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Abstract
In this paper we study the almost universal convergence of weighted sums

Y %1 ax X« for sequence {X , n21} of negatively dependent (ND) uniformly bounded
random variables, where a , n21, k21 is an array of nonnegative real numbers such

that ¥ 7% = 0%™) for every >0 and EIX | F_ =0, F = o(X,,....X ) for every n>1.

Introduction :

In many stochastic models the assumption of
independent random variables is not plausible. In fact,
increases in some random variables are often related to
decreases in other random variables and the assumption
of negative dependent is more appropriate than ‘an
independent assumption. Lehmann (1966) investigated
various concepts of positive and negative dependence in
the bivariate case. Strong concepts of bivariate positive
negative dependence were introduced by Esary and
Proschem (1972). Also Esary, Proschen and Watkup
(1967) introduced a concept of association whichimplied
a strong form of positive dependence. Their concept has
been very useful in reliability theory and applications.
Multivariate generalizations of these concepts of
dependence were initiated by Harris (1970) and Brindley
and Thompson (1972) and later developed by Ebrahimi
and Ghosh (1981), Karlin (1980), Block and Ting (1981),
Block, Savits and Shaked (1982). Moreover, Matula
(1992) studied the almost sure convergence of sums of
ND random variables, and Bozorgnia, Patterson and
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Taylor (1996) studied limit theorems for dependent
random variables. Let {X , n21} be a sequence of ND
uniformly bounded random variables wherea ,, n21 421
is an array of nonnegative real numbers such that

35t @ =0k™) for every p>0 and EIX JF, }= 0, F,=
o(X,,...,X) for every n21. Some convergence theorems

forT = Y,¢=1 9% Xt have been studied by Chow (1966)
for the case where {X , n>1} is anindependent sequence,
the case of m-dependent has been discussed by Ouy
(1967). Here we study the strong law of large numbers

for the weighted sums T,= ;=144 Xt under certain
uniformly bounded conditions on the negatively
dependent random variables.

Definition
Therandom variables X ,...,X aresaidtobe NDif we
have

Plra1 X< x)] S M- P[X;< %] M
and
PlN-1 &S x)] <M1 P[X;< x;] @

forallx,,...,x, € R, Conditions (1) and (2) are equivalent
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for n=2. However, Ebrahimiand Ghosh (1981) show that
these definitions donot agree for n>3. An infinite sequence
{X,, n21} is said to be ND if every finite subset X ,....X
is ND. The following example shows that the sum and
the absolute value of ND random variables may not bea
ND variable.

Example
i) Suppose X X, X, are given by a joint probablhty
distribution j{() 0 O)- £1,0,h)=0,/0,0,1)=f0,1,0)= .2
0,1, 1D)=A1,1,00= A1,1,1)= .1, R1,0,0)= .3

a) Then X, X, X, are ND random variables, Ebrahxml
and Ghosh ( 1981)

b) Y= X +X, and X, are not ND random vanables.
Because for every 1<y<2, 0<x<1 we have

PIY<y,X,<x)=5/10> P[Y <y] P[X, < x }= 48/100

ii) Suppose X ,X, are random variables with p.d.f.

X\X, -1 0 1
-1 0 L 2 |
9 9 |

0 L L 0
9 9 :

1 2 1 1.
9 9 9 |

Then X, X, are ND random variables but X, i and X}
are not, since for every 0 < x <l and 0 <y <1 we have
PIX 1<x, X I<y]=1/9> PIX I<x] P [IX lsy]% 6/81.03

The following Lemmas are listed for reference in
obtaining the main result in the next section. Detaxled

proofs can be founded in the Bozorgnia, Patterson and
Taylor (1996).

Lemma 1.Let {X , n 2 1} be a sequence of ND random
variables and {f,, n21 } be a sequence of Borel functions
all of which are monotone increasing (or all are monotone
decreasing). Then {f(X ), n21} is a sequence of ND
random variables.

Lemma 2. Let X,,....X, be a finite sequence of ND

random vanables and t,,...t, be all nonnegative (or
nonpositive) then:

2 hXi n
Ele’ <11 Ee'iXi,
=1
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Lemma 3. Let X be a random variable with E(X)= 0 and
IX1 £ c<eo a.e. then for every real number t:

Ee* <e™®  and Ee'™ig 2et2€2
Proof. For ¢ = 1 Chow (1966). For general c, apply the
c= 1 result with X replaced by X/c.

Resuilts
In this section, we first obtain exponential bounds for
probabilities Pimax,, IT 1> x] and P(IT J>€], then we
prove that convergence a.e. and in probablhty for the
sequence {T, , m21} are equivalent. Where:

Ti= =1 Gk Xt Tom= Y = ok X and

= Z a,% with E [X 5 IFs.1J=0and F = c(xl,,,wxn) for
j=1
every n=1.

Theorem 1.Let {X , n21} be a sequence of ND random
variables such that [X,I< ¢ <o a.e. for k21 then for every
x>0

. L x?
P anag ITot < x] < 2exp [ 4C2An].

