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Abstract 

We consider the class of polynomial differential equation x =&  
, 2( , ) ( , ) ( , )n n m n mP x y P x y P x y+ ++ + 2( , ) ( , ) ( , )n n m n my Q x y Q x y Q x y+ += + +& . 

For  where  and  are homogeneous polynomials of degree i. Inside 
this class of polynomial differential equation we consider a subclass of Darboux 
integrable systems. Moreover, under additional conditions we proved such 
Darboux integrable systems can have at most 1 limit cycle. 

,m n ≥1
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1. Introduction 

In 1878 Darboux showed how the first integrals of 
planar polynomial vector fields can be constructed 
possessing sufficient invariant algebraic curves. He 
proved that if a polynomial system of degree  has at 
least  invariant algebraic curves, then it has 
either a first integral or an integrating factor of the form 

m
( 1) /m m + 2

1

( , )i

q

i
i

f x yλ

=
∏ , for suitable i Cλ ∈  not all zero and 

where ( , ) 0if x y =  are algebraic invariant curves of 
system. The above function is called either a Darboux 
first integral or a Darboux integrating factor. Jouanolou 
in 1979 showed that if the number of invariant algebraic 
curves of a planar polynomial vector field of degree  
is at least [ ( , then the vector field has a 
rational first integral, and consequently all its solutions 
are invariant algebraic curves. Cozma and Suba proved 

that a weak focus of a polynomial system of degree 
 having the first Liapunov constant zero and 

m
1) / 2] 2m m + +

3m ≥
( 1) / 2m m 2+ −  algebraic invariant curves has a 

Darboux first integral or a Darboux integrating factor. 
Probably the three main open problems in the 
qualitative theory differential systems in R2 are the 
determination of the number of the limit cycles and their 
distribution in the plane; the distinction between a 
center and a focus, called the center problem (see for 
instance [21]); and the determination of their first 
integrals. (see for instance [4]). Limit cycles of planar 
vector fields were defined by Poincaré [22], and started 
to be studied intensively at the end of 1920s by Van der 
Pol [23], Liénard [18] and Andronov [1]. A limit cycle 
is a periodic orbit of the planar differential system 
isolated in the set of all periodic orbits. One of the 
classical ways to produce limit cycles is perturbing a 
system which has a center. In such a way that limit 
cycles bifurcate in the perturbed system from some of 
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the periodic orbits of the original system, see for 
instance Pontrjagin [24]. 

2. Statement and Preliminary Results 

We say that a function  with , not 
identically null in U , is an, Integrating factor of 

system 

( )kR C U∈ 1k ≥

( , )x P x y=& ,  in U  if ( , )y Q x y=&
( )RP

x
∂

=
∂

 

(RQ
y

∂
−

∂
) . In this case a first integral ( , )H x y  is given 

by this integrating factor , R

( , ) ( , ) ( , ) ( )H x y R x y P x y dy f x= +∫  

where H RQ
x

∂
= −

∂
. Let U  be an open set of R, we say 

the function V C  with , not identically 
null in U , is an inverse integrating factor of system in 

 if it satisfies the following linear equation in partial 
derivatives: 

( )k U∈ 1k ≥

U

V V P QP Q
x Y x y

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

V . 

We notice that this function V  is a particular 
solution of system 

( , )x P x y=& , . (2-1) ( , )y Q x y=&

The expression P Q
x y
∂ ∂

+
∂ ∂

 is called divergence of 

system (2-1). This function V  is very important 

because 1R
V

=  defines in  an integrating 

factor of system (2-1) which let us determine a first 
integral for system (2-1) in . In [16] it is 
proved that function V  must be null over all the limit 
cycles contained in U . 

