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Abstract 
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1. Introduction and Notations 

The theory of hypergroups was initiated by Dunkl 
[3], Jewett [7] and has received a good deal of attention 
from harmonic analysts. It is still unknown whether an 
arbitrary hypergroup admits a left Haar measure (for 
more information see [2]). The lack of the Haar measure 
and involution presents many difficulties, however, we 
succeed to get some interesting results. Let X be a 
hypergroup (for more information see [3] or [10]) with 
convolution measure algebra M(X) and probability 
measures Mp(X). Recall that L(X) denotes the set of all 
measures μ∈M(X) for which the mapping x→lμl∗δx is 
norm-continuous [6,10]. We assume that X is 
foundation, i.e. {supp(μ); μ∈L(X)} is dense in X. It 
is well known that L(X) is an ideal in M(X) and L(X) 
has a positive bounded approximate identity bounded by 
1 ([6], Lemma 1). 

U

The first Arens product on L(X)** is defined in three 
steps as follows. For μ,ν∈L(X), f in L(X)* and F,G in 
L(X)**, the elements fμ, Ff of L(X)* and GF of L(X)** 
are defined by <fμ, ν>=<f, μ∗ν>, <Gf, μ>=<G, fμ> and 
<FG, f>=<F, Gf>. 

Let B=L(X)*L(X), we know that B is a Banach 
subspace of L(X)*. The formulas which define the first 
Arens product in L(X)** can also be used to define a 
Banach algebra structure on B* [10]. Finally, for every 
μ∈L(X), ν∈M(X) and f∈L(X)* we define <ν,fμ> 
=<f,μ∗ν> and <fν,μ> =<f,ν∗μ>, so that M(X)⊆B*. Also, 
we define <mf,ν>=<m,fν> for any m∈B*, f∈L(X)* and 
ν∈L(X). Most of our notation in this paper coming from 
[6,10]. In this paper, we will characterize some 
homomorphisms which are weak*-weak* continuous 
(see below). 

2. Main Results 

We remember that the topological centre of B* is 
defined by Zt(B*)={m∈B*; the mapping n→mn is 
weak*-weak* continuous}. When X is a hypergroup with 
an involution and Haar measure, it is known that 
Zt(B*)=M(X). We do not exactly know Zt(B*)=M(X), 
however, for the following Theorem, we assume that 
Zt(B*)=M(X). 

Lemma 2.1. Let T:B→L(X)* be a bounded linear 
map. Then T∈HomL(X)(B,L(X)*) (where 
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T∈HomL(X)(B,L(X)*) means T(fμ)=T(f)μ for f∈B, 
μ∈L(X)) if and only if T(fδx)=T(f)δx for f∈B and x∈X. 

Proof. Let T∈HomL(X)(B,L(X)*), and let (eα) be a 
bounded approximate identity in L(X) ([6], Lemma 1). 
For f∈B and x∈X, we have T(fδx)=limT(f 
eα∗δx)=limT(f)eα∗δx= T(f)δx, i.e. T(fδx)=T(f)δx. 

To prove the converse, let f∈B and μ∈L(X). Let T* 
be adjoint to T. By ([4], Lemma 3.4), for each ν∈L(X), 
we can write <T(fμ),ν>=<T*(ν),fμ>=∫<T*(ν),fδx>dμ(x) 
=∫<ν,T(fδx)>dμ(x)=∫<δx∗ν,T(f)>dμ(x)=<μ∗ν,T(f)>=<T(
f)μ,ν>. This shows that T(fμ)=T(f)μ. Consequently 
T∈HomL(X)(B,L(X)*). 

Notation 2.2. For μ∈M(X), let ρμ be a right multi-
plier on L(X) defined by ρμ(ν)=ν∗μ, where ν∈L(X). 

Define T:Cb(X)→L(X)* by <T(ϕ),μ>=∫ϕ(x)dμ(x) for 
every ϕ∈Cb(X), μ∈L(X). Then it is easy to see that 
llT(ϕ)ll=llϕll. This shows that we may identify Cb(X) 
with a subspace of L(X)*. 

Theorem 2.3. Let T:B→L(X)* be a bounded linear 
map such that; 

1) T(fδx)=T(f)δx for any f∈B and x∈X, 
2) T is weak*-weak* continuous. 

Then T= ρμ* for some μ∈M(X). Moreover, μ is unique 
and llμll=llTll. 

