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1. Introduction 

Prediction theory of stationary stochastic processes 
has been extensively developed and is now considered 
to be complete. The existence of bounded shift for 
stationary processes has played a major role in this 
development. The existence and boundedness of shift 
for non-stationary processes is important [1]. An 
interesting class of non-stationary stochastic processes 
is that of periodically correlated  processes. This 
class of processes has been studied by several authors 
[2-14]. However, questions concerning their shift have 
not yet been considered. In this note, we study these 
questions and obtain spectral criteria for the existence of 
bounded shift for PC  processes. 

)PC(

2. Preliminaries 

Let ),,( ΡΩ β  be a probability space and ),,(2
0 ΡΩ βL  

denote the space of all complex-valued random 
variables on Ω  with zero mean and finite variance. The 

inner product and norm here are given by 

∫Ω Ρ== )()()()(),( ωωω dYXYXEYX  

and   ),( XXX = . 

Any sequence { }ZnX n ∈,  of random variables in 
),,(2

0 ΡΩ βL  will be called a stochastic process and its 
correlation function  is defined by ),( nmR

)(),( nm XXEnmR = . 

Given a stochastic process , its shift operator V  
is a linear transformation which sends  to , for 
each 

nX

nX 1+nX
Zn∈ . In general this operator is not well-defined 

and in order to make the above definition, it is necessary 
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to impose certain restrictions on . Before we 
proceed further, let’s now state the formal definition of 
shift operator and consider an example where this 
operator is not well-defined. 
 

nX

Definition 2.1. (a) A stochastic process  is said to 
have a shift if the linear transformation V  on 

 which sends each  to  
is well defined. (b) A process  is said to have a 
bounded shift if it has a shift which can be extended to 

nX

{ ZnXSΡXL n ∈= :)( } nX 1+nX

nX

{ }ZnXSPXH n ∈= :)(  

as a bounded operator. 
 

Example. Let  be any nonzero stochastic process and 
define a new stochastic process  by 

nY

nX

⎪⎩

⎪
⎨
⎧

+=

=
=

120

2

knif

knifY
X k

n  

The shift operator for  is clearly ill-defined 
because it sends a zero vector, say  to a nonzero 
vector, say . If we take the original stochastic 
process  to be a nondeterministic, then we get an 
example of a stochastic process  which has no shift. 

nX

1X

2X

nY

nX
 

Definition 2.2. A stochastic process  is called 
stationary if 

nX

),(),( 11 ++= nmRnmR  

For all . Znm ∈,
It is well-known that any stationary stochastic pro-

cess has a bounded shift and that it is a unitary operator. 
However, for a non-stationary process as we saw above 
the shift may not even exist and in order for a stochastic 
process  to have a shift we must impose some 
restrictions on the process  or its correlation function 

. For the following lemma one can see [1]. 

nX

nX
),( nmR

 
Lemma 2.3. Let  be a stochastic process with 
correlation function  as defined above. Then 

nX
),( nmR

(a) In order for  to have a shift it is necessary and 

sufficient that for any finite sequence {  of complex 
numbers 

nX

}na

0)1,1(0),( =++⇒= ∑∑ nmRaanmRaa nmnm . 

(b) In order for  to have a bounded shift it is 
necessary and sufficient to have a positive number 

nX
M  

such that for any finite sequence {  of complex 
numbers 

}na

∑∑ ≤+ + ),()11( , nmRaaMmRaa nmnm n . 

We close this section with a brief introduction to 
periodically correlated processes. 

 
Definition 2.4. A stochastic process  is called 
periodically correlated with period p if for all 

nX
Znm ∈, , 

we have 

),(),( pnpmRnmR ++= . 

Such a process will be briefly called a  process. 
Let  be a  process with period . Then for each 
integer 

PC
nX PC p
τ , the function ),( τ+nnR  is periodic in  with 

period . Therefore it has Fourier expansion 
n

p

∑
−

=

=+
1

0

)2exp()(),(
p

k
k p

iknRnnR πττ , 

where )(τkR  are given by 

∑
−

=

−+=
1

0

)2exp(),(1)(
p

n
k innnR

p
R τπττ . 

