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Abstract

In the ordinary linear models, regressing the residuals against lagged values has
been suggested as an approach to test the hypothesis of zero autocorrelation
among residuals. In this paper we extend these results to the both equally and
unequally replicated functionally measurement error models. We consider the
equally and unequally replicated cases separately, because in the first case the
residuals of the means of replicate groups of observations in both X and Y
directions are functions of the same residual while in the second case we have no
analogous result and so we have to deal with the residuals in each direction. We
derive the asymptotic validity of these tests and we carry out a bootstrap
simulation study to determine how well the asymptotic theory of the proposed test

works for different size of samples.

1. Introduction

In ordinary linear models, plotting residuals against
time has been recommended to assess the model
assumptions with respect to independence of successive
observations. In particular, such a plot should show no
autocorrelation. Furthermore, to test the hypothesis that
the errors have zero autocorrelation, we can regress the
residuals against lagged values of the regression [1-4].
In this paper we extend these results to the measurement
error models in a general case of unequally functional
replicated case. The unequally replicated functional
measurement error model is defined by
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Yll :y|+el| I—l,...,n
Xij = % + U I=1..7 (€
yi = A% 1=1..5

if 5;=r, foratleastonei (i=1..,n). x, and y; are

the vectors of unobservable fixed values with k and p
dimensions, respectively, and g is the matrix of

coefficients. For each unobservable x; and y; we have
more than one observable random vector X; and Y; .
Furthermore, ¢; and u; are random errors which have

zero mean and covariance matrices X, and X,

respectively. In this case there is no natural pairing
among the individual observations X; and Y; . Thus
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we assume that cov(e;, uy,;) =0 foralli, j, I, and m. We

il
consider a simple case, p=1 and then extend the
results for general cases. We use o, as the variance of
the errore; .

Suppose that s; =1, =1, i=1,..,n.[5], recommends
plot of the residuals against i (i.e. time) to assess the
existence of any autocorrelation in the measurement
error models. We construct a test based on the
regressing residuals against lagged values for both
equally and unequally replicated, in the same manner as
ordinary linear models. We consider the equally and
unequally replicated cases separately because in the first
case the residuals of the means of replicate groups of
observations in both X and Y directions are functions of
the same residual, while in the second case we do not
have any analogous result and so we have to deal with
the residuals in each direction [6]. We also present the
asymptotic validity of the proposed test.

2. Equally Replicated Case
Suppose that s; =r; (i=1...,n), then the model (1)
will be an equally replicated model. If we define
v; =Y, = gX; and v, =Y, — BX;, (i=1,..,n), in which
,8 is an estimate of S (see [5]), Y; and )Ti are means

of observations at ith level, then it can be shown [6] that
in this case the residuals of mean observations in both X
and Y directions are functions of the v,. Therefore, to

assess the existence of any autocorrelation we will use
the residual v; and for convenience we examine

regressing v; on the first t lagged values of v, (i.e.
against vi_y, Vi 5,..,vi for i=t+1..,n). It will be

clear that the procedure generalises to other situations
including non-consecutive lags. First we define

i=t+1..n. Then the
regression coefficient of v; on V\A/i is given by

Wi = (Vig, Vicgs o Vid)' s

n =~ ~ ~ - n ~ =~
7=[20A7i ~W)W, —W)} DWWy

i=t+1 i=t+1

J— n
where W =(n-t)7* ZVVi . In the following theorem
i=t+1
we derive the convergence properties of the 7 as a basis
for testing zero autocorrelation among errors of the
model.
Theorem 2.1. Let y

coefficients from regressing v; on V\7i, defined by (2).

be the vector of estimated
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n
Then y7=ro;ln? ZV\/iviJrop(n’%) and nZj converges
i=t+1
in Law to the standard normal distribution as n tends to
infinity.

