CHEBYSHEV SUBALGEBRAS OF JB-ALGEBRAS

A.K. Mirmostafaee¹ and A. Niknam²

¹Department of Mathematics, Damghan College of Sciences, Damghan 36715/364 Islamic Republic of Iran ²Department of Mathematics, Faculty of Sciences, Islamic Azad University of Mashad, Mashad, Islamic Republic of Iran

Abstract

In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or $A = H \oplus R$. 1, where H is a Hilbert space.

1. Introduction

An important characterization for Chebyshev subspaces of C(X) is due to Haar and characterizes finite dimensional Chebyshev subspaces of C(X), where X is a compact Hausdorff space ([6], p. 215). Following his work on non-commutative cases, Chebyshev subspaces of C^* -algebras were studied in [3-5]. In this paper, we characterize Chebyshev subalgebras of JB-algebras. In section 3, we will show that if B is a Chebyshev subalgebra of a unital JB-algebra A, then B is also unital and either A is of the form $H \oplus R.1$, where H is a Hilbert space, or B is a trivial subalgebra of A. In particular, Chebyshev subalgebras of alternative JB-algebras are trivials. The paper is divided into three sections. In section 2 we give a few preliminaries and section 3 contains the main results of the paper.

2. Preliminaries

Let (X, d) be a metric space, a subset $Y \subset X$ is called Chebyshev (semi-Chebyshev), if every point x in X admits a unique (at most one) nearest point in Y. This point is called the best approximation to x and is denoted by $P_{y}(x)$.

A non-associative algebra A, over $\Phi(\Phi=R \text{ or } \Phi=\emptyset)$

Keywords: Best approximation; Chebyshev set; JB-algebra

AMS subject classification (1991): 41A52, 17A60.

is called a *Jordan algebra* if for each $a,b \in A$, a.b = b.a and $a^2.(a.b) = a.(a^2.b)$. If B is an associative algebra, we define the *Jordon product* of two elements $a,b \in B$ by the rule

$$a.b = \frac{1}{2} (ab + ba)$$

In terms of this product, B becomes a Jordan algebra denoted by B^J . A Jordan algebra which is isomorphic to a subalgebra of B is called a *special Jordan algebra*. The following theorem plays an important role in our computation ([2], p. 34).

Theorem 2.1 (The Shirshov-Cohn theorem). Any Jordan algebra generated by two elements (and 1, if unital) is special.

For a,b,c in a Jordan algebra A, define the Jordan triple product $U_{ac}(b) = \{abc\}$ as follows:

$$\{abc\} = a.(b.c) - b.(a.c) + c.(a.b)$$

In any Jordan algebra A the identity:

$$\{abc\}.d = \{(a.d)bc\} + \{ab(c.d)\} - \{a(b.d)c\},$$

holds for each a,b,c and d in A ([2], p. 36). If an element

a in a Jordan algebra A is invertible, then $U_{a,a} = U_a$ is invertible as an operator on A, and $(U_a)^{-1} = U_a^{-1}$ ([1], p. 19).

Let e be an idempotent in a unital Jordan algebra A, then A has a representation of the form

$$A = \{eAe\} \oplus \{eA(1-e)\} \oplus \{(1-e)A(1-e)\},\$$

which is called the *Peirce decomposition* of A corresponding to e. Furthermore, we have the following (Peirce) multiplication rules ([2], p. 49):

$$\{eAe\}. \{(1-e)A(1-e)\} = 0 \& \{eA(1-e)\}. \{eA(1-e)\} \subseteq \{(1-e)A(1-e)\} \oplus \{eAe\}.$$

A JB-algebra is a Jordan algebra A with a complete norm II.II satisfying the following properties:

$$||a.b|| \le ||a|| ||b|| \& ||a||^2 \le ||a^2 + b^2||.$$

If A is a unital JB-algebra and $a \in A$, an element $a \in A$ is called *invertible* with b as an *inverse*, if a.b = 1 and $a^2.b = a$. This notion reduces to the customary one for special Jordan algebras, by virtue of the equivalence ([1], p. 17)

$$a.b = 1$$
, $a^2b = a \Leftrightarrow ab = ba = 1$.

We denote by C(a) the smallest norm-closed JB-algebra of A containing a and 1. Then C(a) is associative. We define the spectrum of a, denoted by sp(a), to be the set of $\lambda \in R$, such that a- $\lambda 1$ does not have an inverse in C(a). The following conditions are equivalent ([1], Proposition 2.4):

(i) a is invertible with inverse b in the Jordan algebra A,
(ii) a is invertible with inverse b in the Banach algebra C(a).

