Vol.2,No.1,2
Winter&Spring,1991

JScilR.Iran

ANALYSIS OF SOME MAGNETIC PROPERTIES
OF DILUTED MAGNETIC SEMICONDUCTORS

H. Akbarzadeh

Department of Physics , Isfahan. University of Technology , Isfahan, Islamic Republic of Iran

Abstract
The susceptibility and specific heat experimental results of the diluted magnetic
semiconductors (DMS) are incorporated in a model based on short-range as well as
long-range interaction in a random array of magnetic ions. The so-called nearest-
neighbor pair approximation (NNPA) is applied. It appears that the calculated values
of zero field specific heat and Curie-Weiss temperature based on the model
calculation are in good agreement with experimental results.

Introduction

Diluted Magnetic Semiconductors (DMS) [1] also
referred to as Semimagnetic Semiconductors (SMSC) 21
belong to a novel class of materials which have been
intensively studied by various methods during recent
years because of their important semiconducting as well
as magnetic properties [3].

DMS are in fact solid solutions of the A;- M B
type which are formed by substitution of the A
component in an ordinary semiconductor AB of the 1I-V
or II-VI group by a magnetic 3d or 4f M component. As
the MB compound is a magnetic and AB is a normal,
non-magnetic semiconductor then A - yM (B is the
link between them and the terminology "Semimagnetic
Semiconductors” reflects the situation. On the other
hand, diluting magnetic compounds MB with non-
magnetic A ions we can refer to A;- yM B
compounds as "Diluted Magnetic Semiconductors".

The most extensively studied materials of this type
arethe A'' | Mn BY alloys in which a fraction of

the group I Sublattice is replaced at random by Mn.
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=Zn, Cd, Hg are group II elements of the periodic
table, B=S, Se, Te are group VI elements and x is the
mole fraction of the magnetic Mn?*.

Diluted Magnetic Semiconductors are of interest for
several reasons:

First, their semiconducting properties (in zero
magnetic field) such as the lattice constant, the band gap,
the effective mass, etc. can be varied in a controlled
fashion by varying the composition of the material,
similar to non-magnetic three element compounds such
as Hg,- ,Cd ,Te, Pb,- Sn  Te, etc. This tunability of
the energy gap by composition makes DMS compounds
excellent candidates for infra-red detector application as
well as for the preparation of quantum well and super
lattices [3].

Secondly, one of the most interesting differences
between magnetic compounds (A - Mn  B) with non-
magnetic host (AB) arises from the exchange interaction
of the S and P band electrons of the DMS and the 3d [5]
electrons associated with the Mn™* ions. It is because of
this sp-d exchange interaction that wide gap DMS such
as Cd - Mn TeorCd ;- Mn Se exhibit giant
Faraday rotation (of the order of 1000 Ocm kG) at liquid
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helium temperatures [4]. The large size of Faraday
rotation offers some optical Device applications such as
Isolators, Circulators, Modulators, etc. Furthermore, the
large size of the effect can be exploited in highly
sensitive magnetometers, for measuring static as well as
dynamic magnetic fields (up to GHz frequencies). Also,
the observation of stimulated spin-flip Raman scattering
in n-type Hg - Mn  Te suggests the possibility of
using narrow gap DMS for the construction of a
stimulated spin-flip Raman laser which is tunable over a
wide range [5].

Thirdly, the random distribution of magnetic ions
over the cation sublattice leads to important magnetic
effects, e.g., the formation of the spin-glass phase at low
temperature.

Originally the spin-glass transition was interpreted as
arising from interactions between Mn ions situated at the
nearest-neighbor (nn) sites in the host lattice [6,7] This
conjecture was supported by the original observation of
the spin-glass transition only for Mn concentrations
above the percolation limit (x>0.18) [8]. It was
suggested then that the spin-glass transition was brought
about by frustration caused by the short-
range antiferromagnetic interaction between nearest
manganese neighbors on the high symmetry host lattice.
Recent results, however, for low Mn concentrations in
Hg,- Mn Te, (Cd;- Mn,) ;As,(Zn;- Mn) ;As),Cd\- Mn
Te,Cd;- Mn Se, Zn-Mn, TeandZn,- Mn, Se,

reveal the existence of a spin-glass phase also
below the percolation limit (x<xc) [8,9,10] These facts
invalidate the arguments related to the mechanism of
spin-glass formation in these materials as given before.