Proof. We define % = X; + 62,37, as an estimate of
Xi [5], then it is not difficult to show that

Vi = (1+Cn)"i - (ﬁ_ﬂ),xi

),ii = (1+ Cn)XI + ngi

in which % =X, +0;15,Av, C,=0,(n"?) and

d, :Op(n‘%) . We have

Pi—0 =(1+C, )vi = V) —E, (%, =X) i=1..n (4)

n
where E, =(8-8) = Op(n’%) and v = n*lz&i . This
i=1
expression holds for lagged values and derivations of
mean when the mean v is calculated over only (n—t)

groups of the observations for fixed t. For example,
expression (3) holds for

Vik — 5(—k) = (1+ C, )[Vi—k —V(x) ]— E, [Xi—k - X_.(—k)] (%)

_ n
where vy =(n-1)1 Y 7y, k=1..,t, and with the
i=t+1

analogous definition for v_, and X_'(_k). To assess the

asymptotic distribution of the 7, we first examine
expressions of the form,

n—li[oi_k —E(_k)](&i -v) k=1..t (6)

i=t+1

n J—
which are elements of the nt» (W -W)7.
i=t+1

of the (¥-v) and

(Vik —17(_k)) from (4) and (5) into (6) we can show that

Substituting  expressions
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n _ _ 4
nilZ[‘;i—k _V(—k)](vi -v) =zni ()

i=t+1 i=1

where IT;’s i=1,...,4 are
n
I, = (1+C,)2nt Z[Vi—k —V(-k)](‘/i -V)
i=t+1

(8)

M =(@+Cy)nt Zn:["i—k —‘7(—k)IEn(5<i —i)]

i=t+1

M =@+ CN LY (v~ 7)[En (i~ Rig)]

i=t+1

M, =n" Z [En Xk — i(—k))] [En (% — i)]

i=t+1
Using Hélder’s inequality repeatedly for the T4, we
conclude that IT, = Op(n‘l) , while the independence of

v; and x;’s implies IT, :op(n‘%) and T, :op(n‘%) .
Also for IT; we have

n
My =0y vy +0,(n72) ©)
i=t+1
However, as n tends to infinity, (5) implies that
n ~ =~ ~ =
(-1 W, -W )W, ~Wy
i=t+1 (10)

=rto, I +Op(n"%)

where r~1o,, is variance of the v; . Combining results
from (2), (7), (9 and (10) we have

n
}7=r0';&n’12V\/ivi+op(n_%). Thus, it follows from
i=t+1

Theorem (8.2.1) of [7], that

L
n77—>N(0,I,) as n—ow.l (11)
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n _— ~
Lemma 2.2. Let SSRlz(n—t)*lZ[(ﬁi—‘;)—77(Wi

i=t+1
— 72
—W)} be the mean squares residuals from regressing

v; on V\A/i . SSR1 will converge to r~lo,, as n tends to
infinity.

Proof. From (11) we conclude that ;?:Op(n’%) (see

Theorem 14.4-2 of [8]). Therefore, using expression
(10), the mean squares residuals is equal to

(n—t)*li(ﬁi ~7)2+0,(1)

i=t+1

(12)

and will converge to the r~o,, as n tends to infinity.l
Expressions (10), (11) and (12) imply that the
common t statistic for testing each element of y

(7;=0) and F statistic for simultaneously testing of the

elements of y converge to the standard normal and Chi-

square distributions, respectively. In large samples, such
tests can be wused to test hypothesis of zero
autocorrelation of the v; 's.

3. Unequally Replicated Case
In the unequally replicated case residuals of the
means of observations in both X and Y directions are not
solely depend on v; [6]. Therefore, we have to consider
existence of any autocorrelation among the errors in

both directions. However, to minimise the length of
paper, we only look at this problem in Y direction and

we define & =Y,— 3%, i=1..n, as the residual in
this direction. It is not difficult to show that
§=6+0,(n7), in which &=(+B5),

Si=-t'o,Zup
Furthermore, the asymptotic variance of the ¢, is
Ogs = (L+ ﬂ’é‘i)zavivi :

different asymptotic variances. Therefore, to avoid
using heteroscedastic regression of the residuals, we

—n-1 -1
and O-viv, =Nj O +1 ﬂzuuﬂ-

Clearly €, i=1..n, have

A 1, . .
define €' =o,2€, i=1..,n, as the studentised

residuals and we use € instead of €. Thus, we have

~ -1 1
e :Ué‘iéz}ei +0,(n2)

i=1..,n (13)

=& +0,(n7?).
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We define =, = (&",,8",,...6,)',
the vector of first t-lags. If we regress & on éi , then

the regression coefficient can be given by

i=t+1..,n, as

Z( _Eyr

i=t+1

7 {Z(éi—u)(»d } (14)

i=t+1

J— n
inwhich E=(n-t)1> 5.
i=t+1
convergence properties of the »*
theorem.

