FUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS

B. Davvaz*

Department of Mathematics, Yazd University, Yazd, Islamic Republic of Iran

Abstract

In this paper, for a complete lattice \(L \), we introduce interval-valued \(L \)-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.

1. Introduction

Zadeh in [19] introduced the concept of a fuzzy subset of a non-empty set \(X \) as a function from \(X \) to [0,1]. Goguen in [10] generalized the fuzzy subset of \(X \), to \(L \)-fuzzy subset, as a function from \(X \) to a lattice \(L \).

Since Rosenfeld [18] in 1971 introduced the concept of fuzzy subgroups following Zadeh, fuzzy algebra theory has been developed by many researchers. Liu [12] defined the fuzzy ideals of a ring and discussed the operations on fuzzy ideals. Mukherjee and Sen [16], Malik and Mordeson [16], Mashinchi and Zahedi [14], Zahedi [21], showed the meaning of the fuzzy prime ideals and its nature. The notion of fuzzy ideals and its properties were applied to various areas: distributive lattice [2], BCK-algebra [17], hyperrings [6,8], near-rings [1,11], hypernear-rings [7].

In 1975, Zadeh [20] introduced the concept of interval-valued fuzzy subsets (in short written by i-v fuzzy sets), where the values of the membership functions are intervals of numbers instead of the numbers. In [4], Biswas defined interval-valued fuzzy subgroups of the same nature of Rosenfeld’s fuzzy subgroups.

In this paper, for a complete lattice \(L \), we define Interval-valued \(L \)-fuzzy ideals (prime ideals) of a near-ring, and we obtain an exact analogue of fuzzy ideals. In particular, we show there exists a one-to-one correspondence between the set of all \(f \)-invariant i-v \(L \)-fuzzy prime ideals of \(R \) and the set of all i-v \(L \)-fuzzy prime ideals of \(R' \), where \(R \) and \(R' \) are near-rings and \(f \) is a homomorphism from \(R \) onto \(R' \).

2. Basic Definitions

From now on this paper \(L \) is a complete lattice [3], i.e. there is a partial order \(\leq \) on \(L \) such that, for any \(S \subseteq L \), infimum of \(S \) and supremum of \(S \) exist and these will be denoted by \(\bigwedge_{s \in S} \{s\} \) and \(\bigvee_{s \in S} \{s\} \), respectively. In particular for any elements \(a,b \in L \), in \(f\{a,b\} \) and \(\sup\{a,b\} \) will be denoted by \(a \wedge b \) and \(a \vee b \), respectively. Also, \(L \) is a distributive lattice with a least element 0 and a greatest element 1. If \(a,b \in L \); we write \(a \geq b \) if \(b \leq a \), and \(a > b \) if \(a \geq b \) and \(a \neq b \).

Definition 2.1. Given two elements \(a,b \in L \) with \(a \leq b \), we define the following closed interval set:

\[
[a,b] = \{c \in L | a \leq c \leq b\}.
\]

Suppose \(D(L) \) denotes the family of all closed intervals of \(L \).

Keywords: Fuzzy set; Near-ring; Fuzzy ideal; Level set

* E-mail: davvaz@yazduni.net
Definition 2.2. Let \(I_1 = [a_i, b_i], \ I_2 = [a_2, b_2] \) and \(I_1 = [a_i, b_i] \) be elements of \(\mathcal{D}(L) \) then we define

\[
I_1 \wedge I_2 = [a_1 \wedge a_2, b_1 \wedge b_2],
\]

\[
I_1 \vee I_2 = [a_1 \vee a_2, b_1 \vee b_2],
\]

\[
\bigwedge_i \{I_i\} = \left[\bigwedge_i \{a_i\}, \bigwedge_i \{b_i\} \right],
\]

\[
\bigvee_i \{I_i\} = \left[\bigvee_i \{a_i\}, \bigvee_i \{b_i\} \right].
\]

We call \(I_2 \leq I_1 \) if and only if \(a_2 \leq a_1 \) and \(b_2 \leq b_1 \).

Definition 2.3. Let \(X \) be a non-empty set. An \(L \)-fuzzy subset \(F \) defined on \(X \) is given by

\[
F = \{(x, \mu_F(x)) | x \in X \}, \text{ where } \mu_F : X \rightarrow L.
\]

Definition 2.4. Let \(X \) be a non-empty set. An interval-valued \(L \)-fuzzy subset \(F \) defined on \(X \) is given by

\[
F = \{(x, [\mu^L_k(x), \mu^U_k(x)]) | x \in X \},
\]

where \(\mu^L_k \) and \(\mu^U_k \) are two \(L \)-fuzzy subsets of \(X \) such that \(\mu^L_k(x) \leq \mu^U_k(x) \) for all \(x \in X \).