The reader may consult [1] or [2] for more information about Jordan algebras.

3. Results

The following result can be easily obtained from the analogue one for C^* -algebras.

Lemma 3.1 ([5] Lemma 1.1). Let A be a unital JB-algebra, and let B be a non zero JB-subalgebra of A. If B is semi-Chebyshev in A, then $1 \in B$.

Hereafter, we will assume that A is a JB-algebra and B is a Chebyshev subalgebra of A.

Lemma 3.2. If A is unital and $x \in B$ is not invertible, then $UA \subseteq B$.

Proof. Let $\varepsilon > 0$. Choose continuous functions f, g and h

on sp(x) such that f,g vanish in a neighbourhood of 0, h(0) = 1, fg = f, gh = 0 and $|f(t)-t| < \varepsilon$, for each $t \in sp(x)$. (Note that such functions exist, for example, let for each $t \in sp(x)$:

$$f(t) = \begin{cases} t & \text{if } |t| \ge \frac{\varepsilon}{2} \\ 3t \pm \varepsilon & \text{if } \frac{\varepsilon}{3} \le \pm t \le \frac{\varepsilon}{2} \end{cases}$$

$$0 & \text{if } |t| \le \frac{\varepsilon}{3}$$

$$g(t) = \begin{cases} 1 & \text{if } |t| \ge \frac{\varepsilon}{3} \\ \frac{\pm 12t}{\varepsilon} - 3 & \text{if } \frac{\varepsilon}{4} \le \pm t \le \frac{\varepsilon}{3} \\ 0 & \text{if } |t| \le \frac{\varepsilon}{4} \end{cases}$$

and h be a continous function, obtained by the Uryshon's lemma, such that $supp(h) \subset (-\frac{\mathcal{E}}{4}, \frac{\mathcal{E}}{4}), h(0) = 1$ and $-1 \le h \le 1$, then f, g and h satisfy the required conditions). Put y = f(x) e = g(x), z = h(x). Therefore y.e = y, e. z = 0 and ||y - x|| < e. Since $o \in sp(x)$, $z \ne 0$, we may assume that $||e|| \le ||z|| = 1$. If $\{yAy\} \not\subset B$, take $a = \{ya'y\} \in U_y(A) \setminus B$ and let $b \in B$ be the best approximation to a. Using Theorem 2.1 for the subalgebra generated by x and a', we see that e.a = a, $e^2.a = a$; hence

$$||a-b.e|| = ||a.e - b.e|| \le ||a-b||$$

and

$$||a-b.e^2|| = ||a.e^2-b.e^2|| \le ||a-b||$$

Since b is the best approximation to a, these inequalities imply that b.e = b and $b.e^2 = b$, hence $b = \{ebe\}$ and $U_{\epsilon}(a-b) = a-b$. Choose $0 < \lambda < \|a-b\|$. By considering the subalgebra generated by a-b and z and applying Theorem 2.1, we see that $U_{\epsilon}(a-b).z = 0$ and, therefore, the subalgebra generated by $U_{\epsilon}\{a-b\}$ and z is associative, thus we have

$$||a-(b+\lambda z)|| = ||(a-b)-\lambda z|| = ||U_{\epsilon}(a-b)-\lambda z|| = ||a-b||.$$

This implies that z = 0, which is a contradiction, so U_yA $\subseteq B$. With $\varepsilon = \frac{1}{n}$, we can find a sequence $\{y_n\} \subseteq B$, such that $y_n \to x$ and $\{y_nAy_n\} \subseteq B$ for all n. Hence $\{xAx\} \subseteq B$.

Lemma 3.3. If $\{0,1\} \subseteq sp(x)$ for some $x \in B$, then $A.(x(1-x)) \subseteq B$.

Proof. Since $o \in sp(x)$, $U_xA \subset B$. The identity (see section 2)

$$\{xax\}.y = 2\{(x.y)ax\}-\{x(a.y)x\},$$

and Lemma 3.2 imply that $\{(x.y)ax\} \in B$, for each $y \in B$, $a \in A$. Hence $\{[x(1-x)]Ax\} \subset B$. Similarly, since $o \in sp(1-x)$, we have $\{(x(1-x))A(1-x)\} \subset B$. By the identity

$$\{(x(1-x))ax\} + \{(x(1-x))a(1-x)\} = a.(x(1-x))$$

we have $a.(x(1-x)) \in B$, for each $a \in A$. This proves the lemma.

Lemma 3.4. If sp(x) contains more than two points for some $x \in B$, then B = A.

