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Abstract

A new simple model is introduced for a liquid and an equation of state is derived
based on this model and the statistical mechanical calculations. This equation of
state works well for the non-polar and slightly polar liquids. The important
conclusion that may be deduced from this equation of state is that if the reduced
variables of state are chosen and defined appropriately, then, the principle of
corresponding states works well for liquids, and it may even be unnecessary to use
an additional parameter like the acentric factor.

Introduction

A liquid has a short-range order that shows up in
diffraction effects when X-ray is scattered by the liquid.
In other words, a liquid has neither the long-range
structural order of a solid nor the small intermolecular
interaction energy of a gas. While the gas molecules are
distributed almost randomly because of such small
intermolecular interactions, there is some local ordering
in a liquid. The size of the local ordering in a liquid
depends on the temperature and the magnitude of the
intermolecular interactions among the molecules. Hence,
the theoretical studies of liquids are much more
complicated than those of solids and gases.

A model which has been used frequently in the
theoretical studies of liquid is the hard-spheres model.
Using Monte Carlo [1] and molecular dynamics [2]
calculations upon finite systems, this model has been
effectively employed to derive a simple analytical
equation of state. The result of these calculations is an
equation for PV/RT as a function of V/V, where V is
the volume of spheres in a close-packed lattice. In other
calculations [3-6], the attractive energies in a fluid are
treated as a perturabation upon the hard-sphere infinite
repuision. Using this approximation, it has been found
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that the leading term of the correction to the hard-sph
pressure, P, is proportional to the second power of
density of the fluid.

There is no general simple analytical equation
state to be valid for liquids. As for the imperfect gasi
several empirical equations of state have been propos
for liquids, and those which are more important will
recalled here. Longuet-Higgins and Widom [7] propos
the following equation of state from explic
combination of the hard-sphere results and the Van d
Waals energy (-a/V),

a
P=P- 7

Another equation of state for liquid proposed 1
Huddleston [8], :

PV 23

in( -
V(x’a_vuz.

y=A+ B(V(‘,B-Vm)

where V, is the molar volume at "zero" pressure a

A and B are some positive constants. Cho [9]\ propost
the following equation of state for liquids,

Y, K+P,
(K+P)©
where V, is the value of V at T and Py, a referernc

Vo
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pressure, and the entropy in terms of 85, 8= N/M, is given by,
9P 0 By 1 NK
B ='V("‘""’“‘) ’G‘_‘:( ) ,C::_-— =-—> 10, In0, + 1-8) In 1-6 1
1=V TR G | essstg(s)}()
B =B(M+GP , K= BD ~ (ii) The subscript "s" on 8 is used because molecules

) . G . - are assumed to be solid-like (do not move around).

And finally the Tait equation [10-11] and its Replacing 85 by 8, expression (1) then can be used for
modification by Kirkwood may so' far be the best
empirical representation of the equation of state for

liquids. Tait's equation is given by,

~ the liquid, and hence,

= -BN_I.E. {0,108, +(1-8) In(1-8)} @
1

P+L(T Vo-V
In (P +L((’I?) )=n :1, ) e In both cases, 6 will be proportional to 1/V, because
0 0 o M is proportional to V. Therefore,
where P, is some standard pressure, V, is the @,
corresponding liquid volume, L(T) is a function of 0, = —“7‘ &)}
tempera'ture,‘anfi n is a constant whose value depends on- where @, s the proportionality constant.a,
the specific liquid.

depends on the state of the system. Now we have to find
the parameters that o, may depend on. As we know, the
molar entropy of liquids (S/Nk) is usually large (more
than 12 entropyunits[13], then 6,<<1, and equation (2)

