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Abstract
This paper considers a class of one-dimensional solidification problem in which
kinetic undercooling is incorporated into the temperature condition at the interface.
A model problem with nonlinear kinetic law is considered. The main result is an
existence theorem. The mathematical effects of the kinetic term are discussed.

1. Introduction
Mathematical models of solidification including
interface kinetics effects have been considered for quite
some time (see[1], and references therein). This class of
free boundary problems, which arises in a number of
physical situations, is that of nonequlibrium problems, in
which the phase-change temperature is dependent on the
velocity of the front at which the phase-change occurs
(for more physical problems, see [3]-[5]). Here, we study
amodel problem with nonlinear kinetic law at the interface
in the one-dimensional case.
Specifically, let the curve x= s(¢) be defined as the
interface that separates the liquid and solid phases. We
may write the system of equations as

2
UL _ 91 i 0 = f(0,0/0 <x<s(t), 0<t <T}, (1)
ox2 ot

2
Uz 92 i 0 = f(x,1)ls(t) <x<1,0<t <T},

2
ox2 ot @

and on the interface x= s(¢) as
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u=u,= g, (V(t)), ©))
dwy M o V1), @
ox
5(0)= b, 0<b<1, &)

These equations are subject to the initial and boundary
conditions

u(x0)=@(x)0<x<b, (6)

u,(x,0)= @,(x) bsx <1, )]

ufi-1, )= f(t) 20 (i= 1,2), ®)
where

V=20 ©)

is the propagation velocity of the free boundary.

For the discussion below, we will also denote problem
(1-9) as problem (p). This problem has been widely
studied and the mathematical results are fairly well
understood. The model in which g,(V(t))=€V(t), (€ is
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constant) and g,(V(¢))= -LV(1) has been consideredc by
Xie Weiging in [1]. The one-phase and one-dimensional
problems are considered by Frankel and Roytburd in [2].
Our objective in this paper is to understand the
mathematical effects of the kinetic term for the above

model problem in the classical framework. The results .
here parallel completely the results that have been proved

for the standard Stefan problem.

In the next section we collect the assumptions on
kinetic functions and formulate the main result. In the
following section we derive an integral equation for the

problem (p) which is the analogous equation for the -

classical Stefan problem [6]. Finally we prove that the
integral operator is a contraction for small times and thus
we establish the local existence for a solution of the
problem (p).

2. Statement of the Problem ‘
Wenow introduce a set of rather general requirements

on kinetic functions g,, g, and initial and boundary

conditions.

We assume that

(H1) g, is a continuously differentiable function on
0,1),and Ig | <M, lg" IS M, Ig" | < M,

(H2) gi’(u) is a continuously differentiable and
increasing positive function and for any given u, lg5'(u)!
< Kandlg, ')l < 5 voT, where o, isa very small number
in the interval (0,1);

(H3)f(1) € C{R) N L*(R")(i=12), ¢,(x) € C'[0,b],

o(x) € C'[b, 1].
The main result of this paper is the following global
existence theorem.

Theorem 2.1. Consider the problem (p). Suppose that

the kinetic functions g,, g,, and initial and boundary data
satisfy the assumptions in (H1)-(H3). Then there exists
a solution of the free boundary problem (p).

We say that u (x,t), ux;t), s(t) form a classical
solution of (1-9). It satisfies

@) seC¥0,7).

Denoting by Q, = Q = (0,1) x (0, T) and by u, the
restrictions to Q, of u(x,t),

Gi) ugxy) € CQ) N C¥ (Q),

u, € C(Oi\fx=i-1}, i= 12,
and (1-9), the functions ¢(x) and f(t) (i= 1,2) in (6-8)
satisfying

f(t) e C{RY) NL*(R), ¢ (x) € C'[0,b], ¢,(x) € C[b,

1],
and the consistency conditions
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@, (b)= (Pz(b),fz(ﬂ)= @,(1), £,(0)= 9,(0).

The proof of the theorem 2.1 contains two major
ingredients; in the next section we reduce the problem
(p) to an equivalent problem of solving a nonlinear
integral equation of Volterra type foru, A0 (i=1.2),and
in the last section we prove that the integral operator is
a contraction for small times.

Reducing the Problem (p) to an Integral
Equation
In this section we reduce the problem (p) to an
equivalent problem of solving two nonlinear integral
equations of Volterra type for u.(s(t).t) (i= 1,2).

