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Abstract 
A saddle point variational (SPV ) method was applied to the Dirac equation as 

an example of a fully relativistic equation with both negative and positive energy 
solutions. The effect of the negative energy states was mitigated by maximizing 
the energy with respect to a relevant parameter while at the same time minimizing 
it with respect to another parameter in the wave function. The Cornell potential 
and a power-law scalar and vector potentials were used in our calculations for the 
quark confinement. Cares were taken to avoid the Klein paradox by the 
dominance of the scalar component over the vector part. Two parameters 
variational method gives excellent and stable results. Our findings for the total 
energy per unit mass )(m

E , relativistic magnetic moment )( ar
rr

× , electromagnetic 

energy for a unit charge )1( r
 and magnetic moment of quarks were in good 

agreement with the exact solutions. 
 
 
 
 

 
* E-mail: shahnas@physics.utoronto.ca 

Introduction 
During the last decades efforts have been focused on 

the problem of quark confinement. A crucial point is to 
assume that the quarks are confined as taken in bag 
models [1], where the Lorentz invariance is assumed. In 
first approximation the quarks may be considered in a 
central potential, behaving as independent particles [2]. 
In the various versions of the QCD motivated models, 
the confining potentials are taken as a mixture of 
Lorentz scalar and vector parts. This is because a 
Lorentz vector potential in the Dirac equation cannot 
confine the particles, and the confining component 
 

 
Keywords: Quark confinement; Variational method 
which is the consequence of multigluon exchange must 
be a scalar. Due to the relativistic motion of at least light 

quarks, a relativistic treatment is necessary. However, 
the Dirac equation with both negative and positive 
energy solutions may lead to the Klein paradox. This 
difficulty may be resolved by the dominance of the 
scalar component over the vector component in the 
Dirac equation [3]. 

In most cases the Dirac equation must be solved by a 
numerical integration. In this direction the approximate 
analytical methods are important. Due to existence of a 
definite lower bound to the energy spectrum, the 
variational methods are often applied in nonrelativistic 
bound state problems. However a simple version of this 
technique cannot be immediately applied to the 
relativistic Dirac equation. In this work we apply a 
saddle point variational method [4-6] to the fundamental 
state of Dirac equation. 
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Mathematical Scheme 
The single particle Dirac equation is 

( )[ ] Ψ=Ψ+++=Ψ EVVmpH vs βα
rr

.  (1) 

where the particle is considered to be in the static 
Lorentz scalar (  ) and vector ( ) potentials. For 
the radial parts of the potentials we consider the general 
form 

Vs Vv

νμ rbVraV vs == ,  (2) 

denoting the variational parameters by R and , the 
radial wave function for the stationary state of the 
confined quark is considered to be 
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and  is the Pauli spinor. The free parameter χ λ  which 
allows deviation from the hydrogen-type and the 
Gaussian wave functions is taken as fixed during the 
variational calculation, though it enables us to optimize 
the total energy at the end. By the normalization 
condition one may obtain 
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The expectation value of the Hamiltonian may be 
cast into the form 

vs VVmTH +++= ββ  (7) 

where the kinetic term is given by 
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and for the potential terms we obtain 
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Finally it can be shown 

y
ymm

+
−

=
1
1β  (11) 

Now we apply the SPV procedure to the equation (1). 
The variation of H  with respect to the parameter  
gives 

R

[ vs VVT
RR

H
νβμ

∂
∂

−−−=
1 ]  (12) 

For the critical point condition 0
00 ,
=⎟

⎠
⎞

⎜
⎝
⎛

== γγ∂
∂

RRR
H , 

we get 

000 vs VVT νβμ +=  (13) 

which is in fact nothing more than the relativistic Virial 
theorem with the general form of [7] 
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VrT ∇=
rr

.  (14) 

In (13), the null subscripts stand for  and 
 , the critical point of 

R R= 0

γ γ= 0 H . The variation of 

H  with respect to the parameter  yields to γ

( )
( )

⎥⎦
⎤

+
−

′+
′−

−

⎢⎣
⎡

−
+

−+
+

=

y
myV

yD
Dy

V
Dy
DyTy

y
H

v

s

1
4

1
12

1
121

1
1 β

γγ∂
∂

 (15) 

where 

A
BD

A
BD

′
′

=′=  (16) 

By a little algebra for the condition 
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Finally the critical point ( ) may be obtained 
by solving the coupled equations (13) and (17). The 
sufficient condition for the critical point ( ) to be 
a saddle point is given by [8] 
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For the potentials of the type (2) we find 
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The simplest QCD-motivated potential has the form 

vs VVV +=  (21) 

where 
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known as the Cornell potential. Compared with the 
equation (2), it can be observed that 
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Hence for this special case, (13) yields 

000 vs VTV +=β  (24) 

The application of (24) in (17) results in 
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Meanwhile, taking into account the results of the 
expectation values obtained so far, (24) directly gives 
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From the relations (25) and (26) we derive 
A
B
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The coupled equations (30) and (31) may be reduced 
to 
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We solve this equation for γ 0  and hence  may be 

obtained from (25). It is remarkable that by the form of 

the constant a introduced in (23), the quantity 

R0

H
m

0  is 

independent of m. This point may be easily verified by 
application of (24) in (7) and m-dependency form of  
in (25). Putting everything together we get 

R0

These are sister equations for (25) and (27) to be 
solved for andR0 γ 0  in the case of power-law potential. 