{\ }

}

0U V =

{\ 0U V =

Darboux showed that a polynomial system of degree 

 with at least m ( 1) 1
2

m m +
+  invariant algebraic curves 

has a first integral which can be expressed by means of 
these algebraic curves, Darboux idea consists on 
looking for a first integral of system (2-1) with the form 

1

( , ) ( , )i

q

i
i

H x y f x yλ

=

=∏  where i Cλ ∈ , ( , ) 0if x y =  

are invariant algebraic curve of system (2-1). The 
former first integral is called a Darboux first integral, 
in general, a Darboux first integral is a weak first 

integral. Jouanoulou [17] showed in 1976 that if the 
number of algebraic solutions for a polynomial system 

of degree m  is at least ( 1) 2
2

m m +
+ , then the system 

has a rational first integral and all the solutions of 
system are algebraic. Prelle and Singer [25] showed in 
1983 that if a polynomial system has an elementary first 
integral then this integral can be computed using the 
algebraic solutions of the system; in particular they 
showed that this polynomial system admits an 
integrating factor which is a rational function with 
coefficients in C . Later on, Singer [26] in 1992 showed 
that if a polynomial system has a Liovillian first  
integral then the system has an integrating factor of  
the form: 

0 0

( , )

( , )

( , ) exp ( , ) ( , )
x y

x y

R x y U x y dx V x y dy
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠
∫  

where  and V  are rational functions which verify U
U V
y x
∂ ∂

=
∂

. We called generalized Darboux functions 

to the functions of the form H e= ig
if λ∏  where g  is 

a rational function, if  are polynomials and i Cλ ∈ . We 
say system (2-1) is Darboux integrable if the system 
has a first integral or an integrating factor which is a 
Darboux function. 

Llibre in [11] shows that the problem of finding first 
integrals or integrating factors is reduced to a question 
of linear algebra on the set of cofactors. We introduce 
the following concepts introduced in [1]. Let X be a 
vector field of degree d , and  a finite set of 
points. The restricted cofactor space with respect to S, 

2S C⊂

S∑ , is defined by , where 

 is the maximal ideal of  corresponding to 
the point p. If S consists of q points, then we say that 
they are independent with respect to  if 

1[ , ]S p d
p S

m C x y−
∈

Σ = ∩I

pm [ , ]C x y

1[ , ]dC x y−

1dim dim [ , ] 1/ 2( 1)( 2)S dC x y q d d qσ −= Σ = − = + + −  

With this notation in [1] prove the following result. 
 

Proposition.  Let  be a vector field of degree d . 
Assume that X  has  distinct invariant algebraic 
curves 

X
r

0if = , 1, 2,...,i r=  (all irreducible and 
reduced) of multiplicity , and let im i

i
N m= ∑ . 

Suppose, furthermore, that there are q  critical points 
, , …,  which are independent with respect to 1p 2p qp
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1[ , ]dC x y− , and ( ) 0j kf p ≠  for  and 
 then the following statements hold. 

1,...,j = q
r1,...,k =

i)  If 2N σ≥ + , then  has a rational first integral. X
ii)  If 1N σ≥ + , then  has a Darboux first 

integral. 
X

iii)  If N σ≥ , and  vanishes at the , then 
 has either a Darboux first integral or a Darboux 

integrating factor. 

( )div X ip
X

3. The Main Results 

N.G. Lloyd in the studies limit cycles consider 
systems with homogeneous nonlinearities the forms 

( , ),

( , )

n

n

x x y P x y

y x y Q x y

λ

λ

= + +

= − + +

&

&
 (3-1) 

where  and  are homogeneous polynomials of 
degree . In the polar form (3-1) is: 

nP nQ
n

( ) nr r f rλ θ= +& , 11 ( ) ng rθ θ −= − +&  

where f  and g  are homogeneous polynomials of 
degree  in 1n + cosθ  and sinθ . Now let 

, a little calculation show that 1 1(1 ( ))n nr r gρ − −= − 1θ −

ρ  satisfies the first order non autonomous equations: 

3 2( ) ( ) ( 1)d A B n
d
ρ θ ρ θ ρ λ ρ
θ
= − − − . (3-2) 

where ( )A θ  and ( )B θ  are homogeneous polynomials 
in cosθ  and sinθ  of degree  and 2( 1)n + 1n + , 
respectively. In the case  this transformation was 
introduced by Lins Neto (see [19]). The connection 
between (3-1) and (3-2) was explained in [21], where it 
was used to calculate the focal values for (3-1). In the 
[5] Chengzhi, Li and Weigu considered system (3-1) as 

2n =

0λ = , i.e. 