Lemma 1. Letp(r) (0 <t <o) be acontinuous function and

let s(t) (0 <t <o) satisfy a Lipschitz condition. Then, for
every 0<t<o

lim 2 { P(1) K(x,t; 5(7), DdT =

x—)s(t)o-()a
'—l—p(t)+/ p(t)[iK (x, t; 5(r), t)] dr, (10)
2 lo ox x=3(f)
where
K(xt; ¢, 7)= 1 p"(x-ﬂ \

27:"2 )" \4(1 -‘l')’

Proof. We shall first prove that for any fixed positive
0>1, the integral

4

=] 250 K@, 6 s(t), 1)dr
2(-1)
-8
RUALA0) 2B K 600, 1 500, D e an
2(t-7)
-8
satisfies the inequality
i oot - < 45 @2
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here and in what follows, various constants which are
independent of x,¢,8 will be denoted by A (A may depend
on o). Writing /= I, + I,, where

I = [ 8’%{%’ K (x, £ 5(z), D) dr

t

SO-5O k@, 1: sz, 7) - Ks), 5
2(t-7)

+-8
5(7), 1)] dr.

Then by the assumption Is(z) - s(7)l < Alt-1l, we get

t

< | —#_<48" (13)
0"
-8
To evaluate I, we introduce
=] 229k @, 6500, vy r . 14y
2(t-1)
-85
Then
Ji-h= ( x50 K (x, t; 5(7), 7)
J 2t-1)
1-5
[ - oxp. |- s - 0P|\
\ | 4en |
Similarly by {6], we obtain
|J, -1 <AS™. 15)

Now by substituting z= (#-7)/(x-s(t)/* in (14) and noting
that x-s(¢)> 0, we get

;8

’ z ¥ exp [‘—1-] dz where &'= &8/(x-s(t) 2. (16)
o

Az

n=-1
4T
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As x = s(t) + 0, & — oo and consequently, J, — 1/2.
Combining this result with (15) and (13), and recalling
that I= I, + I, the relation (12) follows. We shall now
complete the proof of Lemma 1 with the aid of (12) and
[6]. Putting

t

o 2Dk, 1; 5(2), 1) o
2-7)

Li=

-8

!

p @ 05D k (5, 1 5(0), D e, an
-7

-8

we claim that

lim sup
x—H+0

Li-Lp (t)l <48+ ALublo® - p o)
2 t- <t
(18)
Indeed, this follows by writing in (17), p(7)= p(t)+

[p(7) - p(t)] and using (12) and [6]. Observe next that the
function

pO)——=K (x,1; 5(1), D) dr
2(t-1

t-8

p (™) %i)g—) K (s(f), t; s(7),7)dr (0<d<t)
t-T

Satisfies the relation

limL;=0
_x—-N(f)

Combining this remark with (18) we get

sup
3

Li+Ly) - Lp (| <46 bl -

Jim oL -Lp 0 <43 sALublp - o).
Since the left-hand side is independent of §, and the

right-hand side can be made arbitrarily small if § is

sufficiently small, we get



Vol 10 No. 2
Spring 1999

Jim sup @i+ Lo -

Loo)-
which i§ precisely the jump relation (10).
We shall now reduce the problem (p) to a system of
integral equations.
We introduce Green's function for the half-plane x>
0,
Gix,t; . o=Kx, t; §, 1)-K(-x, 1, £, 7).

Suppose that u,, 4,, s form a solution of (p) and let

vlt) = 3"2 50, 0, vi= 22 i Leo.0 (9
Using [6], we get
w(x, H= j G (x, 1; s(m), 7 [v(7) - g, (V(®) VD) de
0

- ] gV ('r))%%(x, t; 8(z), 1) dr 20)

]

+,[f1(f)%%(x,t;0,r)df+, )Gk, 65,5048

0

Integrating Green's identity
2¢ -G-) 2 Gu=0,
14 BC o

- over the domain 5{7) < { < 1,0< £ < 7< ¢ - e and letting
€ — 0, upon using (2), (3), (7) and (8), we get

w2 (x, t)={ G(x-1, 5; s(0) -1, T [g1 V@OV ()-vAD)]ar

0

J g (V(':))-—C-(x-l t; 5(7) -1, T)dr

’ 1
+ [ ¢2 (C)G (x 11 {'1’ 0) dg (21)
&
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- sz ('t)%% x-1,40, t)dr

=R1+R2+R3+R4.