Suppose \(\hat{\mu}_F(x) = [\mu^L_k(x), \mu^U_k(x)] \). If \(\mu^L_k(x) = \mu^U_k(x) = c \) where \(0 \leq c \leq 1 \), then we have \(\hat{\mu}_F(x) = [c, c] \) which we also assume, for the sake of convenience, to belong to \(\mathcal{D}(L) \). Thus \(\hat{\mu}_F(x) \in \mathcal{D}(L) \) for all \(x \in X \). Therefore the i-v fuzzy subset \(F \) is given by

\[
F = \{(x, \hat{\mu}_F(x)) | x \in X \}, \text{ where } \hat{\mu}_F : X \rightarrow \mathcal{D}(L).
\]

Definition 2.5. Let \(f \) be a mapping from a set \(X \) into a set \(Y \). Let \(A \) be an i-v \(L \)-fuzzy subset of \(X \) then the image of \(A \), i.e., \(f[A] \) is the i-v fuzzy subset of \(Y \) with the membership function defined by

\[
\hat{\mu}_{f[A]}(y) = \left\{ \begin{array}{ll}
\bigvee_{z \in f^{-1}(y)} \hat{\mu}_A(z) & \text{if } f^{-1}(y) \neq \emptyset \\
[0,0] & \text{otherwise}
\end{array} \right.
\]

for all \(y \in Y \).

Let \(B \) be an i-v \(L \)-fuzzy subset of \(Y \). Then the inverse image of \(B \), i.e., \(f^{-1}[B] \) is the i-v \(L \)-fuzzy subset of \(X \) with the membership function given by

\[
\hat{\mu}_{f^{-1}[B]}(x) = \hat{\mu}_B(f(x)) \quad \text{for all } x \in X.
\]

Definition 2.6. Let \(X \) and \(Y \) be any two non-empty sets and \(f : X \rightarrow Y \) be any function. An i-v \(L \)-fuzzy subset of \(F \) of \(X \) is called \(f \)-invariant if

\[
f(x) = f(y) \Rightarrow \hat{\mu}_F(x) = \hat{\mu}_F(y), \quad \text{where } x, y \in X.
\]

Definition 2.7. A non-empty set \(R \) with two binary operations + and \(\cdot \) is called a near-ring [5,15] if

1) \((R,+) \) is a group,
2) \((R, \cdot) \) is a semigroup,
3) \(x \cdot (y+z) = x \cdot y + x \cdot z \) for all \(x, y, z \in R \).

To be more precise, they are left near-rings because the left distributive law is satisfied. We will use the word near-ring to mean left near-ring. We denote \(xy \) instead of \(x \cdot y \). Note that \(x0 = 0 \) and \(x(-y) = -xy \) but in general \(0x \neq 0 \) for all \(x \in R \) [15, Lemma 1.10]. A near-ring \(R \) is called a zero symmetric if \(0x = 0 \) for all \(x \in R \).

Definition 2.8. Let \((R,+,-) \) be a near-ring. An ideal of \(R \) is a subset \(I \) of \(R \) such that

1) \((I,+,-) \) is a normal subgroup of \((R,+,-) \),
2) \(RI \subseteq I \),
3) \((r+i)s - rs \in I \) for all \(i \in I \) and \(r, s \in R \).

Note that if \(I \) satisfies (1) and (2) then it is called a left ideal of \(R \). If \(I \) satisfies (1) and (3) then it is called a right ideal of \(R \). Let \(P \) be an ideal of \(R \). We call \(P \) a prime ideal if for any ideal \(I, J \subseteq R \), \(IJ \subseteq P \) then \(I \subseteq P \) or \(J \subseteq P \).

i-v \(L \)-Fuzzy Ideals in a Near-Ring

In this section we define interval-valued \(L \)-fuzzy subnear-rings and ideals and then we explain some results in this connection.

