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Abstract

Let Q be an open connected subset of the complex plane € and let T be a bounded

linear operator on a Hilbert space H. For A in Q let PN AL

) be the orthogonal

projection onto the null-space of T-AL. We discuss the necessary and sufficient

conditions for the map 7n~—>PN(MD

Schmidt process is also given.

Introduction
For a connected open subset Q of the plane and n &
positive integer, let B_()denote the class of operators

T defined on the Hilbert space H which satisfy

(@) Q Co(l), the spectrum of T,

(b) ran (T-@) =H for ® in Q,

©V e ker (T-w) =H, and

(d) dim ker (T-0) = n for ® in €.

The space B () has been introduced by Cowen and
Douglas [1]. Curto and Salinas [2] also study this class
of operators from a different point of view. While
studying these operators, Curto and Salinas [2] come

across conditions for which P projection

ran (T-®)
onto the range of T-@ is a continuous function of ®. In
particular they prove the equivalence of (a) and (c) of
Theorem 2.1.

In the present article we give a simpler proof of ‘their
result using elementary techniques. We also prove more.
We show that the analytic properties such as continuity
of the projections have algebraic implications (part @
and (e) of Theorem 2.1). The proof of the equivalence of
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~ to be continuous on Q. A generalized Gram-

(a) and (d) of Theorem 2.1 takes a bit of work. However,
it is interesting in the sense that it shows something of
an analytic nature can be described entirely algebraically.

Finally, we consider idempotents E|, ..., E_ that
are pairwise disjoint (E;E; =0, i#j )and decompose the
space (E,;+ ...+ E =1I) and use a kind of Gram-
Schmidt process to replace them by orthogonal
projections P, ..., P, having the same property as
E,..E, (P;P;=0,i#,andP, + ... +P =D.
Moreover, there is a common invertible operator 8
which satisfies SE, =P,S for i = I, ..., n. The
existence of such an invertible operator is useful in
orthogonali_zing a given basis of a vector space.

1. Preliminaries. Let H be a complex separable
Hilbert space and let B(H) denote the class of all
bounded linear operators defined on H. For T in B(H) the
range and null space of T are denoted by R(T) and N(T)
respectively. We also set

| m(Tym inf| | Txll: xNCT), lixll=1 }.

Note that m(T) > 0 if and only if R(T) is closed. If

M is a (closed) subspace of H then the orthogonal
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projection onto M is denoted by Py -
2. Continuity of the projections. In this section we

would like to prove the following;:
2.1. Theorem. Let Q be a domain in € such that

m(T-A) > O for all A in Q. Then the following
conditions are equivalent.

@A—> Pyt 18 continuous at A ;.

(b) A = m(T-A) is continuous at A .

(€) A = Py, is continuous at Ao

(d) For every n > 1 we have N(T-A )" CR(T-A ).

(e)For every n > 1 we have N(T-A,) R(T-A,)"
Proof. (a) = (b).
IfA =P ey is cotinuous at A, then there exists
8>0 such that || P nr-x~Pnera,) <1 whenever
| A-Aq | < 3. It follows that I - (Pycryy - Py, ) and
I- Py, - Prray) are invertible. Hence
N(T-Ag) + N(T-M)*=H
N(T-A) + N(T-A ) = H
Suppose x is a unit vector,x IN(T—L);then x=y+z,
yeN (T-A) and zLN(T-A ;). Note that z#0. Now

Il (TR Il = 1| (T-A)z 1l 2 1 (T-A )zl = A=Al z |
2 m(T-Ag) lzll -1 A=Ag | Izl

Since z = x-y we have

Iz = Il + liyl® =1+ Iyl* 2 1.
Therefore
H(T-L)x || 2 m(T-A ) - [A=RAql
Taking the infimum over all such x we have
m(T-A) 2 m(T-A ) - | A=A |.
or
m(T-A o) - m(T-A) S TA-A |
Similarly
m(T-A) - m(T-A o) S TA=Ag |
Hence
1 m(T-A) - m(T-A ) | STA-RAy |
We have now established (b).
()= ©
We know by [3,Chap. 4] that
PRy — PR(T_M) l| £ max {c,d}, where