For convenience, we extend the definition of these 
11,0,)( ,, −= pkRk Kτ  to all integers  by k )(τkR  

)(τpkR += . 

It is shown in [3] that each )(τkR  has a spectral 
representation of the form 

∫ −=
π

θτ τθ

π
2

0
)(

2
1)( k

i
k dFeR  
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where each  is a complex-valued measure on kdF
)2,0[ π . One can then see that 

∫ ∫ −−=
π π

λθλθ

π

2

0

2

0
)(

2
),(

4

1),( dFenmR nmi  

where the spectral measure  of  is given by dF nX

∑
−

−=

−=
1

1

))2((),(
p

pk
k p

kBAFBAF π
I . 

Here  stands for the set of all numbers of the 
form  with . This shows that spectral 
measure  of any  process is concentrated on 

 line segments 

aB −
ab − Bb∈
dF PC

12 −p ==− kpk ,/2πλθ  
, contained in the square 1,,1 −− pp K )2,0[)2,0[ ππ × , 

and 

∫ −−=−=
π

θ
π

θ
2

0
)( )(

2
1)(),( dFenmrnmR nmi  

3. Shift for PC Processes 

In this section we study the questions of existence 
and boundedness of shift for  processes. We first 
obtain some basic results and then prove our main result 
which gives several criteria for existence and 
boundedness of shift including a spectral criterion. 

PC

 
Lemma 3.1. Let  be a  process with period . nX PC p

(a) If  has shift V  then V  is invertible. nX
(b) If  has bounded shift V  then V  is boundedly 

invertible. 
nX

 
Proof. (a) Suppose  has shift V  and assume 

 for some finite sequence 
nX

0=∑ nn Xa { }na  of 

complex numbers. This means that 
0),( =∑ nmRaa nm . Applying Lemma 2.3(a) we get 

0),( 11 =++∑ nmRaa nm . Applying Lemma 2.3(a) 

 more times to the latter equation, we get 2−p

0)1,1( =−+−+∑ pnpmRaa nm . 

Considering that  is PC  with period , we get nX p

0)1,1( =−−∑ nmRaa nm , 

which means 01 =∑ −nn Xa . So we showed that for 

any sequence of complex numbers  na

00 1 =⇒= ∑∑ −nnnn XaXa . 

But this is clearly equivalent to the existence of the 
inverse U  of V  which sends each  to . nX 1−nX

(b) Suppose  has a bounded shift V . and let  
be a finite sequence of complex numbers. Applying 
Lemma 2.3(b) 

nX na

1−p  consecutive times we arrive at 

,),(

)1,1(

1∑

∑
−≤

−+−+

nmRaaM

pnpmRaa

nm
p

nm

 

which in conjunction with the fact that  is 
periodically correlated with period  implies 

nX
p

∑∑ −≤−− ),()1,1( 1 nmRaaMnmRaa nm
p

nm . 

Therefore 

212
1 ∑∑ −
− ≤ nn

p
nn XaMXa , 

which implies that backward shift U  sending each  
to  has a bounded extension to . Since 
clearly , we conclude that V  is boundedly 
invertible. 

nX

1−nX )(XH
1−=VU

The following remarks follows from the proof of 
Lemma 3.1. 

 
Remarks 3.2. Let  be any  process with period 

. 
nX PC

p
(a) If  has a shift (bounded shift) V , then it has 

shifts (bounded shifts) , of any order , sending 
each  to . In fact, it is clear that . 

nX

kV Zk ∈

nX knX +
k

k VV =

169 



Vol. 13  No. 2  Spring 2002 Miamee and Shahkar J. Sci. I. R. Iran 

(b) The shift  always exists and it is unitary. pV

(c) If  has a bounded shift V , then for any 
positive integer , 

nX
k

k
k VV ≤     and    )1( −

− ≤ pk
k VV . 

