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Abstract

It is shown that a commutative reduced ring R is a Baer ring if and only if it is
a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an
extremally disconnected space; if and only if every non-zero ideal of R is essential
in a principal ideal generated by an idempotent.
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1. Introduction

Al-Ezeh [1], Azarpanah and Karamzadeh [4] have
given some algebraic characterizations for extermally
disconnected spaces. In particular, they have proved
independently that C(X) is a Baer ring if and only if X is
and extremally disconnected space. In this paper we
generalize this theorem for reduced rings and we give
several equivalent conditions for reduced Baer rings.
Throughout, R is a commutative ring with identity. We
say that R is a reduced ring if R has no non-zero
nilpotent elements. Also R is called a Baer ring if the
annihilator of each ideal I in R, Ann(I), is generated by
an idempotent. If I and J are ideals in R, we say | is
essential in J if | = J and every non-zero ideal inside J
intersects | non-trivially, and when we say | is essential
we mean it is essential in R. An ideal | in R is called a
closed ideal if it is not essential in a larger ideal, and a
ring R is said to be a CS-ring if every closed ideal is a
direct summand [7]. It is trivial to see that if | is an ideal
in a reduced ring R, then | @ Anng (I) is an essential
ideal in R and therefore | is an essential ideal if and only
if Anng(I)=(0).

We denote Spec (R) and Max (R) for the spaces of
prime ideals and maximal ideals, respectively. For any
aeR and any ideal | of R, we set

V(a)=1{P e Spec(R):ac P}
and
V(1)=Na,V(a)={P eSpec(R): 1 < P}.

Then V(I)uV )=V nJ)=V(1J), for all ideals
I and J of R. Also for any family {I K }kEK of ideals we

have: Myex V(1) =V _ ek 1) - From this it follows

that #={V(I): | is an ideal of R} is closed under finite
union and arbitrary intersections, so that there is a
topology on spec (R) for which Fis the family of closed
sets. This is called the Zariski topology [6]. If S < Spec
(R), we put Vi(@a)=V(@)nS, Vg()=V({)nS. We
consider S as a subspace of Spec (R).

Throughout, X will denote a completely regular
Hausdorff space and C(X) denotes the ring of
continuous real-valued functions on X. A space X is
said to be extremally disconnected if every closed set
has a closed interior or equivalently, every open set has
an open closure [5].

2. Baer Rings

Throughout this section S is a dense subspace of
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Spec (R), i.e.,\S =(0). The operators cl and int denote

the closure and the interior in S. We first need the
following lemmas:

Lemma 2.1. Let R be a reduced ring, S be a dense
subset of Spec (R) and a, beR. Then intV¢(a)cint

Vg (b) if and only if Ann(a) < Ann(b).

Proof. Let intVg(a)cint Vg(b)and ce Ann(a), then
ac=0 implies that

S~V (¢) C intVs (a) < intVs (b) = Vs (b) .

This means that bc=0 and therefore ce Ann(b).
Conversely, let Ann(a) c Ann(b). Let Peint Vg(a) and
P¢ Vs(b) and get a contradiction. Now P ¢S —int
Vgs(a) implies that there is 0#ceR with S- int
Vg(a)c Vs(c) and C¢&P. Clearly ac=0 and bc# 0. Then
€ € Ann(a) and ¢ ¢ Ann(b) which is a contradiction. O

We know that a subset A of the space X is clopen
(closed and open) if and only if there
exists f e C(X)such that f=0 on A and f=1 on X-A

[5]. We also need the following lemma.

Lemma 2.2. Let R be a reduced ring and Max (R)c S .

Then A is a clopen subset of S if and only if there exists
an idempotent e € R such that A=Vg(e).

Proof. Suppose that A is a clopen subset of S, | = "NA
and J=nA°, then A=clA=Vq(nA)=Vs(I) and
A=Vs(J) and Vg5(1)NnVg(J)=¢. Hence I+J=R, so
there exist e | and €' €J such that e+e'=1. On the
other hand, Vg(e)UVs(e')=S implies that ee'=0,

ie,e’=e. A=V4()=Vs(e). The
converse is trivial.

The structure of essential ideals of C(X), have been
studied before [2,3] and a topological characterization
of essential ideals of C(X) was given. In the following
lemma we characterize the essential ideals of reduced

ring R via a topological property.

Consequently,

Lemma 2.3. let R be a reduced ring, I be a non-zero
ideal of R and let S be a dense subset of Spec (R). Then
I is an essential ideal in R if and only if int Vg(I)=¢ .

Proof. Suppose the interior of Vg(I) is not empty and
denoted by U=intVg(I). Let P €U . Since S-U is closed,

there exist ae(\pg_y P'—P. Thus for every bel,
ab=0, i.e., Ann(I) # (0), a contradiction.
Conversely, let K be a non-zero ideal in R and
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0#beK, then S-V4(b) is open set and clearly

(S=Vs(b)N(S-Vs(1)#¢, so there is ael

that (S—-Vg(b))N(S-Vg(a))#¢, hence Vg(ab)=S,

ie, 0zabeKnI. ]
Now we give the main result of this paper.

such

Theorem 2.4. Let R be a reduced ring and let Max
(R)c'S be dense subset of Spec(R). The following
statements are equivalent.

