistent with experimental
data. They could remove this discrepancy by adding a third
order anharmonic term to the energy as a function of
amplitude. Although the possibility exists for a similar
source of error in KCl, substantial discrepancy between
our calculated LO(") frequency and experimental results
need a different explanation. G. Giannozzi et al. [1] have
shown that in polar semiconductors the macroscopic electric
field due to the long-range character of the Coulomb forces
present in the LO(I") mode are responsible for such a
discrepancy. Kunc et gl. [14] using similar arguments have
explained the result for LO(T') mode of GaAs. To obtain a
rough estimation for LO(T') we fitted our data along T
direction with tenth order polynomials. By extrapolating
the dispersion curve we obtained ®, ()= 3.935 (in units
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of 10" rads’)and ratio 2 ‘”w = 1.347. The experimental

values are 4.06 and 1.448, respectwely [13].

In order to investigate the effect of pressure on the
phononmodes, wehavecalculaxedtheGrunelsenpaxmnetcr
for all modes at X and L points. This parameter, which is
ameasureof the anharmonicity of the interatomic potential
and is important in predicting the thermal properties of
materials, can be calculated as follows:

_90lna,
olnV

where s labels the phonon to be considered and V is the
volume of the unit cell. The results are shown in Figure 2
and Table I1. Itis clearly seen thatat X-point, the acoustical
modes, contrary to optical modes, are softening under
pressure which means that the effective force constants for
these modes are weakened. To our knowledge, no
experimental values for the mode Griineisen parameters of
KCl at X and L points have been presented, hence our
results serve as a prediction.

Finally, we can use the zone-center acoustical velocities
to calculate some of the elastic constants. These velocities
are associated with ¢, , c,, and c,, by [15]:

(@)LA =L [100] direction

dk

i

{100] direction

Table L Phonon frequencies calculated along symmetry directions (10"rad/s)

Direction a/27(q,q,4,) Lo T,0 T,0 LA TA TA
(0.0 0.0 0.0) - 2.921 0.0 0.0
(0.0 0.0 1/4) 3.737 2933 1208 0419
[00 1] 0.0 0.0 1/3) 3565 2939 1569 0520
r -»>X (0.0 0.0 112) 3131 2962 2210 0729
0.0 0.0 273) 2765 2985 2556 0.879
0.0 0.0 3/4) 2922  3.003 2360 0951
(0.0 00 1.0) 3.121  3.004 1955  1.007
0.0 1/4 1/4) 3.698 2697 2944 1357 1105 0.606
011] 0.0 13 113) 2558 2964 3510 1754 1484 0815
I o X (0.0 112 112) 2178 3016 2974 2389 2079 1241
0.0 213 213) 2595 3070 2793 2259 1666 1.615
(0.0 3/4 3/4) 2902 2766 3.094 1857 1415 1762
TREI (1/6 1/6 1/6) 3707 2738 1414  1.068
roL (173 13 173) 3464 2560 2015 1526
12 12 112) 2940 2181 2813 2084
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(L-Point) Table I Griineisen parameters at X and L points
31.50
v Lo Point TA LA TO LO
A 70
e L4 X-Point | -2.197 -0.836 2714 2727
31.25 w7
L-Point | 2.518 1.719  2.505 1.619
z
E 31.00 I —-1.6181
: —~1.7185
% Table IIL Ab initio calculated values for elastic constants
(10"'Pa) and Bulk modulus (10°Pa) compared with
30.75 - —2.5050 experimental results
-2.5184
c]l C“ C2l BO
30.50 '~ : - .
+75 +.60 +.85 +90 .95 This work 0435 0056 0057 1828
In(V) [V: A3
Exp. [14] 0403 0.063  0.066 19.7
(X-Point) Other cal. [16] —_ — — 18.6
315 —
SN v L0 !
" s A TO |
210 2789 oL .Additionally, the Bulk modulus for a cubic crystal is [15]:
e -2.7064 w74
=z
E By=1l (11 + 2c)
3 e 0.8334 3
§ 305 - /
-1 ! Using the elastic coefficients we calculated the Bulk
modulus, and the results are shown in Table III.
200 L Alternatively, to obtain zero pressure Bulk modulus we
' e 23023 also plotted the total structural energy as a function of
s volume and fitted the data with Parsafar et al. equation of
« ‘ state [6,7]. The results are shown in Table IIL. It is seen that
29.5 _ ! . » the value of the Bulk modulus obtained using elastic
5.4 5.5 5.6 37 3.8 coefficients is in reasonable agreement with the
In(V) [V: A7] experimental result.

Figure 2. Variation of frequencies of phonons with size cell, to
give Griineisen parameters at X and L points. The numbers
indicate slope of the lines.

(@_) =,/m [111] direction
dk /LA 3p

where p is the mass density.
Applying the slope of the low frequency acoustical

dispersion curves atappropriate points in the aboverelations
we calculated the three independent elastic constants. The
calculated valuesof ¢, ¢, and ¢ , are compared with the

experimental data in Table III. The agreement is excellent.
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