Proof. By Lemma 2.1, T∈HomL(X)(B,L(X)*). It is 
easy to see that T*(μ∗ν)=μT*(ν) for any μ,ν∈L(X). 
Now, let (nα) be a net in B* such that nα→n (n∈B*) in 
the weak*-topology. Since T is weak*-weak* continuous 
and nαf→nf (f∈L(X)*) in the weak*-topology, so that for 
each ν∈L(X) we have <T*(ν)nα,f>→<T*(ν)n,f>. It 
follows that T*(L(X))⊆Zt(B*)=M(X). On the other hand, 
L(X) has a bounded approximate identity, and L(X) is 
an ideal in M(X). Therefore T*(L(X))⊆L(X). By ([6], 
Proposition 1), there exists a measure μ∈M(X) such that 
T*(ν)=ρμ(ν) for all ν∈L(X). Clearly T=ρμ*. It is easy to 
see that llTll≤llμll. Now, let ε>0 be given. There exists 
ϕ∈C°(X) with llϕll≤1 such that |<ϕ,μ>|≥llμll-ε. Let (eα) 
be a bounded approximate identity with norm 1. 
Therefore llTll≥llT(ϕ)ll≥|lim<ρμ*(ϕ),eα>|=|<ϕ,μ>|≥llμll-ε 
(since C°(X)⊆B [10]). Consequently llTll=llμll. It is easy 
to see that μ is unique. This completes our proof. 

Corollary 2.4. Let G be a locally compact abelian 
group and T:LUC(G)→L∞(G) (where LUC(G) denote 
the closed subspace of bounded left uniformly continu-
ous functions on G) be a bounded linear map such that; 

1) T(fδx)=T(f)δx for any f∈LUC(G) and x∈G, 
2) T is weak*-weak* continuous. 

Then T= ρμ* for some μ∈M(G). Moreover, μ is unique 
and llμll=llTll. 

Proof. We know that L∞(G)L(G)=LUC(G) and 
Zt(LUC(G)*)=M(G) ([8], Theorem 1). The results 
follows from Theorem 2.3. 

Let A be a Banach algebra with a bounded 
approximate identity. It is well known that A** and 
(A*A)* with the first Arens product are Banach algebras 
[1]. In addition, we define <nf,a>=<n,fa> for n∈(A*A)*, 
f∈A* and a∈A. 

We recall that multiplication in a locally convex 
algebra A is said to be hypocontinuous, if for every 
neighbourhood U of zero in A and a bounded subset C 
of A, there exists a neighbourhood V of zero such that 
CV VC⊆U. The following Lemma shows that if 
multiplication in a Banach algebra A with a bounded 
approximate identity, is hypocontinuous in the weak-
topology, then A

U

* factors on the left, i.e. A*A=A* [9]. 
Lemma 2.5. Let A be a Banach algebra with a 

bounded approximate identity, and let the multiplication 
with weak-topology on A be hypocontinuous. Then A* 
factors on the left. 

Proof. Let h∈A* and B1 be unit ball in A. By 
assumption, weak-topology on A is hypocontinuous. 
Therefore there exists a finite subset {f1,f2,...,fn} in A* 
and ε>0 such that B1{a∈A; |<fi,a>|<ε for any 
i∈{1,2,...,n}}⊆{a∈A; |<h,a>|<1}. Now, let a∈A and 
<fi,a>=0 for all i∈{1,2,...,n}. For b∈BB1, we have <h,ba> 
=0, and so hA⊆span{f1,f2,...,fn}. By ([11], Theorem 
1.21), hA is a closed subspace of A . On the other hand, 
if (e

*

α) is a bounded approximate identity in A, then 
heα→h in the weak -topology. Consequently by ([11], 
Theorem 1.21), he

*

α→h in the norm topology. But heα 
∈hA and so h∈hA. It follows that A factors on the left. * 

Theorem 2.6. Assume X is such that weak-topology 
on L(X) is hypocontinuous. Let T:L(X)*→L(X)* be a 
bounded linear map such that T(fδx)=T(f)δx for any 
f∈L(X)* and x∈X. Then T∈HomL(X)( L(X)*,L(X)*). 

Proof. See Lemma 2.1 and Lemma 2.5. 
In [4], we have shown that if G is a nondiscrete 

abelian locally compact group, then there exists a 
bounded linear map T:L∞(G)→L∞(G) such that T(fδx)= 
T(f)δx (f∈L∞(G), x∈G) and T∉HomL(G)( L∞(G), L∞(G)). 

Let A be a Banach algebra with a bounded 
approximate identity (eα) bounded by 1. Baker, Lau and 
Pym [1] have been proved HomA(A*,A*) (where 
T∈HomA(A*,A*) means T(fa)=T(f)a for every f∈A* and 
a∈A) is isomorphic with the Banach algebra (A*A)*. 
Indeed, we can prove that HomA(A*,A*) is isometric 
with the Banach algebra (A*A)*. Let T∈HomA(A*,A*), 
there exists a n∈(A*A)* such that T=Tn where Tn(f)=nf 
(f∈A*). Indeed, we define <n,f>=<E,T(f)> (f∈A*A ), 
where E is a right identity for A** (for more information 
see Theorem 1.1 in [1]). Hence llTnll≤llnll. Now, let ε>0 
be given. There is a functional f∈A*A with llfll≤1 such 
that |<n,f>|≥llnll-ε. It follows that, llTnll≥lim|<Tn(f),eα>| 
=lim|<nf,eα>|≥|lim<nf,eα>|=|<n,f>|≥llnll-ε, i.e. llTnll=llnll. 
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Theorem 2.7. Let A be a Banach algebra with a 
bounded approximate identity bounded by 1, and T∈ 
HomA(A*,A*). The following statements are equivalent: 

1) There exists a n∈(A*A)* such that an∈A for all 
a∈A, and T= Tn. 