Before we proceed further, we need to introduce 
some terminologies. Let  be  Hilbert 

spaces. Their direct sum , equipped 

with the Euclidean inner product  

qHHH ,,, 21 K q

qHHH ⊕⊕⊕ K21

∑
=

=
q

i
ii YX

1

),()),(( YX  

becomes a Hilbert space. Here qXXX ⊕⊕⊕= K21X  

and , with . Direct 

sum of q copies of H  will be denoted by . 
qYYY ⊕⊕⊕= K21Y iii YX H∈,

qH
 

Lemma 3.3. A stochastic process  in nX =H  
 is periodically correlated with period  if 

and only if its associated process  in  defined by 
),,(2

0 ΡΩ βL p

nZ qH

11 −+⊕⊕⊕= + pnn XXX nn KZ  

is stationary. 
 

Proof. “only if” part: If  is a  process with 
period , then for any  and n  in 

nX PC
p m Z , we can write 
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This means that  is stationary. Proof of “if” part 
is similar. 

mZ

 
Lemma 3.4. If  is a  process with period  then 
the spectral measure of its associated stationary process 

 introduced in last lemma is  , where  is the 
part of the spectral measure  of  supported on 
the main diagonal of the square mentioned in section 2. 

nX PC p

nZ opdF odF
dF nX

 
Proof. For the proof, we refer the reader to [7]. 

 
Definition 3.5. A stochastic process  in the Hilbert 
space  is called linearly stationary if 
there exists a stationary process  in another Hilbert 
space 

nX
),,(2

0 ΡΩ=Η βL

nW
κ  and an invertible transformation H→κ:T  

such that nn TWX = , for all . A linearly 
stationary process  is called bounded linearly 
stationary if the transformation  can be chosen to be 
bounded. 

Zn∈

nX
T

It is clear that linearly stationary processes are in 
general non-stationary. Nevertheless prediction 
properties of linearly stationary processes can easily be 
investigated. Because one can transfer a prediction 
problem concerning a linearly stationary process  to 
one about its stationary counterpart , we find the 
solution for this stationary process  and then transfer 
the result back to the original process  For more 
detail, one can see [15]. 

nX

nW

nW

nX

In what follows, we will use the following notations 
and terminologies. 

Let  be a  process with period p in 
 and  in , be its associated 

stationary process introduced in Lemma 3.3, namely: 

nX PC
),,(2

0 ΡΩ= βLH nZ pH

11 −+⊕⊕⊕= + pnn XXX nn KZ  

Now let  denote the orthogonal 
projection which maps any vector in  to its first 
coordinate, i.e. 

ppP HH →:
pH
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121 )( XXXXP p =⊕⊕⊕ K , 

for any . We denote by H∈pXXX ,,, 21 K κ  the 

subspace of  spanned by all  and Q  to stand 
for the restriction of 

pH s'nZ
P  to κ . 

 
Theorem 3.6. For any  process  with period , 
the following statements are equivalent. 

PC nX p

(a)  has a bounded shift V . nX
(b)  is bounded linearly stationary. nX
(c) The operator HQ →κ:  defined above is 

boundedly invertible. 
 

Proof. We prove . (c)(b)(a) ⇒⇒
(c)(a) ⇒ : Take a finite linear combination 

. We can write: ∑ nn Xa

.)1(
2)1(22
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22

2
1

2
1

22
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∑

∑∑

∑

∑∑∑
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−+
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nn
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nn
p

nnnn
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nnnnnn

XaVV

XaV

XaVXa

Xa

XaXaa

K

K

K
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which shows the inverse of Q  exists and is bounded. 
)(b(c) ⇒ : By Lemma 3.3,  where  is 

the stationary process associated to . Since each  
is clearly in 

nn ΡX Z= nZ

nX nZ
κ  and  is the restriction of Q Ρ  to κ  then 

we get  for all  and this completes the 
proof. 

nn QX Z= Zn∈

)(a(b) ⇒ : Suppose there is a stationary process 
 and boundedly invertible operator  

 such that 
nW )(: WHT

)(XH→

)( nn WTX =    for all   . Zn∈

Let  be the well-known unitary shift of the 
stationary process  and define  by 

U
nW )()(: XHXHV →

1−= TUTV . 

