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Abstract

The structure of fluids confined by planar walls is studied using density
functional theory. The density functional used is a generalized form of the hyper-
netted chain (HNC) functional which contains a term third order in the density. This
term is chosen to ensure that the modified density functional gives the correct bulk
pressure. The proposed density functional applied to a Lennard-Jones fluid confined
to a slit for temperatures below the critical point. The agreement between the results
of the density profiles obtained by the theory and computer simulation are good.

Introduction

Following successes in the understanding of the
properties of homogeneous fluids, there has been
increasing activity directed at the understanding of
inhomogeneous fluids, especially of the fluid-solid
interface [1]. Such work is relevant to an appreciation of
the structure and the behaviour of thin films, of wetting
phenomena, of adhesion, of the electrical double layer, of
catalysis and the properties of colloidal dispersions. This
paper contains a contribution which follows earlier work
on the structure of a fluid-solid interface, and
supplements it.

In the previous papers [2,3], the modified density
functional introduced by Rickayzen and Augousti [4] can
improve the theory of the structure of a fluid close to a
wall and gives the density profile of the fluid in better
agreement with computer simulation. Powles,
Rickayzen and Williams [5] used the same density
functional to obtain the density profile of a Lennard-
Jones, LJ 12-6, fluid confined to a slit. They showed
that for a hard wall-LJ fluid system the agreement
between their result and that of the computer simulation
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for the temperature close and above the critical
temperature is satisfactory, but it failed at a lower
temperature or when the density at the wall is
substantially lower than the bulk density. Powles et al.
[S] also applied the proposed density functional to a LJ
wall-LJ fluid system (wall with a '10-4-3" potential) for a
temperature, T*=1.35 (above the critical temperature of
the homogeneous fluid). At this temperature the results
of the density profile are in good agreement with those
obtained from computer simulation. Here we apply the
same density functional method to a LJ 12-6 fluid for a
different wall potential and a lower temperature, to find
the density profiles and to compare them with the
simulation results.

The Density Integral Equation
We consider a fluid of spherically symmetric
molecules confined to a slit where the external
potential varies only in one dimension, the x
direction, the thermodynamic potential per unit area
at temperature T is given by [5].
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Where p(x) is the density, p, is the bulk density,
Ky is Boltzmans constant and V (x,) is the external
potential,
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herec is  the distance parameter of the Lennard-Jones
fluid.
Parameter B is chosen such that, the density
functional, equation (1), leads to the correct bulk

pressure at far distances from the wall,
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The equilibrium density of the fluid minimizes the
thermodynamic potential and satisfies the integral
equation below;
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To solve the integral equation (7), the homogeneous
direct correlation function and the bulk pressure are
required.

The Bulk Direct Correlation Function and the
Bulk Pressure of a Cut-off and Shifted L]
Fluid.

The cut-off and shifted L.} 12-6 fluid is studied here.
The intermolecular potential for this fluid is
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here r_ is cut-off distance and
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Where € and ¢ are the Lennard-Jones Fluid
Parameters.

We use Goldman's parametrized equation [6] for the
pair distribution function, g (p, T, 1), to find the direct
correlation function as a numerical solution of the
Omstein-Zernike equation. Vogelsang and Hoheisel [7]
extended the Baxter factorization method using the pair
correlation function obtained by computer simulation,
then they used the PY closure to continue the pair
correlation function, g(r), to larger r. The same procedure
is used here, to find the bulk direct correlation function,
¢ (r, ry), for a cut-off and shifted LJ potential. The

procedure below is applied to find, C (x,, x,) or ¢(x)
directly from auxiliary function, ¢(t), [7]. Then one does
not need to perform the double integral in equation (3)
numerically.
Therefore:
R
Cx)=2rn [ drrer)
X
the direct correlation function, ¢(r), i$ zero between
r. and R whereas g(r) is not zero and from reference [7]:
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Substitution of equation (11) into. equation (10)
yields
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Then C(x) is given by
R-|x

deqtg x| + ).
(13)

C ) =2nq(x)+@2m’p, (I)