Liquid may be studied theoretically by using
statistical mechanics as well. Statistical mechanical
theories of liquid fall into two catagories: One is the

hole theory which was formulated by Eyring in the
1930s. This theory has undergone many modifications may be reduced to

and extensions, with the latest extensions being S=Nk(1-1n8) @)
undertaken in the 1960s, and is called the theory of (iii) In order to find the parameter(s) that the
significant structures. In this theory, a liquid is proportionality constant &, depends on, and to see how
considered to be made of a solid-like part and a gas-like it is related to these parameters, we may write S in terms
part (where the partition functions are known for both of T and V. From classical thermodynamics,

parts). Other theories (in statistical mechanics) for the 1 U

liquid state are called the cell theories. According to these dS=Cyd 1nT + T P+ (5“‘\“,‘)1‘ av

theories, a liquid can be represented by a solid where,
instead of just vibrating about its lattice site, each-atom
(or molecule) is allowed to move within a cage or a cell
whose boundaries are defined by the position of its
nearest neighboring atoms. For more information in this dS=Cyd (InT) + AC 4 (InV) o)
regard the reader is referred to McQuarrie [12]. aT

Model And Calculation of Energy and Entropy

where U isthe internal energy,andC, isthe hea

capacity at constant volume. The above equation may b
written as,

where AC=C ;- C,, and « is the isobaric therm:

Consider a liquid at temperature T with N atoms expansivity. The change in the volume of a liquid i
(molecules) and Volume V. Our model is based on the small, the second term then may be negleted. Cy, of
following assumptions: liquid depends slightly on T [8]. Equation (5) may the

(i) Consider a close-packed lattice with M sites and be integrated to,
the volume v at temperature T. We assume (for the time S =Cy InT + constant ©)
being) that the atoms in the liquid do not move around where the volume dependence of entropy, which
and must be distributed among these sites. Such a assumed to be constant, is included in the constant term
distribution may be done in g ways, where, - By comparing equation (4) with (6), we get,

g= M B
N! (M-N)! 8= @

The configurational entropy of such a system may be - VT

calculated by using the Boltzmann equation, S=kin g, where 8, and m are some positive constants and th

12
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values are unimportant here.

Actually the expression given in equation (2) for the
entropy of a liquid gives translational entropy alone. The
contribution due to the other degrees of freedom,

S, (T), depends only on T. Therefore, the total entropy
of a liquid may be given by,

S= _eNl‘. {6,106, + (1-8,) In (1-8))} + 5, ()
1

®
(iv) We assume that the same intermolecular
interactions apply to each molecule and each one
interacts only with its nearest neighbors, the number of
which is equal to C. The internal energy of the liquid is
then given by,

U= é_ CNe + E(T) ©

where € is the potential energy of a pair of the
nearest neighbor, E(T) is the kinetic energy of all

molecules which depends only on T, and N is the
number of pairs. Here, we have actually assumed that the
force between any two molecules is independent of the
configuration of all other molecules present. This
assumption is generally valid, except for molecules
which tend to associate (like molecules with hydroxyl or
imino group, [11]).

The equations which have been derived here for the
nternal energy and the entropy will be used later on.

The Equation of State

By using the above model, the Helmholtz free
nergy, A, can be calculated. The entropy and the
aternal energy are given in equation (8) and (9)
:spectively. The free energy is given by,

\=%~ CNa+Ek(r)+l“§£ 0,100, +(1-0,)1n(1-6,)} - TS M)
1
(10)
The equation of state can be derived by using,
dA
P=-(=>) 1y
av

Before carrying out the above derivative, however,
¢ pair potential (€) should be expressed in terms of V.
‘e may use any realistic function for ¢ in terms of the
termolecular distance, r. One of these functions is the
-nnard-Jones (6-12) Potential, which is good enough
r the representation of the potential energy of a pair of
npolar and slightly polar molecules, and is given by,
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e=A/n" B/

orinterms of V; € = A2/V4 - B2/V2 (12)

(That is because of the fact that the average distance
between the nearest neighbors, r, is proportional to
Vv ”3, for constant N).