We proceed to differentiate both sides of (21) with
respect to x and then take x — s(2) + 0. Using Lemma 1,
we find

tim 21— L) Vo - v )]

x—=d0+0 Jx

22

] V)V -v2 (1-')] (s(t) 1, t; 5(0) -1, Dydr
]

In order to evaluate lim 9R; (i=2,3,4) we use
x40 Jx

N(x-1,8; &-1, 0= K(-(x-1),t; -1, 0+ K(x-1,¢; {-1, 7).

Using the relation G,= -N, we get

Q‘Sﬁz -g1 (V(O) N(x'l’ 5 S(T) -1, 0)
29

I g1 V@) NGx-1, t; 5(1)-1, 7)dr. 23)
0

Similarly,

9R3 _ 9, 1) N@x-1, 15 0, 0)
ox

+J o (ONGa-L, 1; &1,0)d ¢, %
&

and

%‘;ii =fONG&-1,1;0,00+ | f(DNGL, 8,0, 7)dr.
ip

25)

Combining (22), (23) {24y and (25), we obtain from (21)
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v,(t)=2[f,(0) - @,(1)] N(s(t) -1, 1, 0,0)- g](V(t)}V(t) and by (4), and (5) we obtain
'Zgi(v(o)) N(s(t) ‘11 t; S(T)°lr O) I
sH=b+ f &' 7y - (D)) dr. 28)
o

[&’1 40)] V(T) (S(t) -1, &, s() -1, Ddr
1]

[ v2 (T) (S(t) -1, 15 5(7) -1, T)dr (26)
0

-2’ g V@) NG - 1, 13 5(7) -1, DT
. .

+2 J & QN 6®-151,0d
o

t

+ { H@N (G) -1, ; 0, 7) dr.

Similarly, we get [6]

v,(t)= 2[,(0) - £,(0)] N(s(t), t; 0, 0)-g,(V())V(1)

]
+2[ (pl' ONGW, L0
0

-2[ fL@N GO, 0, 1 dr

o

+2g1 (V(O) N(s(®), £; 5(1), 0) 03))

+2j g, (V@) N (s0), £; 5(2), ) dt

[+]

+2I i (T) (s(t) .0, Ddr
0

-ZI a V@) V@) _aa_;c_;_ (6, 5 5(0), Ty dr
0
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We have thus proved that for every solution u,, u,, s
of the system (p) for all t<o, the functions v (¢), v,(t),
defined by (19), (for 0 <r <o) satisfy the nonlinear
integral equations of Volterra type (26) and (27), where
s(t) is given by (28).

Conversely, suppose that for 6> 0, v () and v,(t) are
continuous solutions of the integral equations (26), (27),
for 0 <t <o, which s(¢) given by (28). We shall prove that
u,(x,t), u,(x,t), s(t) form a solution of (1-9) for all t<o,
where u(x,t), u(xz) are defined by (20) and (21),
respectively.

First one can (see also [7]) easily verify (1), (2) and
(5-8). We next differentiate u (x,t) with respect to x and

take x—»s(1)-0. Using [6] we find that oy (s( 1), t)=v(1),

we also differentiate u,(x,1) with respect to x and take
x—»s()+0. Using Lemma 1, the previous evaluations of

%R_i for i= 23,4, and the integral Equation (28), we find
X

at QﬂﬁgﬂLm (). Since, by (28), v,(1) - v (t)=
29

8,(V(1)), (1.4) follows. Thus it remains to prove that
ufs(), )= us(t), t)= g, (V(1)).

Integrate Green's identity (with G(x, ¢; {, ) and u,) in
the domain 0<{<s(1), O<€<1<t-£ and let £-»0.
Comparing the integral representation obtained of u, (x.7)
with the original definition of u(x,t) by (20) (with

%—(s( 1), T)= v,(7)), we conclude that:

] [ui(s(), 1) - g1V Ge &, t; 5(2), D dr=0
]

if O<x<s(1), 0<t<o, by [6], we get, u (s(1), t)= g,(V()).