Definition 3.1. Let \((R,+,-) \) be a near-ring. An i-v \(L \)-fuzzy subset \(F \) of \(R \) is called an i-v \(L \)-fuzzy subnear-ring, if the following hold:

1) \(\hat{\mu}_F(x) \wedge \hat{\mu}_F(y) \leq \hat{\mu}_F(x-y) \) for all \(x, y \in R \),
2) $\hat{\mu}_F(x) \land \hat{\mu}_F(y) \leq \hat{\mu}_F(x \cdot y)$ for all $x, y \in R$.

Furthermore F is called an i-v \mathcal{L}-fuzzy ideal of R, if F is an i-v \mathcal{L}-fuzzy subnear-ring of R and

3) $\hat{\mu}_F(x) = \hat{\mu}_F(y + x - y)$ for all $x, y \in R$,

4) $\hat{\mu}_F(x) \leq \hat{\mu}_F(xy)$ for all $x, y \in R$,

5) $\hat{\mu}_F(i) \leq \hat{\mu}_F((x + i)y - xy)$ for all $x, y, i \in R$.

Note that F is an i-v \mathcal{L}-fuzzy left ideal of R if it satisfies (1), (3) and (4), and F is an i-v \mathcal{L}-fuzzy right ideal of R if it satisfies (1), (2), (3) and (5).

Now, we give an example of an i-v \mathcal{L}-fuzzy ideal of a near-ring.

Example 3.2. Let $R = \{0, a, b, c\}$ be a set with two binary operations as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>0</td>
<td>a</td>
</tr>
</tbody>
</table>

Then $(R, +, \cdot)$ is a near-ring. Define an i-v \mathcal{L}-fuzzy subset F by membership function $\hat{\mu}_F : R \to \mathcal{D}(\mathcal{L})$ by $\hat{\mu}_F(b) = \hat{\mu}_F(c) < \hat{\mu}_F(a) < \hat{\mu}_F(0)$. Then F is an i-v \mathcal{L}-fuzzy ideal of R.

Lemma 3.3. For an i-v \mathcal{L}-fuzzy ideal F of a near-ring R, we have

$\hat{\mu}_F(x) = \hat{\mu}_F(-x) \leq \hat{\mu}_F(0)$ for all $x \in R$.

Proposition 3.4. Let F be an i-v \mathcal{L}-fuzzy ideal of R. If $\hat{\mu}_F(x) = \hat{\mu}_F(0)$ then $\hat{\mu}_F(x) = \hat{\mu}_F(y)$.

Proof. Assume that $\hat{\mu}_F(x - y) = \hat{\mu}_F(0)$. Then

$\hat{\mu}_F(x) = \hat{\mu}_F(x - y + y)$

$\geq \hat{\mu}_F(x - y) \land \hat{\mu}_F(y)$

$= \hat{\mu}_F(0) \land \hat{\mu}_F(y)$

$= \hat{\mu}_F(y)$.

Similarly, using $\hat{\mu}_F(y - x) = \hat{\mu}_F(x - y) = \hat{\mu}_F(0)$, we get $\hat{\mu}_F(y) \geq \hat{\mu}_F(x)$.

Corollary 3.5. $[\mu^L_F, \mu^R_F]$ is an i-v \mathcal{L}-fuzzy ideal of a near-ring R if and only if μ^L_F, μ^R_F are \mathcal{L}-fuzzy ideals of R. Now, we define

$F^L_t = \{x \in X | \mu^L_F(x) \geq t\}$ and

$F^U_s = \{x \in X | \mu^R_F(x) \geq s\}$.

Then $\hat{\mu}_F$ is an i-v \mathcal{L}-fuzzy ideal of R if and only if for every t, s where $0 \leq t \leq s \leq 1$, $F^L_t, F^U_s \neq \emptyset$ are ideals of R.

Definition 3.6. Let F_1 and F_2 be two i-v \mathcal{L}-fuzzy subsets of a near-ring R. Then $F_1 \cap F_2$ and $F_1 \cap F_2$ are defined as follows:

$\hat{\mu}_{F_1 \cap F_2} = \hat{\mu}_{F_1}(x) \land \hat{\mu}_{F_2}(x)$,

$\hat{\mu}_{F_1 \cap F_2} = \bigvee_{x \in yz} \{\hat{\mu}_{F_1}(y) \land \hat{\mu}_{F_2}(z)\}$.

$\hat{\mu}_{F_1 \cup F_2} (x) = \begin{cases} 0 & \text{if } x \text{ is not expressible as } x = yz \end{cases}$.

