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Abstract
There has been extensive work on the existence of periodic solutions for nonlinear
second order autonomous differential equations, but little work regarding the third
order problems. The popular Poincare-Bendixon theorem applies well to the former
but not the latter (see [2] and [3]). We give a necessary condition for the existence of
periodic solutions for the third order autonomous systems. This may become useful
in further investigations. Our claims are proved and supported by certain examples.

Introduction
We consider real three dimensional autonomous
systems, %

=P3 (X,)?az)

=z+ Q3 (x,y,z) (1)

AR R|E BB

=-y + R3 (x,y.2),

where P (x,,2), @,(x.y.2) and R (x,y,z) are homog?neous
polynomials of degree three having the following forms:

Pxyz)=ap +ax’y+axy+ay +axf +axr+az
+ay? +ayz +ayxy: ‘
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0.(x32)=b) +b X’y +bxy’ + by + bxr + b’z +b 7
+b,yZ + by’z + bxyz

Rxyz)=cpl +c Py +cxy +cy +cxf +c Xz +c 2
+ )7 + Y’z + cxyz.

Obviously, the periodic solutions of the linear system
are periodic with orbits which are circles with centers on
the x-axis lying in a plane x = constant. Our approach is
to assume that the full system has a periodic solution close
to a circular orbit of the linear system in the plane x= 0.
Therefore, we use the implicit function technique to
establish the necessary condition in order for the solution
of (1) to be closed in the neighborhood of the origin. The
method which is used here is similar to Loud’s [1].

Let x(t,E), y(1.E), z(1,£) be that solution of (1) which has
x=0, y=0, z= §£>0) ar t=0. After a time approximately
2, this solution will have made one cycle around the
origin and will reach the point (0,0,§) provided that the
following equations are satisfied:

F(t, &=xQ2r + 1,.6=0
Gz, O=y2xm + 1,5=0 "
H(t, E=z2n+ 1,6) - £=0.
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If we solve G(7, §= 0 for Tas a function of £ for small
&, say 7= ¢(&), we have that the time of return is 21+ ¢(&).
We then compute

J()=F( (). &), J(&)=H(S) S)

We find that the position of return is x = J (£), y=0,
z= €+ J,(€). Thus, the solution curve is closed if and only
if J(§=J,5)=0.

We now proceed to investigate the asymptotic behavior
of J (&), J,(§) as & — 0. This will be done by computing
the first three derivatives of J (&), J,(§) at &= 0. Since
x(t,0) = y(t,0) = 2(t,0) = 0, we have F(0,0)= G(0,0)=
H(0,0)= ¢(0)=J (0)=J,(0)= 0. The first derivatives of F,
G and H at (0,0) are given by
F(0,0)=x(2m0)=0 F0,0)= x/2m, 0)

G (0,0)=y12r0)=0 G(0,0)= y42m, 0)
H(0,0)=z72r,0)=0 HL0,0)= z/2x, 0)-1.

Here, the prime symbol denotes differentiation with
respect to ¢. The derivatives of x,, y, and z, satisfy

2= 3apx + L+ ay(xyz + Xy 2 + XYz
Y= 24+ b x4+ by(xyz + XYz + Xyz))
2= Yy Dokl + Oz + XYz + xyzy)

with the initial conditions x,=0,y,=0and z= 1 at=0. If
we set &= 0 in the differential equations, they become

X' {t0)=0, ¥ {t0)=21,0), 2’ {1,0)= -y(£,0).

With initial conditions, we obtain x ’g(t,0)= 0,y"°(+.0)=
sin ¢, 2{1,0)= cos t. Hence,

F(0,0= G0,0)= H/0,0)=0.

Therefore, to determine the behavior of J (£) and J,(§)
near £=0, it will be necessary to compute higher derivatives
of F, G and H. The second derivatives of F, G and H at
(0,0) are as follows:

F_(0,0)=x"1(2%,0)=0 F¢(0,0)=x’¢(21t, 0)=0 Fce(0’0)=
X&(Zﬂ:, 0)

G (0.0 )= y"(2m,00=0 G {0,0)= y'42m,0) = 1 G40,
0)= (2, 0)
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H_(0,0)= z(2m, 0)= 0 H_(0,0)= 27427, 0) = 0 H,(0,
0)= z,42m, 0).

the derivatives x,

Obviously, -~

Vg and z,, satisfy

X'0= 3a,(x 420 %) + ... + ay(Xpyz + XYz + XYz,
2y + 2yz, + 225y,

y’eﬁ:t: Zg + 3b0(x55x2+2x2;x) + ..+ by(Xyz + Xy, + X2,
+2xy,z + 2xy€zz + 2zx§y§)

2= Ve + 3C (XX 200 X) .+ Cyf X,y + XY 2 + XYz
+ 29,z + 2xy,z, + sz;yg).