2) T is weak*-weak* continuous. 
Proof. Let T=Tn and an∈A for any a∈A. Let (fα) be 

a net in A* such that fα→f (f∈A*) in the weak*-topology. 
For a∈A, we have <an,fα>→<an,f>, and so 
<Tn(fα),a>→<Tn(f),a>. This shows that T is weak*-
weak* continuous. 

To prove the converse, let T∈HomA(A*,A*). By ([1], 
Theorem 1.1), there exists a n∈(A*A)* such that T=Tn. 
Now, let a∈A. By assumption, T is weak*-weak* 
continuous, and so Tn

*(a)∈A** is weak*-continuous. It 
follows that Tn

*(a)∈A ([11], Chapter 3). On the other 
hand, <Tn

*(a),f> =<a,Tn(f)>=<a,nf>=<an,f> where 
f∈A*, i.e. Tn

*(a)=an. Consequently an∈A for any a∈A. 
This completes our proof. 

Corollary 2.8. Let A be a Banach algebra with a 
bounded approximate identity bounded by 1. If all 
operators T in HomA(A*,A*) are weak*-weak* 

continuous, then (A*A)*=Zt where Zt ={n∈(A*A)*; the 
mapping m→nm is weak*-weak* continuous}. 

Proof. Suppose all operators T in HomA(A*,A*) are 
weak*-weak* continuous, and let n∈(A*A)*. Then 
Tn∈HomA(A*,A*) is weak*-weak* continuous. By 
Theorem 2.7, an∈A for any a∈A. A standard argument 
using the Cohen-Hewitt factorization Theorem shows 
that AA=A. Now, let mα→m in the weak*-topology, and 
let f∈B. There exist g∈B and a∈A such that f=ga. 
Therefore <nmα,f>=<anmα,g>=<mα,gan> and <nm,f> 
=<m,gan>. This shows that <nmα,f>→<nm,f>, i.e. 
n∈Zt. Consequently Zt=(A*A)*. 

Corollary 2.9. Let G be a locally compact group. 
Then all operators T in HomL(G)(L∞(G), L∞(G)) are 
weak*-weak* continuous if and only if G is compact. 

Proof. By ([8], Theorem 1), we have 
Zt(LUC(G)*)=M(G). On the other hand, LUC(G)*= 
M(G)⊕ C°(G)⊥ ([5], Lemma 1.1). The results follows 
from Corollary 2.8. 

For some Banach algebras A, the subspace 
{n∈(A*A)*; An⊆A} of B* have been studied by Lau and 
Ulger in [9]. In the following Theorem we will study 
{n∈B*; L(X)n⊆L(X)}. 

Theorem 2.10. Let X be a hypergroup. Then {n∈B*; 
L(X)n ⊆L(X)}=M(X). 

Proof. Since L(X) is an ideal in M(X), we have 
M(X)⊆{n∈B*; L(X)n⊆L(X)}. For the reverse inclusion, 
let n∈{n∈B*; L(X)n ⊆L(X)}. So the mapping ν→νn 
from L(X) into L(X) is a right multiplier. By ([6], 
Proposition 1), there exists a measure μ in M(X) such 

that ν∗μ=νn for any ν∈L(X). Now, let (eα) be a 
bounded approximate identity in L(X) and f∈B. Then 
<eα∗μ,f>=<eαn,f> (for all α) implies <μ,f>=<n,f>, i.e. 
μ=n. This completes our proof. 

Corollary 2.11. Assume X is such that Zt(B*)=M(X). 
Then L(X) is an ideal in B* if and only if X is compact. 

Proof. Let L(X) be an ideal in B*, and let n∈B*. It is 
easy to see that the operator Tn is weak*-weak* 
continuous. Consequently by Corollary 2.8, 
B*=Zt(B*)=M(X). But B*=M(X)⊕ C°(X)⊥ ([11], 
Theorem 4), and so C°(X)⊥={0}, i.e. X is compact. 

To prove the converse, let X be compact. Then 
B*=M(X), and so the operator Tn (n∈B*) is weak*-weak* 
continuous. Theorem 2.7 shows that L(X) is a right 
ideal in B*. On the other hand, by definition X is 
commutative [3,6,10], so that L(X) is an ideal in B*. 
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