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Abstract 
In the ordinary linear models, regressing the residuals against lagged values has 

been suggested as an approach to test the hypothesis of zero autocorrelation 
among residuals. In this paper we extend these results to the both equally and 
unequally replicated functionally measurement error models. We consider the 
equally and unequally replicated cases separately, because in the first case the 
residuals of the means of replicate groups of observations in both X and Y 
directions are functions of the same residual while in the second case we have no 
analogous result and so we have to deal with the residuals in each direction. We 
derive the asymptotic validity of these tests and we carry out a bootstrap 
simulation study to determine how well the asymptotic theory of the proposed test 
works for different size of samples. 
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1. Introduction 
In ordinary linear models, plotting residuals against 

time has been recommended to assess the model 
assumptions with respect to independence of successive 
observations. In particular, such a plot should show no 
autocorrelation. Furthermore, to test the hypothesis that 
the errors have zero autocorrelation, we can regress the 
residuals against lagged values of the regression [1-4]. 
In this paper we extend these results to the measurement 
error models in a general case of unequally functional 
replicated case. The unequally replicated functional 
measurement error model is defined by 
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if  for at least one i ( ).  and  are 
the vectors of unobservable fixed values with k and p 
dimensions, respectively, and 

ii rs ≠ ni  ..., ,1= ix iy

β  is the matrix of 
coefficients. For each unobservable  and  we have 
more than one observable random vector  and . 

Furthermore,  and  are random errors which have 

zero mean and covariance matrices  and , 
respectively. In this case there is no natural pairing 
among the individual observations  and . Thus 
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we assume that  for all i, j, l, and m. We 
consider a simple case, 

0) ,cov( =mjil ue
1=p  and then extend the 

results for general cases. We use  as the variance of 
the error . 

eeσ

ile
Suppose that , 1== ii rs ni  ..., ,1= .[5], recommends 

plot of the residuals against i  (i.e. time) to assess the 
existence of any autocorrelation in the measurement 
error models. We construct a test based on the 
regressing residuals against lagged values for both 
equally and unequally replicated, in the same manner as 
ordinary linear models. We consider the equally and 
unequally replicated cases separately because in the first 
case the residuals of the means of replicate groups of 
observations in both X and Y directions are functions of 
the same residual, while in the second case we do not 
have any analogous result and so we have to deal with 
the residuals in each direction [6]. We also present the 
asymptotic validity of the proposed test. 

 
2. Equally Replicated Case 

Suppose that  ( ), then the model (1) 
will be an equally replicated model. If we define 

ii rs = ni  ..., ,1=

iii XY βν ′−=  and iii XY βν ′−= ˆˆ , ( ), in which 

 is an estimate of 

ni  ..., ,1=

β̂ β  (see [5]), iY  and iX  are means 
of observations at ith level, then it can be shown [6] that 
in this case the residuals of mean observations in both X 
and Y directions are functions of the . Therefore, to 
assess the existence of any autocorrelation we will use 
the residual  and for convenience we examine 
regressing  on the first t lagged values of  (i.e. 
against  for ). It will be 
clear that the procedure generalises to other situations 
including non-consecutive lags. First we define 

, 
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where ∑
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n

ti
iWtnW
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1 ˆ)(ˆ . In the following theorem 

we derive the convergence properties of the  as a basis 
for testing zero autocorrelation among errors of the 
model. 

γ̂

Theorem 2.1. Let  be the vector of estimated 

coefficients from regressing  on , defined by (2). 

Then 

γ̂
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)(ˆ 2
1

1

11 −
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1
n  converges 

in Law to the standard normal distribution as n tends to 
infinity. 

 
Proof. We define iuuii Xx νβσνν ˆˆˆˆˆ 1Σ+= −  as an estimate of 

 [5], then it is not difficult to show that ix
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( ) )()(1ˆˆ xxEC inini &&&& −−−+=− νννν     (4) ni  ..., ,1=

where ∑
=

−− =Ο=′−=
n

i
ipn nnE

1

1 ˆˆ  and )()ˆ( 2
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ννββ . This 

expression holds for lagged values and derivations of 
mean when the mean ν̂  is calculated over only  
groups of the observations for fixed 

)( tn −
t . For example, 

expression (3) holds for 

( )[ ] [ ])()()( 1ˆˆ kkinkkinkki xxEC −−−−−− −−−+=− &&&&νννν  (5) 
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analogous definition for 

tk  ..., ,1=

)()(  and kk x −− &&ν . To assess the 

asymptotic distribution of the , we first examine 
expressions of the form, 
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Substituting expressions of the )ˆˆ( νν −i  and 