(1) S is extremally disconnected.

(2) R is a Baer ring.

(3) Every non-zero ideal in R is essential in a
principle ideal generated by an idempotent.

(4) R is a CS-ring.

Proof. (1)= (2) Let T be any subset of R, we are to
show that Ann(T)=(e), where e=e’. put F=int Vs(a).

aeT

According to (1), F is a clopen subset of S. If F=¢, we
put I=(T) and we have Vg(l)= N Vs(@)=N,gVs(@).
ael

Hence F =intnVg(a)=¢, which means that I is an
essential ideal in R, by Lemma 2.3. Thus
Ann(T)=Ann(I)=(0) and we are through. Hence we may
assume that F=¢ . According to Lemma 2.2, there exists
an idempotent e € R with F=Vg(e) and S-F=Vg(1-e).
We claim that Ann(T)=(1-e). To see this, let b € Ann(t),
then ab=0, VaeT implies that S—-Vg(b)cVs(a),
VaeT. Thus S-Vg(b)cint,r Vs(@)=F =Vg(e).
This means that S =Vg(b)UVs(e)=Vs(be),ie.,be=0
and therefore b e (1—e) . Conversely, we note that

intVg(a) o F =V (e) =intVg (e),Vae T

and therefore by Lemma 2.1., Ann(a)o Ann(e)
=(l-e), VaeT. This shows that Ann(T)(1-e)
and we are through.

(2)= (3) Let I be an ideal of R, then by (2), we have
Ann(l) (e) =Ann(l-¢), where e=e’. So I is essential in
(1-e).

(3)= (4) Let I be a closed ideal, then by (3), I is
essential in (e), for some idempotent e € R . But since I
is closed we must have I=(e).

(4)= (1) We note that (4) immediately implies (2),
for if T is a subset of R, then the ideal I=Ann (T) is a
closed ideal in R. To see this, we let I be essential in a
larger ideal J, then TJ #(0) implies that s. But R is

TINI=(0),

impossible. This shows that I=Ann(T) is a closed ideal
and by (4), I is generated by an idempotent. Now we

reduced ring and hence which s
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assume (2) and show that for any closed set F, the
interior of F is closed (note, we assume that int F = ¢).

Since F is closed, then F (N, Vs(a), where T is some
index set. Hence by (2), we have

Ann(T)= N Ann(@)=(1-e),
acT
where e=e¢’. We claim that int F=Vg(e), to see this let

PeintF, then there  exists beR with
S—int F cVg(b) and b ¢ P. Now we have

PeS-Vs(b)cintF < NVs(a).
aeT
Hence S-Vg(b)cVg(a), VaeT . Therefore ab=0,

VaeT, which means that be Ann(T)=(1—-¢). Thus
PeVg(b) implies that PeVg(e—1) and therefore

PeVg(e),ie,int F cVg(e). Now suppose that
PeVg(e), there exists beR such  that
S-Vs(e) cVg(b) and P Vg (b).

Then be=0 implies that be(1-e)=Ann(T)

=Naer ANN(2) . Thus ab=0, VaeT and therefore
S-Vg(b)cN,urVs(a) which means that Pe
S-Vg(b) g,intN,.r Vs (a),ie,Vg(e) cint F. This
proves our claim and we are through. o

The following result is well-known, see Theorem
3.6.in [4].
Corollary 2.5. The statements  are
equivalent.

(1) X is extremally disconnected.

(2) C (X) is a Baer ring.

(3) Every non-zero ideal in C(X) is seeential in a
principle ideal generated by an idempotent.

(4) C(X) is a CS-ring.

following

Proof. It is well-Known that Max (C(X)) = fX , where
PX is the stone-Cech compactification of X [5]. We
note that X is extremally disconnected if and only if
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PX is extremally disconnected. Hence the corollary

follows from Theorem 2.4, by letting S=Max (C(X)). O

For a ring R, let B(R) be the set of idempotents of R.
It is well-known that B(R) can be made a Boolean
algebra. Also it should be recalled that B(R) is complete
if every subset has either infimum or supremum.

Proposition 2.6. Let R be a reduced ring and Max
(R) € S. Then B(R) is complete if and only if the union

of any collection of clopen subsets of S is clopen.

Proof. Suppose the union of any collection of clopen
subsets if S is clopen. Let B={e, :ke K} be any

subset of B(R). By Lemma 2.2., Vg(ey) is clopen,
VaeK . Hence A=U;«Vs(e,) is clopen, so there
exists ee R such that A=Vs(e). Obviously e is the
infimum of B. Conversely, let{A :keK} be any
collection of clopen sets. Then by Lemma 2.2., there

exist the idempotent elements €, € R such that

A =Vg(e,). Let e=inf{e :keK}. We have

Vs (€) =Uyck Ay - Therefore Uy g A is clopen. O
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