By substituting € from equation (12) into equation
(10), and taking the partial derivative of A with respect
to V, by using equation (11), the following equation
will be obtained.

A B
p=2 .3 N 40,0y (3
v v eV
But since 6,<<1, equation (13) is reduced to,
A B
=3 3 NkT (14)
v vV

where A, and B, parameters depend on T.

In order to evaluate the model, we must see how well
the experimental P,V,T data fit into equation (14). It
should be noticed that when the volume of the fluid
approaches infinity, the equation of state approximates
to PV=NKT, which is expected, since the fluid
approaches the ideal gas. In order to see how well the
experimental P,V data fit into the isotherms of equation
(14), we may rearrange equation (14) to,

zpvi= CIND - Bs
v? NKT
or,
A
@1nvi=—L_.B, 15
V2
where A =A,/NkT, B,=B,/NKT, and Z is the

compressiblility factor of the fluid.

. If the model is appropriate for a fluid, then the plots
of (Z-1)V? against 1/v? must be linear for the isotherms
of that fluid. The actual values of Z for different reduced
temperatures and pressures are tabulated by Pitzer et al.
[14]. Actually the quantities which are denoted by
Z, and Z, are tabulated in reference [14]. Z is related to
Z,and Z, as,

Z=2,+0Z,

where o is the acentric factor.
We first carried out the calculation for Ar. One
sample of such calculations is given in Table 1, for
T,= 0.8. The values for pressure in the second column

of this table are calculated by

(16)



Vol. 2, No. 3,4

Symmer & Autumn, 1991 Parsafar J.ScilR Iran

P Pam  Zy Z z  Vhtmole® vV, @V =

.6 28.8 100 .044 .100 .0344 4582 -.1889 4.7633
8 38.4 .133 .058 133 .0343 .4570 -.1811 4.7872

1.0 48.0 .164 .07 .164 .0338 .4509 -.1699  4.9195
2.0 96.0 318 .13 318 .0328 4371 -.1303 5.2337
4.0 192.0 .605 .23 .605 0312 4158 -.0683 5.7838
6.0 288.0 .883 .29 .884 .0304 4050  -.0190  6.0954

8.0 384.0 1.150 .35 1.151 .0297 3955 +.0236 6.3920

* data are taken from ref. [14]

Table 1. The compressibility factor, Z.V,,and (Z-1) V? for liguid Ar for T, =0.8.

.041
—e13S5
N
>
T
~N
) ' 6.5
- _2 a.5 .
vr

Figure 1.The quantity vV (Z-1) versus 1/V,f for liquid Ar for T,= .8,.85,.9, and 95.
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P=P P,
where, for Ar, P =48.00 atmosphere. The values

for the next two columns (Z, and Z ) are taken directly

from reference [14]. Z is calculated from

Z=2Z,+® Z,
where, for Ar,o = ~0.002. The values for volume is
calculated from
v = ZRT
P

Where T=T, T = (0.8) (150.72K) = 120.576K.

The reduced volume (V) is calculated from,

veY
v

[

Where VV =Z RT /P , andforAratT= T,

Vol. 2, No. 3,4
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vV, = 0.291) (0.05:;1) (150.72) = 0.075018 lit mol”"
We carried out similar calculations for liquid Ar with
T, = 0.85,0.90,0.95, and 1.00, and also for gaseous Ar

with T, =1, and 2, and plotted the quantity Vf (Z-1)

against 1/Vf in Figures 1, 2, and 3 by computer. These
plots show that the liquid phase data fit well into the
equation of state up to temperature close toT, = 1.0.
However, the data of the gas phase do not fit into the
equation (15) at all, and the points do not lie on a
straight line. So at this stage, one may conclude that the
model is appropriate for liquids but not for gases, and
may be tested for other liquids as well.