( , )nx y P x y= − +& ,  (3-3) ( , )ny x Q x y= +&

where  and  are homogeneous polynomials of 
degree . Inside this class they consider a new subclass 
that having a center at the origin, and give a new 
method to study the limit cycles which bifurcate from 
their periodic orbits when they perturb this subclass 
inside the class of all systems (3-3), see [5]. In the [12], 
Jaume Giné and Jaume Llibre considered the class of 
polynomial differential equations 

nP nQ
n

1 2

1 2

( , ) ( , ) ( , ),

( , ) ( , ) ( , )

n n n

n n n

x P x y P x y P x y

y Q x y Q x y Q x y

+ +

+ +

= + +

= + +

&

&
 (3-4) 

where  and  are homogeneous polynomials of 
degree . Inside this class, consider a new subclass of 
Darboux integrable systems, such that some of them 
having a degenerate center, i.e., a center with linear part 
identically zero. In this paper we consider systems of 
the form: 

iP iQ
i

2

2

( , ) ( , ) ( , ),

( , ) ( , ) ( , )

n n m n m

n n m n m

x P x y P x y P x y

y Q x y Q x y Q x y

+ +

+ +

= + +

= + +

&

&
 (3-5) 

where  and  are homogeneous polynomials of 
degree . Inside this class, we consider new subclasses 
of Darboux integrable systems, and some of them 
having a degenerate center, i.e., a center with linear part 
identically zero. In the polar coordinates (

iP iQ
i

, )r θ , defined 
by cosx r θ= , siny r θ=  system (3-5) becomes 

1 1

2
2 1

1 1
1 1

2 1
2 1

( ) ( )

( )

( ) ( )

( )

n n
n n m

n m
n m

n n
n n m

n m
n m

r f r f r

f r

g r g r

g r

θ θ

θ

θ θ θ

θ

+
+ + +

+
+ +

m

m− + −
+ + +

+ −
+ +

= +

+

= +

+

&

&
 (3-6) 

where 

( ) cosif θ θ=  P 1(cos ,sin ) sini θ θ θ− +  
 Q 1(cos ,sin )i θ θ−  

( ) cosig θ θ=  Q 1(cos ,sin ) sini θ θ θ− −  
 P 1(cos ,sin )i θ θ−  

where if  and ig  are homogeneous trigonometric 
polynomials in the variable cosθ  and sinθ  having 
degree in the set { }, 2, 4,....i i i N− − I , where  is 
the set of non-negative integers. So it is possible that 

N

( )if θ  can be of the form 2 2
2(cos sin )s

i sfθ θ −+  with 

2i sf −  a trigonometric polynomial of degree 2 0i s− ≥ . 
A similar situation occurs for ( )ig θ . 

If suppose that 1 2 1( ) ( ) 0n m n mg gθ θ+ + + += =  and 

1( )ng θ+  either  or  for all 0f 0p θ , and do the change 
mr ρ= , then system (3-6) becomes the Abel 

differential equation 

[ 1
1

2 3
1 2 1

( )
( )

( ) ( )

n
n

n m n m

d m f
d g

f f

ρ θ ρ
θ θ

θ ρ θ

+
+

+ + + +

=

⎤+ + ⎦ρ

 (3-7) 

These kind of differential equations appeared in the 
studies of Abel on theory of elliptic functions. For more 
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details on Abel differential equations, see [7] or [9]. 
We say that all systems (3-5) with 1( )n mg θ+ + =  

2 1( ) 0n mg θ+ + =  and 1( )ng θ+  either  or  for all 0f 0p

θ  define the class  if for some R F a∈

( )1 2 1 1 2 1 1

3
1 1 1 2 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n m n m n m n m

n m n n m n m

g f f f f

af f f f

θ θ θ θ θ

θ θ θ

+ + + + + + + + +

+ + + + + + +

′ ′

θ

− =

−
 

where ' d
dθ

= . 