Moreover, in the interpretation of the experimental
data in terms of various existing models no consistent
set of interaction parameters explaining all the magnetic
data simultaneously has been obtained. It seems that this
discrepancy is mainly due to the fact that the long-range
interaction is not taken into account in these
oversimplified models. This underestimating gives rise
to a wide spread of exchange parameters obtained from
various experimental data and the questionable need to
adjust the statistical distribution of the magnetic ions
[11]. However, an effort to reconcile these contradictory
viewpoints has not yet been undertaken.

In an attempt to interpret the susceptibility and

specific l€at experimental results simultaneously on the
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basis of a unique model we decided to study the magnetic
properties of DMS compounds in some detail.

We reanalyzed the published data (as well as some
unpublished resuits) by applying a recently proposed
model based on incorporating nearest-neighbor exchange
interaction (J,) as well as long-range interaction of the
type J/(R)n between magnetic ions in a random
statistical distribution.

Discussion

Originally, the magnetic behavior of diluted magnetic
semiconductors was more or less interpreted based on the
following considerations:

(i) a cluster model based on the nearest-neighbor
interaction was applied. (The interaction beyond nearest-
neighbor was ignored)

(i) The spin-glass behavior ascribed to the frustration
of the antiferromagnetic interactions inherent in an fcc
sublattice over which the Mn ions are distributed.

Based on these assumptions the spin-glass transition
was expected only above the percolation limit (xc) of the
host lattice. At that time spin-glass phase was only
observed for samples with concentrations above the
percolation limit, and this led to the conclusion that the
long-range interactions were really ignorable.

Additionally, in order to obtain agreement between
calculated and cxperimental results, it was assumed that
the distribution of Mn ions deviates strongly from a
random distribution {11]. Subsequent calculations on the
basis of nearest-neighbor interactions only gave rise to a
widespread of exchange parameters deduced from various
sets of data.

Nagata et al. [11], for example, in a systematic
magnetic study of Hg,- ,Mn ,Te found the nearest-
neighbor exchange constant J/kB to be about- 0.7+0.3K
which is substantially smaller than that obtained by
previous workers {12]. They also had to adjust the
random distribution of the magnetic ions, e.g. the
number of single ions had to be reduced by about 30% of
the number corresponding to a purely random
distribution [11].

Recently, new information became available on the
behavior of Mn ions in the diluted magnetic
semiconductors that invalidates the above arguments.

Firstly, extension of the experimental results for low
Mn concentrations reveals the existence of spin-glass
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phase also for Mn concentrations below the percolation
limit [13].

Secondly, high field magnetization measurements
show that the nearest-neighbor Heisenberg interaction
energy J/kB is of the order of 10K [14,15], substantially
higher than that expected by Nagata et al .[11].

It is claimed that these discrepancies are mainly due
to the fact that the long-range character of the
interactions are not taken into account [16]. We,
therefore, will try to interpret the susceptibility and
specific heat results simultaneously on the basis of one
model incorporating short-range as well as long-range
interactions in a random array.

We apply the so-called Nearest-Neighbor Pair-
Approximation model (NNPA). It has been introduced
by Matho [17] for canonical metallic spin-glasses and
was recently successfully used for DMS's as well [9,10].
It is based on the assumption that the partition function
of a random macroscopic system with a long-range
interaction may be factorized into contributions of pairs.
In this case, each spin is considered to be coupled by an
exchange interaction J only to its nearest magnetic
neighbor which may be located anywhere at a distance R
from the reference site.

Table 1

ho . . . .
Numberof v neighbors, ND and distances to them in units
R;

fce (hep)

ROIRY® N, R )*/(R)? N,
1 12 1 12
2 6 2 6
3 24 3 2
4 12 4 18
5 24 5 12
6 8 6 6
7 48 7 12
8 6 8 12
9 36 9 6
10 24 10 6
11 24 11 12
12 24 12 24
13 72 13 6
14 48 14 12
15 12 15 12
16 48 16 24
17 30 17 12
18 72 18 12
19 24 19 2