Lemma 3.7. Let R be a near-ring, we have

1) If F_1, F_2 are two i-v \mathcal{L}-fuzzy ideals of R (right or left) then $F_1 \cap F_2$ is an i-v \mathcal{L}-fuzzy ideal of R (right or left), respectively;

2) If R is a zero-symmetric and if F_1 is an i-v \mathcal{L}-fuzzy right ideal and F_2 is an i-v \mathcal{L}-fuzzy left ideal, then $F_1 \cap F_2 \subseteq F_1 \cap F_2$.

Proof. (1) It is an immediate consequence of Corollary 3.5 and Definition 3.6.

(2) We assume R is a zero symmetric near-ring. If $\hat{\mu}_{F_1 \cap F_2}(x) = 0$, there is nothing to prove. Otherwise

$\hat{\mu}_{F_1 \cap F_2} (x) = \bigvee_{x \in yz} \{\hat{\mu}_{F_1}(y) \land \hat{\mu}_{F_2}(z)\}$.

Since F_1 is an i-v \mathcal{L}-fuzzy left ideal, we have

$\hat{\mu}_{F_1}(z) \leq \hat{\mu}_{F_1}(yz) = \hat{\mu}_{F_1}(x)$,

and since F_1 is an i-v \mathcal{L}-fuzzy right ideal, we have

$\hat{\mu}_{F_1}(x) = \hat{\mu}_{F_1}(yz) = \hat{\mu}_{F_1}((0 + y)z - 0z) \geq \hat{\mu}_{F_1}(y)$.

Therefore
\[\hat{\mu}_{F^a|F^b} (x) \leq \hat{\mu}_{F^a} (x) \land \hat{\mu}_{F^b} (x) = \hat{\mu}_{F^a \cap F^b} (x). \]

Definition 3.8. Let \(X \) be a non-empty set and \(F \) be an i-v \(\mathcal{L} \)-fuzzy subset of \(X \). Then we define
\[
F_{[t,s]} = \{ x \in X | \hat{\mu}_{F} (x) \geq [t,s] \}.
\]
The set \(F_{[t,s]} \) is called the “level set” of \(F \).

It is easy to see that \(F_{[t,s]} \cap F_{[t',s']} = F_{[\max(t,t'), \min(s,s')]} \).

Now, we obtain the relation between an i-v \(\mathcal{L} \)-fuzzy ideal and level ideals. This relation is expressed in terms of a necessary and sufficient condition.

Theorem 3.9. Let \(R \) be a near-ring and \(F \) an i-v \(\mathcal{L} \)-fuzzy subset of \(R \). Then \(F \) is an i-v \(\mathcal{L} \)-fuzzy ideal of \(R \) if and only if for every \(t, s \) where \(0 \leq t \leq s \leq 1 \), \(F_{[t,s]} \neq \emptyset \) is an ideal of \(R \).

Proof. The proof is similar to the proof of Theorem 3.4 of [7], considering the suitable modification with using Definitions 2.4 and 3.1.

Definition 3.10. An i-v \(\mathcal{L} \)-fuzzy ideal \(P \) of a near-ring \(R \) is said to be prime if \(P \) is not constant function and for any i-v \(\mathcal{L} \)-fuzzy ideals \(F_1, F_2 \) in \(R \), \(F_1 \cap F_2 \subseteq P \) implies \(F_1 \subseteq P \) or \(F_2 \subseteq P \).

Proposition 3.11. Let \(P \) be an i-v \(\mathcal{L} \)-fuzzy prime ideal of a near-ring \(R \). Define
\[
\pi = \{ x \in R | \hat{\mu}_{P} (x) = \hat{\mu}_{P} (0) \},
\]
then \(\pi \) is a prime ideal in \(R \).

Proof. The proof is similar to the proof of Theorem 3.7 in [1].

Proposition 3.12. Let \(R \) be a near-ring and \(F_1, F_2 \) are i-v \(\mathcal{L} \)-fuzzy prime ideals of \(R \), then \(F_1 \cap F_2 \) is an i-v \(\mathcal{L} \)-fuzzy prime if and only if \(F_1 \subseteq F_2 \) or \(F_2 \subseteq F_1 \).

Proof. The proof is straightforward, in view of the fact that \(F_1 \cap F_2 \subseteq F_1 \cap F_2 \).

We have the following corollary which plays an important role in the determination of i-v \(\mathcal{L} \)-fuzzy prime ideals.