Proof. Take $\lambda_0 \in sp(x)$, by assumption there are at least two more points $\lambda_1, \lambda_2 \in sp(x)$. By the Uryshon's lemma there are continuous functions f_1, f_2 on sp(x) such that

$$f_1(\lambda_0) = f_1(\lambda_2) = 1, f_1(\lambda_1) = 0, f_2(\lambda_1) = f_2(\lambda_0) = \frac{1}{2} \text{ and } f_2(\lambda_2)$$

= 1. Put
$$f = f_1 f_2$$
, then $f(\lambda_0) = \frac{1}{2}$, $f(\lambda_1) = 0$, and $f(\lambda_2) = 1$. Let

g = f(1-f) and note that $g(\lambda_0) = \frac{1}{4}$. By Lemma 3.3, $g(x).A \subset eB$. Applying this argument to every point in sp(x), for each $\lambda \in sp(x)$, we can find $f_{\lambda} \in C(sp(x))$, such that $f_{\lambda}(\lambda)$ $(1-f_{\lambda}(\lambda)) = g_{\lambda}(\lambda) > 0$, and $g_{\lambda}(x).A \subset B$. By compactness of sp(x), one can find a finite set $\{g_i\}_{i=1}^n \subset C(sp(x))$ with $\sum_{i=1}^n g_i(\lambda) > 0$ for all $\lambda \in sp(x)$ such that $g_i(x).A \subset B$, then $y = \sum_{i=1}^n g_i(x)$ is an invertible element in B and $y.A \subset B$, Since

$$\{f_i(x)(f_j(x)(1-f_j(x)))A\} = \{[f_i(x)f_i(x)(1-f_i(x))Af_i(x)\} + \{f_i(x)f_i(x)(1-f_i(x)A(1-f_i(x)))\},$$

we have $(f_i(x)g_j(x))$. $A \subseteq B$, hence $(f_i(x)(y))$. $A \subseteq B$. Since $\{(yf_i(x)Af_i(x)\} \subseteq B \text{ and for every } a \in A,$

 $\{[y.(1-f_i(x))]a(1-f_i(x)\} = y.a-\{yaf_i(x)\}-(yf_i(x)).a+\{(yf_i(x))af_i(x)\}, \text{ one can easily see that } \{yaf_i(x)\}\in B. \text{ Also}$

$$\{[f_i(x) \ (1-f_i(x))] \ ay\} = \{f_i(x)ay\} - \{f_i^2(x)ay\}$$

By applying the same argument for f_i^2 as used for f_i , it follows that $\{g_i(x)ay\} \in B$ for each $a \in A$. Hence $\sum_i \{g_i(x)ay\} \in B$, i.e. $\{yay\} \in B$ for each $a \in A$. Hence

$$a = U_y \cdot 1 \ U_y(a) \in B, \ \forall a \in A, i.e. \ A = B.$$

Now, we are ready to state the main result of the paper:

Theorem 3.1. If A is a JB-algebra with unit, and if B is a Chebyshev JB-subalgebra of A, then either B is a trivial subalgebra of A or $A = H \oplus R.1$, for some Hilbert space H, with dim $(H) \ge 2$.

Proof. If $B \neq A$ and $B \neq R.1$, then Lemma 3.4 shows that there is an element $e \in B$, such that sp(e) contains two points, we may assume that $sp(e) = \{0,1\}$, so that e is a nontrivial projection. Lemmas 3.2 and 3.1 show that $\{eAe\} \subset B$ and $\{(I-e)A(I-e)\} \subset B$. Thanks to the Shirshov-Cohn theorem, for every $y \in \{eAe\}$, the subalgebra generated by 1, y and e is associative and y.e = y. Since sp(y) doesn't have more than two elements, using spectral theory, we see that there exists some $\alpha \in R$, such that $y = \alpha e$. So that $\{eAe\} = Re$. Similarly $\{(1-e)A(1-e)\} = R(1-e)$. Using the Peirce decomposition of A corresponding to e, we have

$$A = Re \oplus \{(1-e)Ae\} \oplus R(1-e).$$

Let $x \in \{(1-e)Ae\}$, then by Peirce multiplication rules, we see that

$$x^2 = \lambda e + \mu 1$$
, $(\lambda, \mu \in \mathbb{R})$.