We then carried out similar calculations for more
than ten other liquids with T = .8 (the necessary data

«051
- d75
N oy
>
-
I
N
o ! -
-2
Vr —b

Figure 2.The quantity Vf (Z-1) versus 1/V,2 for liquid Ar for T, =1.
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Substance B, A, V/lit mol 10° ¢
Ar .7995 L1281 .0300 2.10

Kr .7995 L1281 .0369 2.10

Xe .7826 .1249 .0479 2.10
CH, .7999 1277 .0396 1.34
N, .7938 .1256 .0354 1.54
H,S .8100 .1270 .0387 4.24
C,H, .8219 .1293 .0575 3.21
C;H; .8441 .1310 .0796 5.54
neopentane  .8467 L1302 .1220 7.93
n-Butane .8636 .1336 .1007 5.73
CeH,  .8521 1314 1021 9.14
Co, .8668 .1324 .0367 7.45
n-CsH,, *.8953 1372 1218 9.08
n-C,H,,  .8341 1226 1664 11.6

Table 2.The values of A,, B,, V,, and the variance, o,
for different liquids for T,=0.8.

4 Te=-1
AT -2

0 v-? i 11
r

Figure 3.The quantity V,2 (Z-1) versus 1/V’ for gaseous Arfor T, =1 and 2. .

116



J.Scid R Iran

are taken from reference 14). The results are plotted in
figures 4, 5, and 6. The values for the intercept, B 4 »and

the slope, A 4 are listed in Table 2 for all lines, along

with the variance, 62, for T, = .8. The fact that the

curves in these figures are all relatively good straight
lines proves that our model works well for these liquids.
Even though the reduced variables have been used to plot
these figures, the lines are not superimposed. The reason

for such behavior will be considered in the following
section.

Principle of the Corresponding States

The classical principle of the corresponding states
was introduced first by J.D. Van der Waals in 1880, in
connection with the equation of state and the critical
constants of gases. The statistical mechanical version of
this principle was firmly established in the period 1939-
1950. However, the remarkable scope and accuracy of
this principle have begun to be fully appreciated in the
past twenty years [15-17]. According to this principle, if
the compressibility factor Z is expressed in terms of the
reduced variables (P, and T,) then all substances show

the same behavior, and we will have a universal function
for Z=Z(T_, P.). However, more accurate data show

that these functions do not superimpose on each other.
In other words Z depends on the specific substance, as
well as on T andP_ . It is for this reason that a third

parameter, which is called the acentric factor, is
introduced as the third variable for the function Z. It is
believed that the three parameter function may well yield
at least a factor of ten greater accuracy than those
obtained from the simple two parameter function [14]).
It is said (by Pitzer, et al., [14] that the reason for
suggesting the acentric factor is the important deviation
that arises from the fact that the sum of the inverse sixth
power term applying to the various portions of a pair of
complex molecules can not be replaced by a single
inverse sixth power term in the distance between
molecular centers. We focus our attention here on this
point.

Let us start with the equation of state for liquids,
equation (14), and derive its reduced form. We set the
first and the second partial derivatives of P with respect
to V equal to zero, where these constraints must be
satisfied at the critical point. Hence, for the critical
point, where V=V, P =P, and T=T. , we have,

Parsafar
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9P _ SAy 3B Rr
oV V6 V4 VZ
9’ _30A; 12By opT _,
av:i vl vty
P= ﬁ - _Bi + ﬂ
vVl Y
The general solutions to the above equations are,
A, =Tc Ve, By= 2 RT V2 R=PcVe
5 3 8T
an

Now, if Ay, B, and R are substituted into the
equation of state and P,V, and T are replaced by
P, P, v, Ve, and T, T respectively, then, the
reduced form of the equation of state will be obtained as,
) T

roo 1
—_ —_— 18
ZC( ) (18)

P :L(L (L)-‘.
ze v 32 v

) -

r
r

On the one hand if the above equation is solved for
V_, we get the following result:

V.=V (P, T, Zo) 19)
On the other hand if similar substitutions are made
(for A 4» By, and V) in equation (15) the following result
will be obtained,

Z-)Vi=(—) L _ 2

(20

If V_ is substituted from equation (19) into equation
(20), and then the resultant equation is solved for Z, the
final result would be as,

Z=2(®,, T,z @1

Even though the attraction term between pairs of
molecules has been treated here as the inverse of sixth
power term, the function Z=Z (T,, P,) is not obtained
as a universal function. This is due to the fact that
Z. has different values for different fluids, an important
conclusion which ought to be kept in mind. Equation
(20) shows, however, that the function Z=Z (T,, V) is
a universal function. We should then present Z in terms
of V. and T, rather than P, and T,. We have plotted

the quantity (Z - 1) Vf’ versus 1/Vr2 in Figures 4, 5, and
6 for different liquids. The lines do not superimpose,
however. Two different conclusions may come out of

these figures. One is that the model (and hence the
equation of state) is not accurate, and the second is that
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'Figure 4. The quantity Vi (Z-1) versus 1V for

the dimensionless quantities (speciﬁcally V) are not
appropriately defined. Since it has already been shewn ’
that our model works well for these liquids, the former
conclusion may then be discarded, and the latter
conclusion should be seriously considered.

It seems logical to choose the reference state as one
that two nearest neighbor molecules have similar
interaction in all liquids, instead of the critical state. An
appropriate and practical choice is the state in which the
attraction cancels out the repulsion. This state
corresponds to Z=1. We denote the molar volume of
liquid in this state by V, (the subscript zero means no

net interaction). We then define the new dimensionless
A"
volume as V, = —. Now we replace V by V, in

0
equation (15), which gives,
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six different liquids (T, %0.8).

| 2 Ar
Z-DVi=—-B, 2)
\'

r

where A, and B,
respectively.
For a given isotherm, V,, can be calculated by using

equation (15) in its reduced form, and solve that equatior
for V. at Z=1. The result is,

are replaced by A, andB,

B,

1
A4

v;

By knowing the values for B, and A,, which are
given in Table 2 for T, = 0.8, then V can be calculatec
at Z=1. If this value of V_ is multiplied by V the

23

value of V,, will be obtained for that isotherm. Fo
example, for liquid Ar with T =0.8, B, =0.7995 and
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Figure 5.The quantity V,2 (Z-1) versus 1/V,2 for six different liquids (T, =0.8).

A ,=0.1281 (see table 2), then at Z=1,
1 _0.7995
vi  0.1281

or V. =0.4003. Since for liquid Ar,

v. < ZcRTc _ (0.291) 0.0821) (150.72)
c= =
P, 48
Therefore,
V,, =(0.4003) (0.0750 lit) = 0.0300 lit
The V,, values for those liquids listed in Table 2, are

= 0.0750 lit

calculated in the same way and are given in this table for
the isotherm T, =0.8.

In order to calculate V _, the molar volume of liquid,
which can be calculated by using V=ZRT/P, is divided

119

by V. Then the quantity (Z-1) Vf is plotted against

1/Vr2 for some different liquids, for the isotherm

T, = 0.8. The results are shown in Figures 7, 8, and 9,
in which the lines are almost superimposed. In
comparison with Figures 4 through 6, lines in Figures
7, 8, and 9 are much more superimposed, and then the
new dimensionless volume (V) plays an important role

in finding a relatively good universal function for the
isotherm T, = 0.8. Finding a universal function for Z-1)
Vf in terms of 1/Vr2 for an isotherm means that Z=Z

(V,, T,)is a universal function for liquids, and therefore

the principle of corresponding states can be applied for
liquids without having to use the acentric factor.
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Figure 6. The quantity V,2 (Z-1) versus 1/Vf for three different liquids (T, =0.8).