One can check that V  is the shift of our process . 
Now since T  and U  are bounded  is 
bounded. 

nX
1−= TUTV

 
Theorem 3.7. Let  be a  process with period . 
The following statements are equivalent. 

nX PC p

(a)  has a shift. nX

(b)  is linearly stationary. nX
(c) The operator H→κ:Q  defined above is 

invertible. 
 

Proof. : Suppose  has a shift, say V  and 
suppose a finite linear combination of  is zero, i.e. 

(c)(a) ⇒ nX

nX

0=∑ nn Xa . Applying V  to both sides of this 
equation 1−p  times, we get 

.0,,0 11 == ∑∑ −++ pnnnn XaXa K  

Thus 

0
1

0

22
==∑ ∑∑

−

=
+

p

i
innnn Xaa Z  

which means 0=∑ nna Z . Hence  is invertible. Q

(b)(c) ⇒ : By Lemma 3.3,  where  is 
the stationary process associated to . Since each  
is clearly in 

nn ΡX Z= nZ

nX nZ
κ  and  is the restriction of Q Ρ  to κ  then 

we get nn QX Z=  for all  and this completes the 
proof. 

Zn∈

)(a(b) ⇒ : Let  be the stationary process and 
 be the linear transformation with 

nW
)()(: XLWLT →

nn TWX =  and  be the standard 
unitary shift operator of the stationary process , then 
the linear transformation  clearly serves the 
desirable shift for . 

)()(: WHWHU →

nW
1−= TUTV

nX
Next theorem gives our spectral characterization for 

a  process to have a shift. PC
 

Theorem 3.8. Let  be a  process with period  
whose spectral measure  is concentrated on  

nX PC p
)(⋅dF p2
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line segments 1,,0,,1,/2 −−==− ppkpk KKπλθ  
of [ ) ( ]0,22,0 ππ ×  with the measure on the diagonal 
being . 0dF

(a)  has a bounded shift if and only if there exists 
a positive number 

nX
K  such that 

∫ ∫∫ ≤
π ππ

λθλφθφθθφ
2

0

2

0

2

0
0

2 ),()()()()( dFKdF  

for any trigonometric polynomial . ∑ −= θθφ in
nea)(

(b)  has a shift if and only if nX

,0)(

0),()()(

2

0
0

2

2

0

2

0

=⇒

=

∫

∫ ∫
π

π π

θφ

λθλφθφ

dF

dF

 

for any trigonometric polynomial function =)(θφ  

. ∑ − θin
nea

 
Proof. (a) If  has a bounded shift then by Theorem 
3.6, the operator  is boundedly invertible. This means 
there exists some  such that 

nX
Q

0>M

∑∑ ≤ nnnn XaMZa  

for every finite sequence  of complex numbers. 
Squaring both sides and rewriting it in terms of the 
spectral measure we get 

na

∫ ∫∫ ≤
π ππ

λθλφθφθφ
2

0

2

0
2

2

0
0

2 ),()()()( dFMdFp  

where . This shows that (1) holds 

with . Now assume that inequality (1) 
holds. We can rewrite it as 

∑ −= θθφ in
nea)(

pMK /2=

22
)/( ∑∑ ≤ nnnn XaKap Zl , 

which means the operator  in part (c) of Theorem 3.6 
is boundedly invertible. This in virtue of Theorem 3.6 
completes the proof of part (a). 

Q

Proof of part (b) is similar to the proof of part (a). 
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