Since 1( )ng θ+  either  or  for all 0f 0p θ , It 
follows that the polynomial differential systems (3-5) in 
the class  must satisfy that  is even. F 1n +

We shall prove that all polynomial differential 
systems (3-5) in the class F  are Darboux integrable. 
Using similar techniques in [10] for finding a new 
Darboux integrable systems. 

 
Theorem 1.  For polynomial differential systems (3-5) 
in the class  the following statements hold. F

(a)  If 1 1 2 1( ) ( ) ( )n n m n mf f fθ θ+ + + + + θ  is not identically, 
then the system is Darboux integrable with the first 
integral ( , ) ( , )H x y H ρ θ=%  obtained from 

( )2 1 11

1

2 2 2
2 1 1 2 1 1

1 2 ( )/ ( )( ) 1exp exp arctan
( ) 4 1 4 1

,
( )/ ( ) ( )/ ( )

n m n mn

n

n m n m n m n m

f ff d
g a a

f f f f a

ρ θ θθρ θ
θ

ρ θ θ ρ θ θ

+ + + ++

+

+ + + + + + + +

⎡ ⎤⎡ +⎛ ⎞
− −⎢⎜ ⎟

⎤
⎥⎢ ⎥

− −⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
+ +

∫
 

 if 1
4

a f  

1

1 2 1

2 1 1

( ) 1exp exp
( ) 1 2 ( ) / ( )
1 2 ( ) / ( )

n

n n m

n m n m

f d
g f f

f f

θρ θ
1n mθ ρ θ θ

ρ θ θ

+

+ + +

+ + + +

⎛ ⎞ ⎛
−⎜ ⎟ ⎜ +⎝ ⎠ ⎝

+

∫
+ +

⎞
⎟
⎠ , 

 if 1
4

a =  

1 11
2 1 4

1 2 1

1 1
1 11
2 1 4

2 1

1

( ) 2 ( )exp 1 4 1
( ) ( )

2 ( )1 4 1
( )

a
n n m

n n m

a
n m

n m

f fd a
g f

fa
f

θ ρ θρ θ
θ θ

ρ θ
θ

⎛ ⎞− +⎜ ⎟
−⎝ ⎠

+ + +

+ + +
⎛ ⎞+⎜ ⎟

−⎝ ⎠
+ +

+ +

⎛ ⎞⎛ ⎞
− − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠

∫
, 

 if 10
4

a ≠ p  

1
2 1

1

1

( )exp ( )
( )

( )

n
n m

n

n m

f d f
g

f

θρ θ θ
θ

θ

+
+ +

+

+ +

⎛ ⎞
−⎜ ⎟
⎝ ⎠
∫

, if  0a =

Through the change of variables cosx r θ= , 
siny r θ=  with . mrρ =

(b)  If 1( )nf θ+  is not identically zero, 0a =  and 

1 2 1( ) ( )n m n mf fθ θ+ + + +  is identically zero, then the system 
is Darboux integrable with the first integral 

( , )H x y% = ( , )H r θ  obtained from 

1

1

1
1

1

1

( )exp
( )

( )exp ( )
( )

( )

n

n

n
n m

n

n

f d
g

f d f
g

d
g

θ θ
θ

ρ

θ θ θ
θ

θ
θ

+

+

+
+ +

+

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠+

∫

∫
∫

 

 if 2 1( ) 0n mf θ+ + =  

1

1
2

1
2 1

1

1

( )exp 2
( )

( )exp 2 ( )
( )

2
( )

n

n

n
n m

n

n

f d
g

f d f
g

d
g

θ θ
θ

ρ

θ θ θ
θ

θ
θ

+

+

+
+ +

+

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠+

∫

∫
∫

 

 if 1( ) 0n mf θ+ + =  

Through the change of variables cosx r θ= , 
siny r θ=  and mr ρ= . 