)ˆˆ( )( kki −− −νν  from (4) and (5) into (6) we can show that 
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Using Hölder’s inequality repeatedly for the 4Π , we 
conclude that , while the independence of 

 and ’s implies 
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where  is variance of the . Combining results 
from (2), (7), (9) and (10) we have 
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Proof. From (11) we conclude that )(ˆ 2
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Theorem 14.4-2 of [8]). Therefore, using expression 
(10), the mean squares residuals is equal to 
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and will converge to the  as n �tends to infinity.  ννσ1−r
Expressions (10), (11) and (12) imply that the 

common t statistic for testing each element of γ  
( 0=jγ ) and F statistic for simultaneously testing of the 
elements of γ  converge to the standard normal and Chi-
square distributions, respectively. In large samples, such 
tests can be used to test hypothesis of zero 
autocorrelation of the 's. iν

 
3. Unequally Replicated Case 

In the unequally replicated case residuals of the 
means of observations in both X and Y directions are not 
solely depend on  [6]. Therefore, we have to consider 
existence of any autocorrelation among the errors in 
both directions. However, to minimise the length of 
paper, we only look at this problem in Y direction and 
we define 

iν̂

iii xYe ˆˆˆ β ′−= , , as the residual in 
this direction. It is not difficult to show that 
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 and . 

Furthermore, the asymptotic variance of the , is 
. Clearly , , have 

different asymptotic variances. Therefore, to avoid 
using heteroscedastic regression of the residuals, we 
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We define , , as 

the vector of first t-lags. If we regress  on , then 
the regression coefficient can be given by 
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Expressions (16), (17) and (18) imply that the 

common t statistic for testing each element of  
( ) and F statistic for simultaneously testing of 

elements of  converge to the standard normal and 
Chi-square distribution, respectively. Thus, in large 
samples, such tests can be used to test hypothesis of 
zero autocorrelation among the errors in Y direction. In 
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practice we can use an estimate of the 
iiee &&&&σ  which is 

, , in the definition of 

the  instead of 
iiii iee ννσδβσ ˆ)ˆˆ1(ˆ 2′+=&&&& ni  ..., ,1=

∗
iê

iiee &&&&σ  which is unknown. 
 

4. Multivariate Extensions 
In previous sections we concentrated on the 

univariate model in which  is a random variable. 
However, the procedure for testing autocorrelation can 
be easily extended to the multivariate models in which 

 is a random vector. We define 

ijY

ijY )ˆ ..., ,ˆ(ˆ 1 ′= ipii ννν  and 

as the random vectors of ith residual 
for equally and unequally replicated cases, respectively. 
We have 
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To investigate existence of any autocorrelation 
among errors of the model, we examine elements of iν̂  
or  and we regress ∗

iê ijν̂  or  ( ) versus 
their first t-lags. Then we can test for zero regression 
coefficient in each case. The asymptotic validity of the t 
and F statistics can be derived using exactly the same 
arguments given in sections (2) and (3) and so we are 
not going to go through further details. 

∗
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5. Parametric Bootstrap Simulation Study 

We derived the theoretical justifications of using 
statistical techniques for testing autocorrelation 
analogue to those given in ordinary linear models. 
These results are only hold if n tends to infinity. 
However, in practice there are situations in which 
sample size is medium or small. Therefore, the aim of 
parametric bootstrap simulation study here is to 
determine how well the asymptotic theory of the 
proposed test works for the different sample sizes. The 
study is constructed so as to simulate an actual data set 
as much as possible. In order to do this, we simulated 
data in accordance with a set of real data. First we 
introduce this data set and then we perform the 
simulation study.  
 
5.1. Data Analysis 

The data set in this example arises from a series of 
experiments in 1985 at the Animal Research Institute 
(Werribee), Victoria, Australia and is known as 
“digestibility data”. The objective of experiments was to 
assess a new and more convenient method of assaying 
the digestibility of various diets fed to animals. The new 
method (the “nylon bag” technique) involved putting 
the food in a loose meshed nylon and weighing it before 

and after digestion. The old or “conventional assay” 
entailed sacrifice of the animal. 