Vol.2,No.1,2
Winter&Spring,1991

The pressure can be obtained from a 33-constant
modified Benedict-Webb-Rubin (MBWR) equation of
state for a LJ fluid obtained by Nicholas et al. [8] which
gives the pressure of a full LJ fluid. The correction to
the pressure due to the cut-off and shifted potential is

given by [9]

° du
Ap=1p2 ) U ey dr. (14)
6 r,
If we assume that, for r>r ; g(r) =1, then
6 12
AP = 2T p2 8.0;5 _ 16.0c: .
3 r, 3r,
thus [9]

P (sp) =Py (T, p) + AP (15)

where P(sp) is the pressure of the cut-off and shifted LJ
fluid and P (T, p) is the pressure of the full LY fiuid

obtained by Nicholas et al.

Results and Discussion
The external potential; V(x), in equation (7) is the
contribution from both walls;
u, (h-x)+u, x) O<x<h
otherwise

V(x) = (16)

00

The integral equation (7) has been solved for two
different kinds of the wall-potentials, u,; (x).

a) Walls with a '10-4' potential, case I,
The interaction energy between the wall and the fluid
is [10]

2
u =2, ¥ [Xx)-X(,) a”n
i=1

where x; is the perpendicular distance of the fluid atom

from the ith plane of the wall, 1 is the truncation range
of the interaction (we use 1 =2.37),

the case when n 6°=0.8, x =x and X, =x + 2.69A° is

ysed here. We compare the density profile obtained by
the solution of the integral equation (7) with the result
of computer simulation (MC) [10] obtained by
Abraham. The LJ potential is truncated at, r,= 2.37 for
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All the parameters are given in terms of the LJ fluid
parameters € and 6. The distances are measured in units

=0.6, p,=0555 T=1.0.

of o, densities in units of 6> and temperature in units of
&/K . In both methods the separation of the walls, h,
has been chosen sufficiently large to ignore the effect of
one wall on the other. The separation of the walls used
in our calculation is
h=11.2
The comparison is displayed in figure (1).

b) Walls with a '10-4' potential, case II,
The interaction of the wall and a given liquid particle
is given by [11]

u, (x) = 2ne (%) ’% ()10 (Zy4.

(18)

X
In this case we compare the result obtained by
equation (7) with the one obtained by Magda, Tirrell and
Davis [11] using molecular dynamics simulation. The
separation of the two walls and the temperature are:
h=11.57 T=0.97.

Also the cut-off distance and the average density are

given by
r,=2.37 p=0.67 £.01.

The comparison is shown in figure (2).

The temperature used by Powles et al. [5], for the
case of the LT wall-LJ fluid system, was above the
critical one, T =1.35 > T =1.119 when r,=2.5. The
critical temperature for r =2.37 is calculated below.

The correction to the pressure due to the cut-off is
given by equation (14), if we assume that g(r) =1 for
r > r_ and then ignore very small terms, [9]

16 3

AP= =1, Pa (19)

The critical temperature and density must satisfy the
equations:

P d’ P -0,
dp & p

on substitution of equation (19) and (15) into equations

(20) the difference in the critical temperature and density

of the cut-off and shifted. LJ fluid and the critical

temperature and density of full LJ fluid can be obtained

by

(20)
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Where A, B, C, and D are constants. Thus
AT or] | Ap or) (23)

Powles has already obtained the critical temperature
for two different cut-off potentials (r =2.5, 3.0) and also
the critical temperature for full Lennard-Jones is
available. Therefore we can use equation (23) and these
temperatures to find the critical temperature for
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r,=2.37,

(Tc)rk =2.37 =1.08,
which means both temperatures used to find the density
profile are below the critical temperature of the
homogeneous fluid.
Figures (1) and (2) show good agreement between the
theory and simulation at temperatures below, although
close to, T_. This extends the range of temperature over

which the theory provides satisfactory results.
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Figure 1 The density profile for a LJ fluid (case I); the circles are the results of simulation

and solid line is obtained from density functional approximation.
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Eigure .2 The density profile for a LJ fluid (case II), the notation is as in figure (1)
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