We derive the

in the following

Theorem 3.1. Let 7* be the vector of estimated

coefficients from regressing & on éi defined by (14).

n
Then ﬁ*:n*lzé;‘éiwop(n’%) and nZj* converges
i=t+1
in Law to the standard normal distribution as n tends to
infinity.

Proof. From (13) we have & —6* =¢*—&* +Op(n‘%).
This expression also holds for the lagged values and for
derivations from the mean when the mean &* is
calculated over only (n—t) groups of the observations

for fixed t and we have éi*,k—é(’ikﬁe, k—g'(*,k)
n
_1 T _ A .
+0,(n7?), where &', =(n-1) 1Ze(i7k) and with
i=t+1

the same definition for the 5'(’ik). To assess the

asymptotic distribution of the we examine

ar

n
expressions n*lz[é;ik—é(ik)](éi* -8*) which are
i=t+1

elements of the n* Z(_, —2)ér
i=t+1

. We have

n
nfl Z[é\::k _é\(*—k) ké;k —é*)

i=t+1

3 - - 1
=nt [éi*—k - E(*_k) jke;k —é*) +0 p (n_i)
i=t+1

(15)

n
=n Zé‘i*_ké'i* +0,(n7%)

i=t+1
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n
since n*l'e_'(ik) Ze’i* = op(n‘%) . On the other hand, as n
i=t+1
tends to infinity, we have

(n—t)° Z(~-—~)(~i—é) =1+0,(n?)  (16)
i=t+1
Combining results from (15) and (16) we obtain
n .. 1
y*=n?t) =& +0,(n77) , a7

i=t+1

inwhich =F = (87,6 ,,....&",) . Thus, it follows from
Theorems (8.2.1) and (8.2.2) of [7], that

L
n%;?*—>N(0,It) as n—oo.l (18)

Let  SSR2=(n-t)* Zn:[(éi* -€")

i=t+1

Lemma 3.2.

— 2
-y (H-—H} be the mean square residuals from

regressing &* on Z;.
to infinity.

SSR2 will converge to 1 as n tends

Proof. From (18) we have y* = Op(n‘%) (see Theorem

14.4-2 of [8]) which implies that the mean square
residuals is equal to

(n- t),lz(e

i=t+1

)2 =(n—t)" Z(e -8")%+0,(1)

i=t+1

n
and (n-t)7* Z(éi* —&*)2 will converge to 1 as n tends
i=t+1
to infinity.[
Expressions (16), (17) and (18) imply that the
common t statistic for testing each element of »*

(7*],‘ =0) and F statistic for simultaneously testing of

elements of »* converge to the standard normal and

Chi-square distribution, respectively. Thus, in large
samples, such tests can be used to test hypothesis of
zero autocorrelation among the errors in Y direction. In
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practice we can use an estimate of the o, Wwhich is
6es =+ f'6))%6,, , i=L...n, in the definition of

the & instead of o which is unknown.

4. Multivariate Extensions
In previous sections we concentrated on the
univariate model in which Y; is a random variable.

However, the procedure for testing autocorrelation can
be easily extended to the multivariate models in which
Y;; is a random vector. We define v; = (v;y, ..., vj,)" and

&' = (&1, &) as the random vectors of ith residual

for equally and unequally replicated cases, respectively.

We have é;‘:igé_éi, in  which Tge =1+

Aoz, 1+ p'5), 5i=_ri_12uuﬂz;i1vi and ¥, =

-1 -1
n; z:ee +1 ﬂzuuﬂ-

To investigate existence of any autocorrelation
among errors of the model, we examine elements of v;

or & and we regress v; or & (j=1..p) versus

their first t-lags. Then we can test for zero regression
coefficient in each case. The asymptotic validity of the t
and F statistics can be derived using exactly the same
arguments given in sections (2) and (3) and so we are
not going to go through further details.

5. Parametric Bootstrap Simulation Study

We derived the theoretical justifications of using
statistical ~techniques for testing autocorrelation
analogue to those given in ordinary linear models.
These results are only hold if n tends to infinity.
However, in practice there are situations in which
sample size is medium or small. Therefore, the aim of
parametric bootstrap simulation study here is to
determine how well the asymptotic theory of the
proposed test works for the different sample sizes. The
study is constructed so as to simulate an actual data set
as much as possible. In order to do this, we simulated
data in accordance with a set of real data. First we
introduce this data set and then we perform the
simulation study.