Discussion

There are a few points to be discussed here. One
point which is based on the Figures 7, 8, and 9, is that
if the compressibility factor is expressed in terms of
appropriate dimensionless variables, then, the principle
of corresponding states works well, and there is no need
to introduce additional parameters like the acentric factor.
In this work it has been shown that if the
compressibility factor, Z, is expressed in terms of
T,andV, (instead of expressing it in terms of
T, andP ), the principle of corresponding states works
well.

The second point is in regard to the Pitzer et al. [14]
statement. They believe that introducing the acentric
factor is mainly because of the fact that the sum of the
inverse sixth power terms applying to the various

120

portions of a pair of complex molecules cannot be
replaced by a single inverse sixth power term in the
distance between molecular centers. Even though our
calculations are based on the Lennard-Jones (6-12)
potential, the resulting equation for Z in terms of
P_and T, , equation (21), shows that we should not
expect to have a universal function for Z; because, in
addition to P_and T, , Z depends on Z_, the value of

r*

which depends on the specific fluid. The model works
well for the small molecules (see Figure 4), and it can
still be used for larger molecules, like n-pentane and n-
heptane (see Figures 5 and 6). The variances for all lines
are of the order of 107, see Table 2. Our calculations
show that the main reason for having to use the acentric
factor as the third variable for the functions Z, Z=7

(T,, P, w), is due to the fact that P, is not an

appropriate variable for Z. If the new defined
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Figure 7.The quantity V7 (Z-1) versus 1/V? for six different liquids (T, =0.8).

dimensionless volume,V _, is used instead of P asa
reduced variable for Z, then, this function becomes a
relatively good universal function (see Figures 7, 8, and
9), and no additional parameter, like the acentric factor,
is needed.

The reason that the lines in Figures 7, 8, and 9 are
not completely superimposed may have different origins,
such as using the calculated value for V,, from equation
(15), instead of using the actual values; using calculated
values for Z from tables in reference [17], rather than
using the actual values; and using the Lennard-Jones (6-
12) potential for the interaction between two molecules.

The idea of taking the volume into account for the
representation of the principle of corresponding states
was used by Vetere [17]. He introduced a linear function

121

between Z and P for each specific V.

A statistical-mechanical theory has recently been
presented to derive a new analytical equation of state by
Song and Mason[18).Their approach is quite different
from ours however, it is curious that the resulted
equation of state is a quintic in the density, just like
ours. Their equation of state is more complicated than
equation (15) of this work.

One may say that the treatment of volume instead of
pressure is more difficult, practically, and in fact this is
the major reason that most people use P as a variable
rather than V. This point should not be considered as a

disadvantage for our equation of state, because equation
(15) may be written as,



Vol. 2, No. 3,4 .
Summer & Autumn, 1991 Parsafar JScilR Iran

0.2 5

-1.2 1

07 2 *9 B

—_
Yvr
Figure 8. The quantity Vf (Z-1) versus 1/Vf for six different liquids (T, =0.8).

2 2
p? 72 28, _EaV)

ZRT av ' v

(by substituting V= in eq. 15), A’ and B’ are

Then, the equation of state will generally be as,
temperature dependent constants. In this case the

function Z* (Z—I)/P2 against P2/Z? is linear, and if the
reference pressure, P, is defined in such a way that at

1 _ A
@Y _c=27-B

which holds for both the gas and the liquid phase.

Z=1, P=P, and the reduced pressure is defined as Now the main problem is to find an appropriate function
P, =P/P,, then the lines should be superimposed. This for &, in terms of T, and V, A and B in terms of T. This
point will be explored in our future publications. is'not done here, but it may be done by using our

The equation of state given by equation (15) is extended low of corresponding states, which will appear
limited, however, to the liquid phase. This is due to the in our future publications.

fact that the contribution of volume change in AS is
discarded in equation (6). For this reason, the linear
functions are not obtained in Fig. 3 (for the gas phase).
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Figure 9. The ’quantity Vf (Z-1) versus
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