We also integrate Green's identity (with G (x-1, ¢,
€-1,7) and u,) in the domain 5(7) <{<1,0<e <7<t-gand
lete—0. Comparing the integral representation obtained
for u,(x,t) with the original definition of u,(x.t) by (21)

(with %’-2% (s(7), T)= v,(t})), we conclude that:

[ [u(s(2), ©) - g1V ()] G¢ (x-1, 1; s(7)-1, 7) dr=0
ki
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if s(1)<x<1,0<t<0.
Taking x—s(t)+0 and using Lemma 1 and [6], we find
that u(s(1), t)= g (V(t)). We have thus proven:

Lemma 2. The problem (p) for <o is equivalent to the
problem of finding a continuous solution v (¢) and v,(r)
for the integral Equations (26) and (27) (for 0 <t<0)
where s(1) is given by (28).

4. Existence of a Solution of Problem (p)

In this section, we establish the existence of problem
(p). We shall show that a version of the integral Equations
(26) and (27), where s(t) is given by (28), defines a
contraction mapping for O0<t< oif ois sufficiently small.

4.1. Integral Operator
We now introduce the integral operator

t
[w0}= iV @) - 281 (VOIN(sO)-1, £; s(v)>-1, 0)
vot)
} gl(V(f))V(f)-—(S(t) -1, ¢; s(2)-1, Tdr
0
( V2(r) (s(t)—l t; s(0)-1, Tt
fo
-2 , &V EWGO-1, 1; s(0)-1, T)dr
+2 { (p{({,’) N(s@)-1,5, £-1, 0) al +2 ,
I s
where s(1) is given by (28).

LetTv denote the nonlinear operator on theright-hand side

Shidfar and Ivaz

T )

fVOW(E) + 2 , P (ONGE), £; &, 0)dl -2 ’ FONGO), 1, 0, 7)dr
1o 0

+ 281(V(©0)) N(s(), ¢; s(7), 0)+2 {

, vl(T)QQ(s(t) £, 8(z), Tt - 2 /
0

0
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of (29). We shall show that the transformation
=Ty

isacontraction of an appropriate subset of C[0, o] for some
o and therefore has a unique fixed point v= Tv.

4.2. A Ball Mapped into Itself
In the Banach space C = C[0, 6] with uniform norm, we
consider the closed ball

vi()

vaAt)
i= 1,2} with M to be specified later on. We will estimate
separate term (29), by H1, H2, we find

Byo= {v =[ } Wie Co, [IVl|= sup oo V(1) < M,

V(1)g (VIO <5 M,Y5, = C,,

¢

S (VE@ONGO), t; (o), Dde

(]

sV(@)V(7) -—(S(t), t; s(7), T)dt

(29

F1@ NG@-L, £ 0, D)t

10 e
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and the other terms in (29) are estimated by H1, H2 and
using the elementary inequality ye” < const. for y> 0, we
note only that 0< {<b and b<s(t). Thus, we obtain

w 1<(C, +C,| o]l v + cJ[r{” VB + C 4G+ CAG +C MG
+C),

where the constants C,, C,, C,, C,, C,, C, are simple
combination of 7, b, L, M, M, M,K.
b

{n a similar fashion, we find that

v,}<(C, + D, & + D, 5+ DMVG + D 4G + D, o] ¥+

2] w2

wherethe constants D, i=2,3,...,7 are simple combinations

of b,M,m, My, M ’, i

@V O)V O a1V OV “(O))+2 ’

0

V1 (T)

-2V @)V (r)

Shidfar and Ivaz

b
70

-2} O (50), 15 0, 7) - N (s (), £0, D)de + 201V OWG ), 5, 5 (D), 0)
2V O (s 0, 1 5°@), 0) +2 }
BN O, 650, D+ 2 G060, 65 @, 9

(s ©. 6 5@, D=2 (gl(V(r)V(r)

VOV - @V @) V) - 2 @VOINGO)-1, 1, s(7)-1, 0)
21V OGO -1, ¢, 5°(7) -1, 0))
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If M is now taken to be
M=2C,

then for

VG <min {(C2 gl + C3 Ifi l +C4 +Cs +CeM + Coy' M,
2

D2+ D3+ DM+ Ds + Dg "?’;" + Dy "fz’")-l M,
2

the ball B,, _is mapped into itself.
4.3. T is contraction on BM,U
t
Let, w= Tv, w= Tv’, where v(1)= Vi) and v{t)=
vr)