The lattice sites of the crystalline host structure are
arranged in shells at distances (R, y = 1,2, 3,..) around
the reference site; the v™ shell contains N, lattice
sites. Table I shows the number of lattice sites, Ny, in
each shell. (R is expressed in units of the nearest-
neighbor distance, R =1). In Figure 1 a schematic
picture of the lattice sites distribution for fcc crystal is
shown in two dimensions. The circles are the projection
of shells with radius Ry

(R,=aV2/2,R,=V2R, =a,
R3=\/§ R = \/g a, R4=2Rl=a\/2_, a =lattice parameter)

in a cube face. The radius of the first two circles are the
same as the related shells radiuses but generaily they are
different. Let's assume that the reference site is occupied
by a magnetic ion. Considering that the magnetic ions
are distributed randomly throughout the lattice, then the

probability of finding the nearest magnetic ion in the

v™ shell is elaborated as follows:
As x= The mole fraction of the magnetic ion, then:

x= The probability for a specific site to be occupied by a

magnetic ion,
I-x = The probability for a specific site to be

occupied by a non-magnetic ion.
(1-x) No _ The probability for v shell to be totally
occupied by non-magnetic ions
(1-x) Ny (1-x)N2- . (1-%) Not _ e probability for all
shells with v' <v totally occupied by non-magnetic
ions 1-(1-x) Ny =The probability for v® shell not to be

totally occupied by non-magnetic ions (at least one
magnetic ion is located in v® shell ).

Now , if we define:
p, (x) = The probability of finding the nearest

magnetic ion in the v shell ( assuming all v' <v shells
empty ) then;

P,(x)= |(1-x) N, (l-x)N2 <(1-x) No ”1-(1~x) Ny qu (s

is a product of: ( a) The 'probability

for ‘a magnetic ion to have a magnetic neighbor at
a distance R, and ( b ) The probability that both

magnetic ions do not belong to a pair with a shorter R,
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We then obtain;

N
Pu(x)=[(l-x)Nl a2 ] (1) ]
m
N
1>\,(x)=[(l-x)N‘J'N2+ """ Mo ] ‘1-(1—X) ? ]
)
Using n, = ZND for v>0, n ;=0
v=1
P, ®=(1x) " | 1- (1-x)N" } ©)
P, (0= (10 "1 - (1) @

The total partition function and other thermodynamic
functions like the specific heat, magnetization, and
susceptiblity can be calculated by summing the
respective pair contributions:

Z=Y Z,P,(x)N 5)
V=1 ’ .

Cn=2 C.yP,xR

V=1

©)

The summation over the shells (v) is carried out up

_ v
to shell v=v for which Z P (x)>0.99. The
V=i

value of ; was taken as 19 for low concentrations
(x<0.03). For higher concentrations a smaller v was
sufficient. Each pair contribution (C m-V) contains the
exchange parameter J,,. The Hamiltonian for a pair is
given by:

Hy=-2J, S;.. Sy -guySH4S)B*  (7)

Where Jy=J (R y)and R, denotes the distance
between the sites i and v. Considering S1 = 82 = 5/2 ,

-—

g=2and S1 + S2 = S then Hamiltonian eigenvalue

-_

for pair clusters can be obtained as follows:

28,.8,=(8,+8,) (S)(S,) 2 @®
Then

ThenHy =-21(S;.S,) y-gu y B(S}+S}5)y=
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-J[S(S+1)-S,(S|+1)-Sz(SZ+l) ¥-W-gu , Bm¥

&)
E=-J[{S(S+1)-352]-gu;Bm (10)
0<S<5, ImlI<S
The zero field energy levels of the pair is shown in
Fig. 2.
The specific heat for each pair is given by:
5
Z E gexp (- Es/ kBT)
) S=0
aT 3
2 exp(-Es/, )
S=0

(11

In the presence of a magnetic field, Eg is changed
10 Eg-gymB  where m is the magnetic quantum
number.

To calculate the magnetic specific heat the radial
dependence of the exchange interaction,J, =1J (Ry),
should be given by experimental data. This procedure is
elaborated as follows:

It is well known that a spin glass freezes when the
thermal emergy k,T is comparable to the average

magnetic interaction energy E. It is furthermore

assumed that E is proportional to J (R) where J( Rij )
is the exchange constant describing the interaction
between two magnetic ions separated by Rij and R is the
mean maghetic distance.