 
Proof of Theorem 1(a).  We do the change of variable 
( , ) ( , )ρ θ ϕ ξ→  defined by ( ) ( )uρ θ ϕ ξ=  where 

1

1

( )
( ) exp

( )
n

n

f
u d

g
θ

θ θ
θ

+

+

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  and 1

1

( ) ( )
( )

n m

n

u f
d

g
θ θ

ξ θ
θ

+ +

+

= ∫ . 

This transformation writes the Abel differential equation 
(3-7) into the form 

[ ] [ ]3( ) ( ) ( ) ( )g 2ϕ ξ ξ ϕ ξ ϕ ξ′ = +  (3-8) 

where 2 1

1

( ) ( )
( )

( )
n m

n m

u f
g

f
θ θ

ξ
θ

+ +

+ +

=  and ' d
dξ

= . If we do 

change tξ →  into the independent variable defined by 
1
( )t

ξ
ϕ ξ
−′ =  where now ' d

dt
= , Equation (3-8) takes the 

form 
2 ( ) ( ( )) 0t t g tξ ξ′′ + = . (3-9) 

Note that a polynomial differential systems (3-5) 
with 1 2 1( ) ( ) 0n m n mg gθ θ+ + + += =  and 1( )ng θ+  either 

 or  for all 0f 0p θ  define the class  if and only if 
for some 

F
a∈R we have 
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( )1 2 1 1 2 1 1( ) ( ) ( ) ( ) ( )n n m n m n m n mg f f f fθ θ θ θ θ+ + + + + + + + +′ ′− =  

3
1 1 1 2 1( ) ( ) ( ) ( )n m n n m n maf f f fθ θ θ+ + + + + + +− θ  (*) 

or equivalent for some a R we get ∈

2 1 1 2 1

1 1

1

1

( ) ( ) ( )
( ) ( ) ( )

( )
( )

n m n n m

n m n n m

n m

n

f f fd
dt f g f

f
a

g

1

θ θ θ
θ θ θ

θ
θ

+ + + + +

+ + + + +

+ +

+

⎛ ⎞
+⎜ ⎟

⎝ ⎠

=

 (3-10) 

Now if for some R we have a∈ ( )g aξ ξ=  then of 

defines ( )g ξ , ξ  we have 2 1

1

( )
( )

( )
n m

n m

f
u

f
θ

θ
θ

+ +

+ +

=  

1

1

( ) ( )
( )

n m

n

u f
a

g
θ θ

dθ
θ

+ +

+
∫ , and if derivating with respect to 

θ  we get 

2 1 1

1 1

2 1

1

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )

n m n m

n m n

n m

n m

f fdu au
d f g

f
u

f

θ θ
θ θ

θ θ θ

θ
θ

θ

+ + + +

+ + +

+ +

+ +

⎛ ⎞
=⎜ ⎟

⎝ ⎠

′−

 

Since 1

1

( ) ( )
( )

( )
n

n

u f
u

g
θ θ

θ
θ
+

+

′ = , so we obtain: 

2 1 1 1 2 1

1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n m n m n n m

n m n n n m

f f f fd a
d f g g f 1

θ θ θ θ
θ θ θ θ

+ + + + + + +

+ + + + + +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠ θ
 

which is equivalent to condition (*). So a polynomial 
differential system (3-5) such that 1( )nf θ+  

1 2 1( ) ( ) 0n m n mf fθ θ+ + + + ≠  in the class  if and only if 
for some R we have 

F
a∈ ( )g aξ ξ= . If in the equation 

(3-9) we set ( )g aξ ξ=  then equation (3-9) is an Euler 
equation, therefore if we doing the change expt τ=  in 
the independent variable equation (3-9) becomes the 
linear ordinary differential equation with constant 
coefficients 

( ) ( ) ( ) 0aξ τ ξ τ ξ τ′′ ′− + =  (3-11) 

where here ' d
dτ

= . Equation (3-11) has the 

characteristic equation  and are the two 

roots of characteristic equation 

2 0aλ λ− + =

1,2
1 1 4

2
aλ ± −

= , so if 

1
4a =  its general solution is 1( ) exp( )