If $\lambda \neq 0$, then $e = \lambda^{-1}(x^2 - \mu.1)$ belongs to the associative subalgebra generated by x and 1, but in this case, $x = \{(1-e)xe\} = 0$, contradiction. So that $x^2 = \mu.1$. The identity

$$x.y = \frac{1}{2} [(x+y)^2 - x^2 y^2], (x, y \in A),$$

shows that $x.y = \lambda 1$ for each $x,y \in \{(1-e)Ae\}$. Thus, we may define an inner product on $\{(1-e)Ae\}$ by

$$\langle x, y \rangle 1 = x.y.$$

Since s = 1-2e is a symmetry (i.e. $s^2 = s$) and s.x = 0, $\forall x \in \{(1-e)Ae\}$, this inner product can be extended to $H = \{(1-e)Ae\} \oplus Rs$. Thus $A = H \oplus R.1$. Note that dim $H \ge 2$, for if $\{(1-e)Ae\} = R.1$, then B = A.

Example 3.1. Let $A = H_2(R)$, the set of all Hermitian 2×2 matrices with entries in R. Then, with respect to the Jordan product, A is a non-associative JB-algebra. Following the proof of Theorem 3.1, one can easily see that A has a representation of the form $A = H \oplus RI$. Routine calculations show that the unique best approximation to

$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} \text{ is } \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

Thus B, the set of all diagonal matrices with entries in R, is a Chebyshev JB-subalgebra of A.

An alternative Jordan algebra is a Jordan algebra for which $a^2.b = a.(a.b)$. It is known that if x and y are in an alternative algebra, then the subalgebra generated by $\{1, x, y\}$ is associative ([2], p. 21).

Corollary 3.1. If B is a Chebyshev subalgebra of unital alternative JB-algebra, then either B = A or B = R.1.

Proof. If $B \neq R$. 1 and $B \neq A$, the above theorem asserts that A has a representation of the form

 $A = H \oplus R.1$

where $H = \{1-e)Ae\} \oplus \mathbb{R}(1-2e)$ and $1, e \in B$. Since A is alternative, for each $a \in A$, the subalgebra generated by $\{1, a, e\}$ is associative, thus $\{(1-e)ae\}=0$ and therefore B=A, contradiction.

The complex version of JB-algebras are called JB*-algebras or Jordan-C* algebras. Their formal definition is as follows. Let A be a complex Banach space which is a complex algebra equipped with an algebra involution*. Then A is a JB*-algebra if the following three conditions are satisfied for all $a, b \in A$:

- (i) $||a.b|| \le ||a|| ||b||$,
- (ii) $||a^*|| = ||a||$,
- (iii) $||\{aa^*a\}|| = ||a||^3$.

It is easily verified that if B is a *-closed Chebyshev subset of a JB^* -algebra A, then $P_B(a^*) = P_B(a)^*$. Therefore if B is a Chebyshev subalgebra of A, then the self-adjoint elements of B are a Chebyshev subalgebra of self adjoint elements of A, which is a JB-algebra ([2], p. 91). Thus we have the following result.

Corollary 3.2. Let A be a unital JB^* -algebra which is also alternative. If B is a Chebyshev subalgebra of A, then B is a trivial subalgebra of A.

An element $b_0 \in B$ is said to be a best simultaneous approximation of the pair $a_1, a_2 \in A$ if and only if for each $b \in B$:

$$\max (||a_1-b_0||, ||a_2-b_0||) \le \max (||a_1-b||, ||a_2-b||)$$

Corollary 3.3. If B is a JB-subalgebra of a unital JB-algebra A, and if each pair a_1 , $a_2 \in A$ has unique best simultaneous approximation in B, then either $A = H \oplus R.1$, for some Hilbert space H or B = R.1.

Proof. Let $A_1 = A \times A$, with pointwise operations and with the norm

$$||(a_1, a_2)|| = \max(||a_1||, ||a_2||)$$

It is easy to see that A_1 is a unital JB-algebra. Identifying B with

$$B_1 = \{(b,b): b \in B\}$$

one can see that B is a Chebyshev subalgebra of A_1 since A has more than one point $A_1 \neq B$. So the corollary is established by theorem.

References

- Alfsen, E.M., Shuitz, F.W. and Stormer, E. A Gelfand-Neumark theorem for Jordan algebras. Adv. Math., 28, 11-56, (1978).
- Hanche-Olsen, H. and Stormer, E. Jordan operator algebras. Monographs Stud. Math. 21, Pitman, Boston-London-Melbourne, (1984).
- Pedersen, G.K. Chebyshev subspaces of C*-algebras. Math Scand., 45, 147-156, (1979).
- Robertson, A.G. Best approximation in von Neumann algebras. Proc. Cambridge Philos. Soc., 81, 233-236, (1977).
- Robertson, A.G. and Yost, D. Chebyshev subspaces of operator algebras. J. London Math. Soc., 19, (2), 523-531, (1979).
- Singer, I. Best approximation in normed linear spaces by elements of linear subspaces. Springer Verlag, (1977).