Additionally using the scaling analysis for a random

distribution it is assumed that R’x =const.. For a
particular powerlike or exponential R- dependence of the
freezing temperature, T, can be derived as:

E=J(R) $2=k T, (12)
FORJR) o e ® = E ae™® (13)
Then T;o. e ™ = In T, & (-0R) (14)
AsR*x =const. = In T, o0 (-ax "3y (15)
FORJR)R™ = InT,o (nlR)  (16)
As 3In R + In X = const. an
(18)

ThenIn T o % In x

A comparison between the experimental data and
these calculations shows that the power law yields a
better fit than an exponential decay from far below to far
above the percolation limit [16]. Then exponent n
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Fig.1. Schematic picture of the host sites distribution for
fcc crystal in two dimensions. (.) Indicates the
lattice points at the corners while (o) indicates the
lattice points at the face centers.

0] ——— S=5 1

0] ——m8M —— S=4 g9

2?2 — S=3 7

6 — 0000 S=2 5

2] — S-1 3

o —— S=0 1
pair 2S+1

Fig.2. Energy levels for a pair. The values of the
degeneracy (2 +1) are indicated.
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deduced from experimental results are shown in Table II,
following Ref. 16.

Table I1

The exponent n value deduced from experimental
data

Material X-range n
Zn,-xMn xSe 03-04 6.8
Hg,-xMn xSe 0.02-0.3 50

It is relevant to note that some workers claim that for
open gap DMS (Cd,- Mn  Te/Se)the T;-x
diagrams are in agreement with the exponential decay,
consistent with the Bloembergen-Rowland prediction
[18].

We would also like to stress here that experimental
data shows no concentration dependence of nearest-
neighbor exchange interaction (J,, ) [14], whereas
spin-glass freezing temperature T, depends on
concentration. It can be an indication that in spin-glass
creation only the long-range part of exchange interaction
is important. We therefore suggest a qualitative model
which gives some insight into the magnetic properties
of Diluted Magnetic Semiconductors:

At high temperatures, T>>T,, the system is

Akbarzadeh
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Parramagnetic. At T>T small clusters are created and all
nearest-neighbor Mn ions are in clusters. AtT-~T ¢

spin-glass will happen in the nearest-neighbor ions
which do not have any considerable effect and the
interaction for the next nearest-neighbor or higher will
have an effect on T, Indeed long-range exchange
interaction will connect the small clusters for block
formation and short-range interaction (nearest-neighbor)
has no considerable effect on big cluster formation.
Figure 3 shows a schematic picture of spin-glass
formation.

Interpretation

In order to interpret the susceptibility and specific
heat data simultaneously on ‘the basis of one model
incorporating a nearest-neighbor as well as a long-range
interaction in a random array, we stress the following
assumptions:

(i) An antiferromagnetic (AF) nearest and next
nearest-neighbor interactions J, and J, experimental
measurements of magnetic susceptiblity, indicate that at
high temperatures it displays a Curie-Weiss behavior
with negative Curie-Weiss temperature, indicating
antiferromagnetic interactions between the spins. (ii) An
AF long-range interaction of the type J/(R)" for ions
beyond next nearest-neighbor where n is 6.8 for open

I/ B._g
o 0

| ~
/

T>>Tf

\'\

paramagnetism

T>Tf

/.smullclUSters

«+— [oose spins

T~ Tf

spin_glass

Fig.3. Schematic picture of spin-glass formation.
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gap and 5 for zero gap DMS's.

@iii) A random distribution of Mn ions (in contrast
to Nagata et al. [11] assumption). Spalek et al. [19]
analytically derived the static magnetic susceptibility
based on random distribution and showed that in the high
temperature limit they obey the Curie-Weiss law. (iv) g
=2, S = 5/2, based on susceptibility results [19,20] (in
contrast to Oseroff results [21])

This model is similar to the model used for the
interpretation of the results on
(Cd - yMn y) ;As, 8and(Z ,,- yMn y) ;As, ®
Nearest-neighbor interaction J | is chosen as a constant
value, but J 2 and J are treated as adjustable parameters.
Relatively accurate values of J , are given in Table III.
With these parameters we calculated C, with the NNPA
method for Z ,- yMn 4Se ( x =0.01) and compared
them with the experimental data. The results are shown
in Fig. 4. It is seen that, on the whole, the agreement
between calculated results, and the experimental data is
fair.