2
c τξ τ =  

2 exp( )
2

c τ
+ , and if 1

4a ≠  its general solution is 

1 1 2 2( ) exp( ) exp( )c cξ τ λτ λ τ= +  where 1λ  and 2λ  are 
the two roots of the characteristic equation. Going back 
to the independent variable exp( )t τ=  the solution of 
the Euler differential equation is ( )tξ =  

1 2 ln( )c t c t t+  if 1
4a = , and 1

1( )t c t λξ =  2
2c t λ+  if 

1
4a ≠ . Finally, going back to the variable ( , )ρ θ  with 

 and taking into account if the roots and mrρ = 2λ  are 
real or complex, after some tedious computations we 
obtain the first integrals of statement (a) according with 
the values of a . 

Now we prove that systems of statement (a) are 
Darboux integrable. It is easy to check that for systems 
(1-5) in the class  with F 1 1 2 1( ) ( ) ( )n n m n mf f fθ θ θ+ + + + +  
not identically zero 2 2

2 1( , ) ( ( ) /n mV fρ θ ρ ρ θ+ +=  
2

1( )n mf θ+ +  + 2 1 1( ) / ( ) )n m n mf f aρ θ θ+ + + + +  with  
is an inverse integrating factor for its Abel differential 
equation (3-7). As this inverse integrating factor 

mrρ =

( , )V ρ θ  is an elementary function in Cartesian 
coordinates, and so systems (3-5) in the class  with F

1 1 2 1( ) ( ) ( )n n m n mf f fθ θ+ + + + + θ  not identically zero have a 
Liouvillian first integral according with results of 
singer, see [24], and this completes the proof of (a).● 

 
Proof of Theorem 1(b).  If 2 1( )n mf θ+ +  is identically 
zero or 1( )n mf θ+ +  is identically zero, the Abel 
differential equation (3-7) becomes the Bernoulli 
differential equation 

2
1 1 1 1( ) / ( ) ( ) / ( )n m n n n

d f g f g
d
ρ ρ θ θ ρ θ θ
θ + + + + += +  

or 

3
2 1 1( ) / ( )n m n

d f g
d
ρ ρ θ θ
θ + + += 1 1( ) / ( )n nf gρ θ θ+ ++  

respectively. Solving these Bernoulli equations we 
obtain the first integrals of statement (b).● 

 
Question.  Is it possible to find other integrable 
subclasses from the well-known integrable cases of the 
Abel differential equation?  For answering this question 
if in the Abel differential equation (3-7) we do the 
change of variables ( , ) ( , )ρ θ η ξ→  defined by 

( ) ( )uρ θ η ξ= 1

2 1

( )
3 (

n m

n m

f
f )

θ
θ

+ +

+ +

−  where 
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2
1 1

1 2 1 1

( ) ( )
( ) exp

( ) 3 ( ) ( )
n n m

n n m n

f f
u d

g f g
θ θ

θ θ
θ θ θ

+ + +

+ + + +

⎛ ⎞⎡ ⎤
= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∫  

and 
2

2 1

1

( ) ( )
( )

n m

n

u f
d

g
θ θ

ξ θ
θ

+ +

+

= ∫ . 

This transformation writes the Abel equation (3-7) 
into form 

[ ]3( ) ( ) ( )ϕ ξ ϕ ξ η θ′ = +  (3-12) 

where 

1 1
2

2 12 1

3
1 1 1

2
2 1 1 2 1 1

( ) ( )( )
3 ( )( ) ( )

( ) ( ) 2 ( ) .
3 ( ) ( ) 27 ( ) ( )

n n m

n mn m

n n m n m

n m n n m n

g fd
d ff u

f f f
f g f g

θ θ
η θ

θ θθ θ

θ θ θ
θ θ θ θ

+ + +

+ ++ +

+ + + + +

+ + + + + +

⎡ ⎛ ⎞
= ⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

⎤
− + ⎥

⎦

 

From the definition of ( )u θ  we have 

2
1 1

1 2 1 1

1 1 2 1 1

2 1 1 1 1

ln ( )

( ) ( )
[

( ) 3 ( ) ( )

( ) ( ) ( ) ( )
.