The initial values of Xeer Vee and Zye at 1= 0 are zero.
Setting &= 0 in the above equation, we obtain

X g= 00 Y= 20 2= Ve €)

The solution of this system with the given initial
conditions is:

xﬁ(t, 0)= Vet 0)= zcc(t,O) =0,
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From this, we conclude that F el 0,0)= G “(0,0)=
H,(0,0)= 0. The third derivatives of F, G and H at (0,0)
are computed in a similar manner and we have:

F_(0,0)= ¥y (2r,0)= 0

H_(0,0)=

x(2m0)= 0 G,_(0,0)=
272w, 0)= 0

F_{00)= x”(210)= 0 G_(0,0)= y~"2m0)= 0
H_(0,0)= 2" 2m, 0)= -1

F (0,0)= f’c¢(2¢,0)= 0 G4(0,0)= y'f2m,0)= 0
H (0,0)=z"(2m,0)=0

Fed0,0)= x4 (2m,0)= 0 Gy(0,0)=
Hc¢5(0,0)= 2555(211:, 0).

y¢¢5(21t,0)= 0

Now, the derivatives of Xeeer Yere and z,, satisfy

X = 6a, 0, +3 6a.x°y, + 6axy’, + 6ay’; + 6axz’ +
6ax’z,+6a2’ +6a,y2 + 64y’ z, + 6axyz, + ...

= Zpge t O X’ +6b X%y, +6b,x )% + 6.y +6bx .2,
éb,x’:zg +6b.2% + 6b,y 2"+ 6by 2, + 6b Xy 2z + ...

Zyee= Ve + 6C X%+ 6C, X2y, + 60X, + 6., + 6c x 2+
6cx°z, + 6c2° + 6C,y,2° + 6,y 2, + 6CAY 2, + ...

y
+

and z,,, at = 0 are zero.

The initial values of x et

see Ve
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Setting &= 0 in the above equations, we shall obtain

X gy = 6a,SiN’t +6a,C0s* + 6a,sin t COs’f + 6a, sin® f cos ¢

Y ger= Zgge + b,SIN’t + 6b COS’t + 6b,sin 1 cos? + 6b, sin’t

cost

+ 6¢,sin’t + 6¢,c0S*t + 6,sin £ COst + 6c, sin’t

2 g™ Ve
cost

or

s

Xeer

= % (3a,+a)sint+ %(3a6 +a)cost+ %(a7 -a,)sin3t

+ %(a6 -a,) cos 3¢

Vg + Ve = % [3(c,-bg + (c,-bIsin t + %[3«6 +b,)+
¢, + b,]cos¢ +32—[c7- ¢, + 3(b, - by)]sin 3¢ +%[c6-c8 +
3(b, - b,)]cos 3t

Zg + 2= %[3(1;3 +c)+(b,+cylsint+ %[3@3 -by) +

c,-bJcost- % [b, - b, - 3(c, - c,)lsin 3 + %[3@, “c)-
(b, - b,)Icos 3t.

Therefore,

Xep= (4, +2a,)- %( 3a,+a,)cost + %( 3a,+ay)sint- %(a,

- a,) cos 3t + %(a6 - a,)sin 3t

Vo= ?:t—t{[3(C6 +b,)+c, +b Jsint-[3(c,-b) +c,-byjcost)
- 1—36—[c7 - ¢, - 3(bg - b,)]sin 3¢

- 1—36'[% +b,-c,-b,Jcos 3t + %[cs +b,-c,-b,Jcost

2= 3.4L {[3(c,-by) +c,-b,sint + [3(b, + c) + b, +
¢ Jcost] + % [b, - b, + 3(c, - c,)]sin 3¢

- i%[3@, -¢,)- (bg-b,)lcos 3t + %{3@7 -¢,)- (b,- bycost.