Additionally we would like to make the following
comments;

As in-zero magnetic field single Mn ions will not
contribute to specific heat at low temperatures, then the
concentration of active magnetic ions contributing to the
specific heat is lower than nominal value.

Keesom {22] by measuring the low temperature
specific heat of the same sample obtained x = 0.0081
as the minimum active concentration which is in
excellent agreement with our calculated results.
Furthermore, the value of next nearest-neighbor integral
J, obtained by calculation is comparable with the results
of other workers [20, 22].

Hereafter we apply the model to obtain the value of
the Curie-Weiss temperature. As shown by Spalek et al.
{19] the calculation of magnetic susceptibility in the
high temperature limit yields the Curie-Weiss behavior;
LW (19)

T-6 (x)

The Curie-Weiss temperature 6(x) is given by;

6(x) = 2/38(S+1) ¥ J N,/ p | x=6¢x (20)
v

X=

Where J | is the exchange integral between
neighbors and NV is the number of cations in the

coordination sphére around a given cation chosen as the
central one. If the localized magnetic moments are
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subjected to a nearest-neighbor exchange J | @ next

nearest-neighbor exchange J , supplemented with a long-

range interaction of the type J(R) =] R™ for further

neighbors, yields

23+DX 1N 5 4N, 1+ 3INIR | @D
B j=3

Where Rj is in units of the nearest-neighbor distance,
R,=1

Ny as the number of neighbors at distanceR (R
expressed in units of the nearest-neighbor Mn distance)

o(x) =

are given in Table I.
It is known that the crystal structure of nearly all

Alll- xMn B V1 alloys is zinc blende (except
CdMnS/Se). So, hereafter calculations are confined to
this structure. Then for wide gap DMS we have

4 + 12
W) 6.8

22

35X
B(x)= =——
) 6kB

127,+61,41 (—2 o)

w3)*®

Then;
0(x) =

DX 127, +61,+137]]
6kB

Substitution of J,, T,
Zn, - yMn 4Se (x=0.01)

(23)

and J value for

in the- preceding

expression results in , =948K

Furdyna et al. [20] investigating the static magnetic
susceptibility of Z_, - \Mn ,Se, yields 6,=944 K
which is in excellent agreement with our results.

We extended similar investigation
Hg,- xMn xSe (x= 0.01). The results are shown in Fig.5.
In Hg,- xMn «Se (x = 0.01) for best fitting we assumed
x = 0.012 which is well within the limits of
concentration for a boule with a nominal concentration
of 0.01. value for Curie-Weiss
temperature is 6, = 816 K, in excellent agreement with
the data of Spalek et al. ['19] which obtained
0,=-739 + 47K

Furthermore, our calculation shows that the next
nearest-neighbor Heisenberg interaction energyl J,/k g |

to

The calculated

for zinc compound is of the order of 0.3K which is in
excellent agreement with Keesoms experimental results

[22].
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50

< Zn  Mn, Se

40

Cm(mj/mole.k)
©

n
o
o)

3} 05 1. 15

T(K)

Fig.4. (©) specific heat of
Zn - yMn ,Se for x=0.01 as reported by Keesom

Magnetic

[22] (based on low temp. specific heat
measurements). (.) represents calculation based on

X=0.0085,
1/k 5 =-12 2K, Ik 5= -O3 k and Sy = 07 R)°* k.

the model using
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Fig.5. (.) Magnetic specific heat of

Hg,- Mn  Se for X=0.0! according to Keesom 23
(based on low temp. specific heat measurements).

(©) represents calculation based on the model using
x=0.012, J,/kyg=-11.OK, Jy/kg=-1.1 K and

J/kg=- 0.4/(R)* K.
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Table 111
Values of nearest -neighbor exchange integral J |

Material J,/kg Ref.
Zn,-xMn xSe -12.240.3 14
Hg,-xMn xSe -10.9+0.7 19*

* The real value of interaction is a little less (refer
to ref.)

Concluding Remarks

We conclude with two remarks. In our simplified
model, clusters with more than two members are
ignored. Hence, it would be desirable specially for higher
concentrations to extend the present analysis by taking
into account the role of larger clusters such as triplets...-

Furthermore, in order to complete the present in-
vestigation the specific heat data obtained in non-zero
external magnetic field should also be compared with
calculated results.
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