( ) ( ) ( ) 3 ( )

n n m

n n m n

n m n n m n m

n m n m n n

u

f f
d

g f g

f f f f
d

f f g g

θ

θ θ
θ

θ θ θ

θ θ θ θ
θ

θ θ θ θ

+ + +

+ + + +

+ + + + + + +

+ + + + + +

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦

⎡
−⎢

⎣

∫

∫
⎤
⎥
⎦

 (3-13) 

If , using (3-10) in (3-13) we obtain 0a ≠

2 1

1

2 1

1

1

1

2 1 1

1 1

( )
( )1

( )3
( )

( )1(1 )
3 ( )

( ) ( )1 1ln (1 ) .
3 ( ) 3 (

n m

n m

n m

n m

n

n

n m n

n m n

fd
d f

d
fa
f

f d
a g

f f
d

a f a g

θ
θ θ

θ
θ
θ

θ
θ

θ

θ θ
)
θ

θ θ

+ +

+ +

+ +

+ +

+

+

+ + +

+ + +

⎛ ⎞
⎜ ⎟

− ⎝ ⎠

+ − =

− + −

∫

∫

∫

 

Using this result we get 

1
3

2 1 1

1 1

( ) ( )1( ) exp 1
( ) 3 ( )

a
n m n

n m n

f f
u d

f a g
θ θ

θ θ
θ θ

−

+ + +

+ + +

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫  

and therefore 
(1 3 ) /

2 1

1

1

1

( )2 9( )
27 ( )

( )1 3exp
( )

a a

n m

n m

n

n

fa
f

fa d
a g

θ
η θ

θ

θ
θ

θ

−

+ +

+ +

+

+

⎛ ⎞−⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎡ ⎤−
⎢ ⎥
⎣ ⎦

∫

 

for 2
9a =  and for 1

3a =  we have ( ) 0η θ =  and 
1

27( )η θ −= , respectively. For these cases, the 
differential equation (3-12) is of separable variables and 
we can obtain the associated first integrals. But 

( ) 0η θ =  and 1
27( )η θ −=  imply that equality (*) holds 

with 2
9a =  and for 1

3a =  that we obtain cases already 
studied. 

 
Theorem 2.  For a polynomial differential system (3-5) 
in the class  the following statements hold. F

(a)  If 1 1 2 1( ) ( ) ( )n n m n mf f fθ θ+ + + + + θ  is not identically 
zero, then in the domain of definition of the inverse 
integrating factor 

2 2 2
2 1 1

2 1 1

( , ) ( ( ) ( )

( ) ( ) )

n m n m

n m n m

V f f

f f a

ρ θ ρ ρ θ θ

ρ θ θ

+ + + +

+ + + +

=

+ +
 

System (3-5) has no limit cycles. 
(b)  If 1 2 1( ) ( )n n mf fθ θ+ + +  is not identically zero, 

0a =  and 1( )n mf θ+ +  is identically zero, then the 
maximum number of its limit cycles contained in the 
domain of definition of the inverse integrating factor 

3 1

1

1

1

1

( )
( , ) exp 22 ( )

( )exp 2
( )

( )

n

n

n

n

n

f
V d

g

f d
g

d
g

θρρ θ ρ θ
θ

θ θ
θ

θ
θ

+

+

+

+

+

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫
∫

 

is one. 
(c)  If 1 1( ) ( )n n mf fθ θ+ + +  is not identically zero, 0a =  

and 2 1( )n mf θ+ +  is identically zero, then in the domain of 
definition of the inverse integrating factor 

2 1

1

1
1

1

1

( )
( , ) exp

( )

( )exp ( )
( )

( )

n

n

n
n m

n

n

f
V d

g

f d f
g

d
g

θ
ρ θ ρ ρ θ

θ

θ θ θ
θ

θ
θ

+

+

+
+ +

+

+

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫
∫
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System (3-5) has no limit cycles. 
We note that, a limit cycle of system (3-5) is a 

periodic orbit isolated in the set of periodic orbits of 
system (3-5). In order to study the existence and non-
existence of the limit cycles of system (3-5) we shall use 
the following result. 