[ vl:(t) }, then
Vz(t)

t

&V (DN s O, &; 5(7), 0)

0

(s o, 501,17

@), 657 (1), Ddr
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-2V @)V (T)

m+%+%+%+%+%+m}
i+ Zo+4 23+ Za+Zs+ Zg+ Z7

The estimations are based on the mean value theorem
and H1, H2, (28). First we note that

AN/ =[N(s(1), t; £, 0) - N(s'(t), t; £, 0)) =

m Is(t)-s" (O <N, b +

I g3t Wat) -vi(z))dr - b - J g5 (A7) -vy(n)arl

0

=N, | J &' (D) - vi(D) - 85 W) - vi(D)) arl
0

I3
SNI]
l 0

< N; 61G ,

10

"Li;@‘ aAT) - vi(T) - vAT) + V(D) dT

r ¢

vo(1) - v, (D) + (1) - vl It

SN & W - vl o2

Shidfar and Ivaz

] (guv (T))V(T)——-(s ®-1, 1 s(1) -1, 7)
(s(t) -1, 4 S@)-1, ) dr
) 1 ’(vz('t) 3G (s 1) -1, 1 5(0) -1, D) @) 28 @) -1, £ 5°(0) -1, Dr
. ox ox
2 , ‘@;(V(r)w 6O -1, 5 5) -1, D) g V@) NGO -1, 1 s°(2)1, D) e
+2 ’ ‘((p;(C) (NGO-1, 6 &1, 0-N (@) -1, 1, {1, 0)) df
0

+2 ’ (FAT) N1, 150, T-N (°(0) -1, £ 0, ) ot
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where s is between s(¢) and s’(¢) and v is between v, () -

v (t) and v,(1) - v (7). Now we are able to estimate three
terms in (30):

b

W =2 I POWN @, 6 0)-NE@), 650Nl

b
=2l [ (O AN aQ} (31)
0

< gl N,Gib Iy - v I 6% =Ny llgl v - vl 6%

Similarly,
W4 < N3 lifyl iy - vl 652 (32)

Now, we obtain

Wil =lgi (V @) V) - g1 V) VO
=Ag1 VO a1 (V@) V'O -V Ol

< I‘—I%‘—/(Q W@ -V - onvel+ gV ' Olv @ -v ol

SMaM +M)lly-y No2=Nillv-v o2 (33)

Similarly,
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W4 = 21ANg1 (V(0)) - NG'®), £ 5°(2), 0) [1(V “(0) -
81 (VO < (N4 + Ns) v - v "Il o2 (34)

and

Wil = 2l[

4]

H

ANg, (V (7)) dt - j NG@, £ 5°(0), 7) [v(7)

]

-vi(T)} dtl € (Ne62 + N1o) Iy - v 1l o2 (35)

In a similar fashion, we find that

t t

Wel =2 [ G: ("), 1; 5°(%), 7) y(0)-

0 0

AGxvi (1) dr - I

vi(7)] dri € (N302 + Noos¥3) lv - v 1 o2 (36)
and
WA < Wioo2+ Nuo) liv - v 1 ol &)

wheretheconstantN,,i=4,5,...,11 are simple combinations

of 2,m, L, 5, My, M2, K, M> , where L _and K| are the
upper bounds of K_and N respectively.

Similarly, we obtain the same results for z,, i= 1,2,...,7,
such that

ZIST v -vH 62, 2l <(T 0,+ T, 0) lIv-vil 6~
(38)

The result in (31-38) yield the following contraction
estimate ITv - Tv I < Lllv - v’ I, where

L=max (N, +N, gl + N, If{l & + N0+ N, + N,0°

Shidfar and Ivaz
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+N,G +N,0"2+ N,0* + N, G* + N, 000", (T, + T, lipJl
+T, N+ To+T,+ T+ T,0+T,6*+T,0*+T 0
+T, 0) 0'2}.

If o< 1 and such that

max {(V, +N, gl + N, Ul + N, + N, + N, + N, +N,
+ N, + N, + N, ) VG, (T, + T, lp]l + T, Ifi 14T, + T, +
T+ T,+T,+T,0"+T, +T,)¥6} <1, 39
Then TisacontractiononB,, . Therefore, ithasa fixed
vi{)
v2 ()

existence is proved.

point v (t)={ } in B,  which is unique. Thus the
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