¢ =sup {dist (y,R(T-XO)):y € R(T-A), |iyli = l}and
d = sup {dist (yR(T-D): y & R(T-A ), Iyll = 1}.
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Every vector is R(T-A) is of the form (T-A)z, z
IN(T-X). Let
= (T-Ag

y=——""_andx

- _ (T')\- ())l
I(T-A)el

NETR
Then

[ A=Ag Lllzll =}l (T-Mz - (T-A gzl = | T-Mz ||| y-x |l
2 || (T-M)z [ dist (y.R(T-A )
> m(T-A) || z || dist (y,R(T-A ).
Taking the supermum over all y in R(T-A), llyli =1,
we obtain that c. m(T-A) £ | A=A, |. Interchanging the
role of A and A, we obtain

P Rreray PRy I S 1A-Aq |

R B
m(T-A)  m(T-Ay) |

The proof of this part is also.complete.
©=@
Let x € N(T-A)". For A # A, we write

0=(T-ho)"x = [(T-A) + A=) "x

-y (1‘1 ) T AAg)™x.

k=0
It follows that

Arp)"x=-F, (] YT-AE A )™ x.
k=1

Therefore x € R(T-A) for A # A . Write

X =PrepayX =PraaX - Praa,X + PraayX

Letting A —> A, and using the continuity of
A > Pgry, we obtain that x = PR(T_M)X , from
which we conclude that x € R(T-A ).

The proof that (d) and (e) are equivalent is left as an
exercise.

We now show that (d) = (a). This is done by use of
two lemmas.

2.2 Lemma. Let E,F be idempotents
(E2 =E F’= F) with ranges M, N respectively, If
P,Q are orthogonal projections onto M, N respectively
then

I P-Qlls I E-F .

The proof can be found in [3] which is quite
complicated; however, we present a simple proof in case
N cM; this is done in the hope that a simpler proof can
be found for the general case by reduction to this
particular case.
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So assume N c M and decompose the space into N

® (MO N) & M'. With respect to this
decomposition
10A 1CD
E=(01IB F={00 0
000 000
Then
0 -C AD
E-F={0 I B
00 O

If we apply E-F to the vector z=0 @y @0 we
obtain

NEPzI?=lCy 1> +ly =)y 2=z

Hence {[E-F||>1. But P-Q is the orthogonal
projection onto M 0 N, so it has norm 1.

Therefore ||E~F|| > |IP-QIl and the proof is complete.

~ In passing we feel that it might be interesting to

know the relationship between an idempotent E and the
orthogonal projection with range R(E). This is done
next.

2.3 Proposition. For an idempotent E, the
orthogonal projection P onto the range of E is given by

P=EEX(1- (E-E*?)™.
Proof. Decompose the space into R(E) @R(E)L.
With respect to this decomposition

J1a

E“[OOJ’

then

R ex_| 0 A
E fA*O’ E-E*=l 0

(E_E*)2=[—AA* 0 }

0 -A*A
But I -(E - E*)? =i_I+A%* I+A’?A] is invertible.
‘Also
EE*:[HAA(; 8] A simple computation now

completes the proof.
2.4. Lemma. Let T & B(H) have closed range and
satisfy
NT") CR(T) foralln > 1.
If there is an operator S such that TST = T then
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SN(T™) N(T™') for all n21. In
SIN(T) ©N(T™*') for all j 2 0.and SIN(TY <R(T) for

particular

J=0.
Proof. If y € N(T") then since N(T") < R(T) we
have y = Tx for some x. Now

T Sy = T"TSTx = T"Tx = T"y = 0.
To complete the proof of Theorem 2.1 we need to
prove (d) = (a). This will be done next.

d = (a)
Without loss of generality we may assume that
Ay=0. Note that since R(T) is closed

~

T: N(T)* — R(T), the restriction of T to N(T)*, is
invertible. We define

".

s=1T" on R

0 onR(M*’
It is easy to see that ST = I - Pyryy TS = Prrys

TST =T and STS = S.