The collected data set contains the digestibility 
values of the thirty-nine diets fed to animals as 
determined by conventional and nylon bag assays. Of 
the thirty-nine diets, eighteen are pellet and grain and 
the remaining are from another diets (The original data 
set exists from author on request). The question of 
interest is to determine the relationship between 
digestibility values as determined by the two kinds of 
assays. In each diet there are different numbers of 
replications for the conventional assay ( ) and nylon 
bag assay ( ) and so we have unequal number of 
replicated data at each level [9]. Preliminary analysis of 
this data set shows that it is reasonable to investigate 
linear relationship between the nylon bag and the 
conventional assay and so we fitted the functional 
measurement error model. The estimators of the 
parameters are , , 

ijX

ilY

009.5ˆ0 −=β 005.1ˆ1 =β 89.2ˆ =uuσ  
and 56.17ˆ =eeσ . Furthermore, the value of the F-
statistic for testing a zero regression coefficient from 
regressing ’s on one lagged value is given by ∗

iê
986.2=F  which is significant at the 10% level (but 

not at more stringent levels). This implies that there is 
some evidence of the existence autocorrelation in the Y  
direction. 

Furthermore, as a small data set, we also considered a 
subset of eighteen groups of the digestibility data, which 
are pelleted and grains diets. The estimators of the 
parameters of the model from fitting a functional 
measurement error model to this subset are , 

, 

396.5ˆ0 =β

871.0ˆ1 =β 393.23ˆ =eeσ  and 042.2ˆ =uuσ . The value 
of the F-statistic for testing a zero regression coefficient 
from regressing ’s on one lagged value is given by ∗

iê
982.3=F  which is significant at the 10% level and 

thus gives some slight evidence of existence 
autocorrelation among the Y values. In the next section 
we use this data set to conduct our simulation study. 
 
5.2. Simulation Results 

In this section we shall use the digestibility data set 
to simulate data accordance to the model (1). The group 
number is 39, which is relatively medium, and the 
number of replications in each group is exactly the same 
as those for the original digestibility data. At each step 
of the bootstrap replication we generated data for the 
model 

ijiij

iliil

uxX

exY

+=

++=

ˆ

ˆˆˆ
10 ββ

          

i

i

nl
rj

i

 ..., ,1
 ..., ,1
39 ..., ,1

=
=
=

263 



Vol. 12, No. 3, Summer 2001 Rasekh J. Sci. I. R. Iran 

where  and  are estimates of the  and  and 
the values , , are the estimated values of 
the , , based on the original data. In 
addition we assumed that  have normal 
distribution with zero mean and variances as 

0β̂ 1β̂ 0β 1β

ix̂ 39 ..., ,1=i
ix 39 ..., ,1=i

ijil ue   and 

eeσ̂  and 
uuσ̂  based on the original data. We simulated a total of 

1000 data sets and repeated the procedure of testing first 
order autocorrelation for the simulated data and we 
calculated the value of the F-statistic in each replication 
and compared it with the values of F-distribution for 
different critical regions 0.10, 0.05, 0.025 and 0.01. 

Table (1) summarises the results of the bootstrap 
study. The bottom row of the table gives the proportions 
of time that the calculated F-statistic fell beyond the 
critical values for different critical regions. This table 
presents relatively good evidence about the behaviour of 
the test. For the critical regions 0.10, 0.05 and 0.025 the 
calculated proportions are higher than the theoretical 
values, while we remember that we have rejected the 
assumption of no autocorrelation for the original data at 
the 0.10 level. The calculated proportion for the 0.01 is 
less than the theoretical value, which indicates that the 
test procedure will be conservative for the small critical 
regions. 

 
 

Table 1. Simulation results of the first order autocorrelation 
test 

Critical region 0.10 0.05 0.025 0.01 
Calculated proportion 0.130 0.070 0.035 0.008 

 
 

Table 2. Simulation results of the first order autocorrelation 
test using pelleted and grains diets data 

Critical region 0.10 0.05 0.025 0.01 
Calculated proportion 0.085 0.048 0.027 0.008 

 
 
A second bootstrap study was conducted with a 

subset of eighteen groups of the digestibility data, which 
are pelleted and grains diets. The aim of the second 
study is to determine the effect of the small sample sizes 

on the test procedure. While the other aspects of the 
bootstrap process were unchanged, we simulated 1000 
data sets with a procedure exactly the same as before. 

The results of the second study are summarised in 
Table (2). From this table we can see that, despite the 
possible rejection of the hypothesis of no 
autocorrelation for the original data at the level of 0.10, 
the calculated proportions are less than the theoretical 
values, which shows that for the small sample sizes the 
test procedure is conservative. Finally, while our 
simulation study is restricted to the first order 
autocorrelation, however, we could also extend our 
study to the higher orders and to see how the procedure 
works for small sample sizes. 
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