Proof. By Lemmas 1, 2 and 3 for every h > 0 we have:

Ee"'Tml < E ofmn g E o -Hlam <

m m
[1 E te? o %61 + [] E [e- P X1 <
k=1 k=1

n
2exp [hc? Y, ail < 2exp h%c%A ).
=1

Since (T, F,,m>1)} ismartingale and {IT_|,F, } is
submartingale and ¢(f)= ¢* for each s 2 0 is increasing
and convex function, then by submartingale inequality
we have:

P [5“53,,’5 IT 5 > x] =P ['msa":f e(TH29 (x)] <

E[p (Tmb] < 2exp [hx + K A,
&)
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, we have:

andforh = f

An

2
) X
P[ﬂaﬁ IT,,IZx]SZexp[ YR O

Lemma 4. Let {X , n=1} be a sequence of ND random
+ variables with IX | < ¢ <o a.e. for every n. Then for evety
&> 0 and 2 > 0, we have:

Eef < exp [h°c? A,

and'

1

PITal> €l < 2exp - 6;2

CAn

Proof. By Fatou's Lemma and Lemmas 1,2 and 3 we
have:

Ee"< exp [hzczA al.

Now following the proof of Theorem 1 we have:

PITsl> €] < 2exp [ - —€2-1.00
462An

Theorem 2. Under assumptions of Theorem 1

DIf{T_,m>1} converges inprobability forevery n then
it converges a.e.

i) Ta=Y 4 @ Xi converges a.e. for each n.

Proof. i)LetT -»1 inprobability forevery n then there
existsa subsequence {m,, k2 1} such thatT m —>1, a.e..
We define:

mm lTnm"Tml

Snt =
mEp<mSmigat

by Theorem 1 we have:

PS> £] < 2exp [-.._;_fi.__].
4C ""”hla'%

Hence, by Borel Cantelli's Lemma S, — 0 a.e. k — oo,

Thus
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T -11<S, +Tpm -11-0. ae.

The sequences on the right side converge to zero and
the proof is complete.

ii) For every N > m by Lemma 4 and part (i} we have:

PTun-Twd>e]1<20xp [-— €2},
4C2 ?.mgéj

If m — oo, the lefthand side of the above inequality tends
to zero, hence T’ converges in probability by cauchy
criterion. Now part (i) shows that T, converges a.e.

Theorem 3.Let (X, , k2 1} be an array of rowwise ND
random variables with sup, IX, | < ¢ < oo for every n and
EIX,IF,, )]=0,m21, whett F, = 6(X,,...., X,). Then

i) Th= =1tk X converges a.e. for each n.

i) If Ym1 exp [ —E2

4c%4

] < o for every >0 then:
A

lim
n ey o8

n
Y, i Xu=0. ae.
£=1

Proof. (i) follows by Theorem 1 and 2.
ii) By Lemma 4 we have:

T Pl

n=l

”n . . .
Y anXuw>el<2 Y exp (€2 ) <]
k=1 4c*A,

nml

Theorem 4. Let { X, n21} be a sequence of ND random
variables with IX | < ¢ <o g.¢. Then

D) If limp w3 5 | @ =1 , (0<1<o0). Then for every f>0

Iimn..;..n'pZ'k’,la.*X¢=0.a.e. 3)

ii) If O<a,,<Bn?, k<n for some 0<B<eo and f>1/2. Then

ll'Inn-booanl G'*Xk=0-a-e~ (4)

Proof. By Lemma 4 for every £> 0 we have:

i exp [-—L E£7  J<on
4?3 b at G

na=l n=1

> Pln? 5”‘_, aXd> €]1<2
k=1

and
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]

Z P[IZ an Xd > €] < 2 2exp [-

n=1 n=1

22;: -1

<22exp[ 82”2'8 ENT 1< oo,
4cB

n=1

Now (3) and (4) are true by Borel Cantelli's Lemma.[]

Corollary 2. Let {X , n>1} be a sequence of ND random
variables with IX | < ¢ < oo g.e. for each n. Then -

DIf Dk exp [- 2 1< for every £>0 or

4cAn
A =0 (In(n) then:

limnseo Y k=1 GiXi=0. ace. )
iIfS,= 2=le, then for some a>b
limpseo n V(I P2'2 (n))S,=0 ace. ©6)
iii) If Y 4= 1 4% = O (n™® for some o> 0 then:
liMasee Y k=1 GiXe=0. ace. D

Proof. By Lemma 4 and part (ii) of Theorem 3 we obtain
(5) and (7).
To prove (ii) see Chow (1966).[]

For uniformly bounded sequence of ND random
variables we have the following example.

Example. Let {X , n>1} be a sequence of ND random
variables with P[X = 1]=1 - P[X = -1] for n>1. Then for
some §>(1/2) ‘

ZXk—O a.eO
nf i1

lim L.
n—>oo
Theorem 5. Let {X n21} and {U, n>1} be two
independent sequencesand {X n>1} beasequence of ND
random variables with IX | < ¢ a.e., E[X|F 1= 0 for

every n21 and (U, n21} is a sequence of mdepmdent
random variables. Leta_be an array of non-negative real

numbers such that ¥ 7 a3j=0 &™) for every B> 0.

Then Y01 X+ f (Us) converges a.e., when fix) is a
nonnegative, monoton function and bounded by M.
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Proof. Let Y = X iU ), we know that by Theorem 1 in
Lehmann (1966) if X and Y are ND and U and V are
independent random variables and independent of X and
Y then for every measurable, nondecreasing funtions 4
and g, KX, U) and g(¥, V) are ND random variables.
Thus {Y , n=1} is a sequence of ND random variables
and we have:

Eexp[hY ] = E[E[exp[hX f(U )] U 1] <
Eexp[h2c2M?)= exp[**M?].

Thus by Lemma 4 for £0

Pl 2 aw XHf(UD) > €] < 2exp [- —E2],
aM C2An

hence Theorem 2 completes the proof.[]

Conclusion
Let {X, n21} be a sequence of independent
uniformly bounded random variables, then the
assumption E [X | F_ 1= 0 can be replaced by E(X )=0
and all the above results will be true in this case.
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