Hence,
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F e d0,0)= x§€¢(21t, 0)=0

G 0, 0)= y 2, 0)= 3_2"_[3(176 -¢) + (B, - c)]

Hyg(0, 0)= 2,27, 0)= 37"[3(1)3 +c)+ (b, +c).

The fourth derivatives of F(7, £) are given as below:

F_(0,0)= x""(2m, 0)= 0, F, (0, 0)=x; (2m, 0)= 0,
F_:40,0)= xg(2m, 0)=0,

F (0, 0)= x5z (21, 0)= 6, F (0, 0)= x,,(2m, 0)= 0.
We have now enough information to make statements
about the functions ¢(&), J (£) and J,(£). From the above,

we realize that F(1, £), G(t, £) and H(7, £) have the
following expansions near (0, 0):

F(1, &)= %aGﬂ," +...
G(t, &)= 16+ %Gm(o, 0)&+...

H(t, &)= - %135 + éHm(O, 08 +...

where the missing parts are of the order4 (the combinations
of and &). Solving the second equation for Tas a function
of &, we find

T= ) =- écﬁt(o, )&+ ...= O(?)

for small . Substituting this expansion for F(7, §) and
H(7, &), we obtain

J(E=F(9&). &)= 0(&)
T{&)= HIHE). &)= ¢ Hyyf0, 0081+ O,

Therorem 1. A necessary condition that the system (1),
have a closed curve solution in the neighborhood of the
origin is that

3(b,+c)+ (b, +c)=0. C))

Moreover, the necessary condition for having a periodic
solution of period 2 is:

3(b, - ¢;) + (b, - ¢,)=0.
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Proof. The condition (4) is equivalent to H &, (0,0)=0. If
H,,(0,0) #0, it is clear from the formula for J(&) that
J(&) # 0 for small £ # 0. Hence, there will be no closed
curve solution for (1) in some neighborhood of the origin.
Now, if we assume that (1) has a periodic solution, then
the period of the periodic solution is given by T= 2% +
(&), where §(&) is determined by

7=§(§) < G(7,§) =0.

Furthermore, for small values of & we have,
¢(§) =- é Gﬁg(ot 0)&2 + 0(&3)

Hence, the asymptotic behavior of the period of the
periodic solution x(z, &), y(t, £) and z(z, £) as § — O is given
by

T(&)=2n - ’4113(b6 -¢) + (b, - ¢, )]E + O(&). 5)

Thus, a necessary condition in order for the solution
curve to be periodic of period 2x is:
3(b,-c,) + (by-c,)= 0.0 6)
Periodic solutions for nonlinear third order differential
equations have not been investigated extensively. In the
next two examples, we consider two such problems and
verify the necessities outlined in Theorem 1.
Example 1. Consider

(A)x"+x+axx*+axx?+(a +a)xx"=0,

which has a periodic solution of period 2x, x=sin t. If we
write (A,) as a system with x"= -y, y’= z, we obtain:

xX'=-y,y'=z22=-y-ay’-ay? +(a +a)xyz.

Thisis (1) withb,=c=b,=c=0and b=c,=b=c=
0; i.e., the necessary conditions (4) and (6) are satisfied.

Example 2. Consider

(A2) %—+ (1+3x2) %. 3x (%)2 +x3=0.
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Again if we write (A2) as a system withx'= -y, y'= z,
we find

@-=-,.¢-y-=z,92.=- - 3x2y - 3xy? + x3.
& ydt " y y y

Taking the transformation x=x + z (or x=x-z), we find:
find:

%=-x3+3x2y+3xy2-3xzz~3xz2+3zy1+3z2y-z3+

%_—.-y+x3-3x2y-3xy2+3Xz2+3xzz+z3-3zzy-3zy2
-6 Xyz.

This is (1) with all coefficients b,=0,i=0,1,...,9 and
¢,=1,c,=-3. The problem (A,) has a closed curve solution
and the necessary condition (4) is satisfied. In fact, the
problem has a periodic solution provided that £ is
sufficiently small. The period of the solution is governed
by:

TE)=2n - ’_:. (-3)E2 + O(E)=2m + 3_:{2 + 0.
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