5.1. Data Analysis

The data set in this example arises from a series of
experiments in 1985 at the Animal Research Institute
(Werribee), Victoria, Australia and is known as
“digestibility data”. The objective of experiments was to
assess a new and more convenient method of assaying
the digestibility of various diets fed to animals. The new
method (the “nylon bag” technique) involved putting
the food in a loose meshed nylon and weighing it before
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and after digestion. The old or “conventional assay”
entailed sacrifice of the animal.

The collected data set contains the digestibility
values of the thirty-nine diets fed to animals as
determined by conventional and nylon bag assays. Of
the thirty-nine diets, eighteen are pellet and grain and
the remaining are from another diets (The original data
set exists from author on request). The question of
interest is to determine the relationship between
digestibility values as determined by the two kinds of
assays. In each diet there are different numbers of
replications for the conventional assay ( X;;) and nylon

bag assay (Yi) and so we have unequal number of
replicated data at each level [9]. Preliminary analysis of
this data set shows that it is reasonable to investigate
linear relationship between the nylon bag and the
conventional assay and so we fitted the functional
measurement error model. The estimators of the

parameters are o =-5.009, A =1.005, Sy =2.89

and G =17.56. Furthermore, the value of the F-
statistic for testing a zero regression coefficient from
regressing & ’s on one lagged value is given by
F =2.986 which is significant at the 10% level (but
not at more stringent levels). This implies that there is
some evidence of the existence autocorrelation in the Y
direction.

Furthermore, as a small data set, we also considered a
subset of eighteen groups of the digestibility data, which
are pelleted and grains diets. The estimators of the
parameters of the model from fitting a functional

measurement error model to this subset are [30 =5.396,

P =0.871, Gee =23.393 and &y, = 2.042. The value
of the F-statistic for testing a zero regression coefficient

from regressing & ’s on one lagged value is given by
F =3.982 which is significant at the 10% level and
thus gives some slight evidence of existence
autocorrelation among the Y values. In the next section

we use this data set to conduct our simulation study.

5.2. Simulation Results

In this section we shall use the digestibility data set
to simulate data accordance to the model (1). The group
number is 39, which is relatively medium, and the
number of replications in each group is exactly the same
as those for the original digestibility data. At each step
of the bootstrap replication we generated data for the
model

Yii = Bo+ BiXi +e i.=1,...

ij =Xi +Uj
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where B, and f, are estimates of the S, and A and
the values X, i=1,...,39, are the estimated values of
the xj, i=1,..,39, based on the original data. In
addition we assumed that e; and u; have normal
distribution with zero mean and variances as &e and
6w based on the original data. We simulated a total of
1000 data sets and repeated the procedure of testing first
order autocorrelation for the simulated data and we
calculated the value of the F-statistic in each replication
and compared it with the values of F-distribution for
different critical regions 0.10, 0.05, 0.025 and 0.01.

Table (1) summarises the results of the bootstrap
study. The bottom row of the table gives the proportions
of time that the calculated F-statistic fell beyond the
critical values for different critical regions. This table
presents relatively good evidence about the behaviour of
the test. For the critical regions 0.10, 0.05 and 0.025 the
calculated proportions are higher than the theoretical
values, while we remember that we have rejected the
assumption of no autocorrelation for the original data at
the 0.10 level. The calculated proportion for the 0.01 is
less than the theoretical value, which indicates that the
test procedure will be conservative for the small critical
regions.

Table 1. Simulation results of the first order autocorrelation
test

0.10
0.130

0.05
0.070

0.025
0.035

0.01
0.008

Critical region
Calculated proportion

Table 2. Simulation results of the first order autocorrelation
test using pelleted and grains diets data

0.10
0.085

0.05
0.048

0.025
0.027

0.01
0.008

Critical region
Calculated proportion

A second bootstrap study was conducted with a
subset of eighteen groups of the digestibility data, which
are pelleted and grains diets. The aim of the second
study is to determine the effect of the small sample sizes
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on the test procedure. While the other aspects of the
bootstrap process were unchanged, we simulated 1000
data sets with a procedure exactly the same as before.

The results of the second study are summarised in
Table (2). From this table we can see that, despite the
possible rejection of the hypothesis of no
autocorrelation for the original data at the level of 0.10,
the calculated proportions are less than the theoretical
values, which shows that for the small sample sizes the
test procedure is conservative. Finally, while our
simulation study is restricted to the first order
autocorrelation, however, we could also extend our
study to the higher orders and to see how the procedure
works for small sample sizes.
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