 
Theorem 3.  Let  be a  vector field defined in 
the open subset U  of . Let  be an 
inverse integrating factor of vector field , i.e. a 

 solution of the linear partial differential equation 

( , )P Q 1C
2R ( , )V V x y=

( , )P Q
1C

V V P QP Q
x y x y

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜∂ ∂ ∂ ∂⎝ ⎠

V⎟  defined in U . If γ  is a 

limit cycle of  in the domain of definition U , 

then 

( , )P Q

γ  is contained in ( ){ }, : ( , )x y U V x y 0∈ = . 

 
Proof.  See Theorem 3 of [12] or [8]. 

We recall that if  with  not 
identically null in U , is a inverse integrating factor of 
vector field ( ,  in U  then function 

( )kV C U∈ 1k ≥

)P Q 1
VR =  defines 

in  is an integrating factor of system which 
lets us determine a first integral for vector field in 

. In [15] it is proved that function V  must 
be null over all the limit cycles contained in U . 

{\U V = }0

}0{\U V =

 
Proof of Theorem 2(a).  For systems (3-5) in the class 

 with F 1 1 2 1( ) ( ) ( )n n m n mf f fθ θ+ + + + + θ  not identically 
zero, it is easy to check that an inverse integrating factor 
of its associated Abel differential equation (3-7) is given 
by 

2 2 2
2 1 1

2 1 1

( , ) ( ( ) / ( )

( ) / ( ) ).

n m n m

n m n m

V f f

f f a

ρ θ ρ ρ θ θ

ρ θ θ

+ + + +

+ + + +

=

+ +
 

By Theorem 3, If system (3-5) and consequently its 
associated Abel equation (3-7) have limit cycles, then 
must limit cycles contained in the set { ( , ) 0}V ρ θ = . 
From expression of the inverse integrating factor, the 
unique possible limit cycles must be given by 

1
41 2 1

1
41 2 1

( 1 1 4 ) ( ) 2 ( ) , if
( )

( ) 2 ( ) , if

n m n m

n m n m

a f f a

f f a

θ θ
ρ θ

θ θ

+ + + +

+ + + +

⎧ − ± −⎪= ⎨
−⎪⎩

p

=
 

with . Since  is even, the function mrρ = 1n +

1( )n mf θ+ +  has zeroes (for some  therefore the 
above expressions of 

)m odd=
( )ρ θ  cannot be positive for all θ . 

consequently, there are no limit cycles in the domain of 
definition of V . 

 
Proof of Theorem 2(b).  The case (b) and (c) of 
Theorem 2 are identical with the cases (b) and (c) of 
Theorem 2 of [12]. 

Systems (3-5) with  and  satisfying 3n = 1m =

5 6( ) ( ) 0g gθ θ= =  inside class F  linearly zero singular 
point at the origin. The following corollary provides 
some quintic polynomial systems which belong to the 
class , see [12]. F

 
Corollary 4.  Systems (3-5) with  and 3n = 1m =  
satisfying 5 6( ) ( ) 0g gθ θ= =  belong to the class  if 
one of the following statements holds. 

F

(a)  0α β γ δ= = = =  
(b)  30 12 03 0b b b= = = , , 2

21 /b a Cβ= 0α γ δ= = =  
and 0A B D E= = = = . 

(c)  0A B C D E= = = = =  and . 0a =
The systems (a) and (c) are Darboux integrable with 

the first integral given by Theorem 1(b) with 3n =  and 
1m =  where 5 6( ) ( ) 0f fθ θ= = , respectively. The 

system (b) is Darboux integrable with the first integral 
given by Theorem 1(a) with  and 3n = 1m = . 
Consequently, these quintic systems with a linearly zero 
singular point at the origin are Darboux integrable, see 
[13]. 
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