 
Magnetic Moment of Quarks 
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In electrodynamics the magnetic moment 
r
μ  due to 

an electric current distribution ( )
r rJ re  is given by 
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An alternative potential which is commonly used in 
quark confinement is power-law potential. Allowing 
μ ν= , and noting that in this case and ′ =A A ′ =B B , 

the relations (9) and (10) lead to 

The electric current carried by a quark of charge  
in the state with a vector current of 

eq

Ψj m

),( 0 JJJ ≡ΨΨ= μμ γ  is 

( ) ( )rJeerJ qmjmjqe
rrrrr

=ΨΨ= + α  (36) ( ) ( )
y

BybaAbaRVVV vs +
−−+

=+=
1

μβ  (29) 

where 
The application of the SPV method leads to 
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For the ground state we have [9] 
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where where ( )μ r , the scalar magnetization density is given by 
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Table 1. SPV and the exact [5] results for Cornell potential 
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m
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( )αrr
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Group λ a b γ0 m
R0  SPV exact SPV exact  SPV exact 

1 1.00 
1.20 
2.00 

 
0.1 

 
0.4 

0.63 
0.46 
0.24 

0.60 
0.85 
1.6 

1.111 
1.108 
1.128 

 
1.108 

0.833 
0.793 
0.684 

 
0.79 

 0.692 
0.706 
0.718 

 
0.713 

2 1.00 
1.06 
2.00 

 
0.2 

 
0.8 

1.11 
0.98 
0.39 

0.27 
0.32 
0.92 

0.705 
0.720 
0.861 

 
0.720 

1.849 
1.735 
1.153 

 
1.82 

 0.458 
0.478 
0.583 

 
0.543 
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0.76 
0.49 
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1.436 
1.423 
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1.202 
1.046 

 
1.20 
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0.525 
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0.338 
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0.11 
0.14 
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In this case we get 

0
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1 y
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Results and Conclusion 

Our results for the Cornell potential are shown in 
Table 1. We have applied the SPV method [4,5] to the 

Hamiltonian (1) with the Gaussian and hydrogen-type 
wave functions. However the parameter λ  enables us to 
consider deviations from these wave functions. The 
present results for 1=λ  and 2=λ  are generally in 
agreement with the SPV results of ref. [5]. The critical 
point of H , i.e. ( )00 ,γR , has been calculated for 
different sets of potential parameters a, b and the free 
parameter of the wave function λ . We have tested the 
saddle point condition (18) for each set of these 
parameters. The SPV results for total energy per unit 
mass, the relativistic magnetic moment α

rr
×r  in units 

of quark magneton )( 2m
q  and the electromagnetic 

energy for a unit charge r
1  are compared with 

corresponding results based on exact calculations. These 
quantities have been obtained for six different sets of 
the potential parameters. In the second item of each 
group we have optimized the energy by variation of the 
free parameter .λ With this choice of ,λ the other 
quantities are also generally in better agreement with the 
exact results, compared with the results of the Gaussian 
and hydrogen-type trial wave functions. While the ratio 
of the scalar potential coefficient to the vector potential 
coefficient in the first two groups is 1

4 , in the second 
group the strength of the potentials has been raised by a 
factor of 2. This causes a reduction in E

m  and α
rr

×r  
while the electromagnetic energy for a unit charge 
increases. In the last two groups, this ratio has been 
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changed to 4, however the strengths of the coefficients 
are different. A comparison of the results obtained for 
the different groups shows that for a fixed ratio of the 
potential coefficients, simultaneous changes in the 
strengths of the potentials causes similar changes in 
physical quantities in these groups. For example the 
diminution of the quantity E

m  in the second group 
compared with the first group is about %35 and in the 
last group compared with the preceding group is about 
%34. However this situation is demolished when the 
ratio is altered. 

The results for the energy and the magnetic moment 
of the quarks are displayed in Table 2. The calculations 
have been carried on for the power law potential with 
a = b = 1.137 , 3−fm 2==νμ ,  and mMevmu 10= s = 
252Mev. The results are remarkable. 

The agreement between the results of two-parameter 
variational method and the exact [5,10] solutions is 
encouraging. We conclude that one may rely on the 
results of the SPV method in two and three-body 
relativistic bound state problems where the analytical 
solutions do not exist or where the reduced equations 
 

 
Table 2. SPV and exact [10] results for the energy and the 
magnetic moment ratios of the quarks for power-law potential 
(λ = 2) 

    E(Mev)  μ( μN ) 
Quark γ0 R0  SPV exact  SPV exact 
U 0.57 0.63  542 540  1.6 1.53 
S 0.38 0.56  665 664  - 0.59 -0.56 

 

indicate ambiguity in results [11]. In particular if a 
suitable choice of the wave function is used, the SPV 
method will lead to remarkable results. 
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