For | A< A we define
[ISH

Sy =-A8)"'S= SU-1S)"'. We will show that
(T-ADS , (T-AD=T-Al and S, (T-ADS, =S, for

A< L.
I1SH

To prove these let | A | < —Sli Then
It

Sa (T-AD S, = (-AS) ™ S(T-ADS(T-AI) !
=(I-AS) ! (STS-AS H)(1-AS) *

=(-AS) " (S-AS2)IAS) !
= S A
We also have

(T-ADS 5, (T-AD) = (T-M)EAS) ** S(T-A)

= (T-AD - (T-AXEAS) ™ P gy
But

. o
(T-AD-AS)" Py =(T-AD Y AV ST Py
=0
_ . ._l o . .
"ZXJPR(T)SJ Premy “27‘“1 SjPN(T)
=0 =0
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= 2 A SHPN(T) ) 2 Aist Pyn=0-
i=0
We now define E, =(T-AI) S, and F, =S, (T-Al).
Using the e¢qualities we just proved we have
E, (T-A) = T- Al and (T- A) F, = (T-AD). It is easy to
see that the operators E, and F, are idempotents with
R(E,;) = R(T- Al) and N(F , ) = N(T- Al). By Lemma 2.2
IS (A-Fy)-@-F)U=IF, -F I
1

=1

I PN(T-M) h PN(T-ul)

Since A — F, is analytic in the ball| A | <

the proof follows immediately.

3. Generalized Gram-Schmidt Process. In Lemma
2.2 and Proposition 2.3 we have stated a relationship
between idempotents and corresponding orthogonal
projections having the same range. In this section we
would like to follow the same vein of ideas and state a
generalized Gram-Schmidt process.

Let E,E,, ...,E be in B(H)

such that

n
E’ = E, (i=l..... n), E;E;= 0 (i#) and

E, +...+E =L For i=l, ...n set W, =R(E;) then
clearly H=W, ®...® W,. This sum might not be an
orthogonal one. To ameliorate the situation we letQ;

be the orthogonal projection
R(E,+...+Ei)=Wl@...@Wi=Vi and we

P,=Q,P;=Q;-Q, for i=2.,...,n. Actually, P, is

onto
set

the orthogonal projection onto V; oV, foriz2.
Moreover R(P| +..+P;) = R(E, +..+E;) and H=H,
®...® H_ whereH, =R(P;). This sum being an
orthogonal direct sum. We also have P; P; = 0, i#j, and
P, +..+P, =L

We now summarize what we have done as follows.
For each n-tuple of idempotents (E,,...Ep) with
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E, E; =0,i#j, E, +..+4E, =1 we found an n-tuple of
orthogonal projections ( P,,...,P ) having the same
properties. We now show that the two n-tuples are
similar with one similarity simultaneousiy intertwining

each such pair. n

3.1. Theorem. The operator S=3Y P, E, is
i=1
invertible and SE; =P,S for i=1,...,n. Proof. It suffices
to show that S is invertible. We first show that
P,E; =E;P; =0 if j <i. To see this note that if j=1
thenE, P, =E, E,P, =0 fori> 1. Now assume that j
> 1.

Then E, szEi Qj—Ei Qj_l=0 since
R(Qj)and R(QH) are subsets oij =W, 9.9 Wj
andE; =0onV; (1 <j«<1i). In the same way we can
show that P, E, = 0 forj<i.

Now

n n
TR (|TE
=1 =l

Let T, =1+ P.E_
k<m
as is easily seen by computing this product. Therefore S
is invertible.

n n
I= =ZPiEi +ZPiEJ*S°S=I'ZPiEj.

i) i<j i<j

. Then ST, T, ... T| =1
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