Corollary 3.13. Let \(R \) be a near-ring. Then every ideal of \(R \) is a level ideal of an i-v \(\mathcal{L} \)-fuzzy ideal of \(R \).

Proof. Let \(I \) be any ideal of a near-ring \(R \) and let \([a_1, a_2] \leq [\beta_1, \beta_2] \neq [0,0] \) be elements in \(\mathcal{D}(\mathcal{L}) \). Then the fuzzy subset \(F \) is defined as follows:
\[
\hat{\mu}_{F} (x) = \begin{cases}
[\beta_1, \beta_2] & \text{if } x \in I \\
[a_1, a_2] & \text{otherwise.}
\end{cases}
\]

We have \(I = F_{[\beta_1, \beta_2]} \) and by Theorem 3.9, it is enough to prove that \(F \) is an i-v \(\mathcal{L} \)-fuzzy ideal.

An element \([a_1, a_2] \neq [1,1] \) in \(\mathcal{D}(\mathcal{L}) \) is called “prime” if for any \([a_1, a_2], [b_1, b_2] \in \mathcal{D}(\mathcal{L}) \), \([a_1, a_2] \land [b_1, b_2] \leq [a_1, a_2] \) implies either \([a_1, a_2] \leq [a_1, a_2] \) or \([b_1, b_2] \leq [a_1, a_2] \).

Theorem 3.14. Let \(I \) be a prime ideal of a near-ring \(R \) and let \([a_1, a_2] \) be a prime element in \(\mathcal{D}(\mathcal{L}) \). Let \(P \) be the fuzzy subset of \(R \) defined by
\[
\hat{\mu}_{P} (x) = \begin{cases}
[1,1] & \text{if } x \in I \\
[a_1, a_2] & \text{otherwise.}
\end{cases}
\]

Then \(P \) is an i-v \(\mathcal{L} \)-fuzzy prime ideal.

Proof. By Corollary 3.13, \(P \) is clearly a non-constant i-v \(\mathcal{L} \)-fuzzy ideal. Let \(F_1 \) and \(F_2 \) be any i-v \(\mathcal{L} \)-fuzzy ideals and let \(F_1 \subseteq P, F_2 \subseteq P \). Then there exist \(x, y \) in \(R \), such that \(\hat{\mu}_{R} (x) \neq \hat{\mu}_{P} (x) \) and \(\hat{\mu}_{F_2} (x) \neq \hat{\mu}_{P} (x) \). This implies that \(\hat{\mu}_{F_1} (x) = \hat{\mu}_{P} (y) = [a_1, a_2] \) and hence \(x \not\in R \) and \(y \not\in R \). Since \(I \) is prime, there exists \(r \in R \) such that \(x r y \not\in I \). Now, we have \(\hat{\mu}_{F_1} (x) \leq [a_1, a_2] \) and \(\hat{\mu}_{F_2} (y) \leq [a_1, a_2] \) (otherwise \(\hat{\mu}_{F_1} (x) \leq [a_1, a_2] \) and since \([a_1, a_2] \) is prime, \(\hat{\mu}_{F_1} (x) \land \hat{\mu}_{F_2} (y) \leq [a_1, a_2] \) and hence \((F_1 \cap F_2)(x r y) \leq [a_1, a_2] = \hat{\mu}_{P} (x y) \) so that \(F_1 \cap F_2 \subseteq P \). Hence \(P \) is an i-v \(\mathcal{L} \)-fuzzy prime.

Lemma 3.15. Let \(f \) be a mapping from a non-empty set \(X \) into a non-empty set \(Y \), and let \(A, B \) be i-v \(\mathcal{L} \)-fuzzy subsets of \(X, Y \), respectively, such that
\[
\hat{\mu}_A = [\mu_A^L, \mu_A^U] : X \to \mathcal{D}(\mathcal{L}) \quad \text{and} \quad \hat{\mu}_B = [\mu_B^L, \mu_B^U] : Y \to \mathcal{D}(\mathcal{L}).
\]

Then
\[
\hat{\mu}_{f[A]} = [f(\mu_A^L), f(\mu_A^U)] \quad \text{and}
\]
Using Lemma 3.15, the following propositions are obvious.

Proposition 3.16. Let \(f \) be a homomorphism from a near ring \(R \) onto a near-ring \(R' \), and \(A \) be any \(f \)-invariant \(i \)-\(v \) \(L \)-fuzzy prime ideal of \(R \). Then \(f(A) \) is an \(i \)-\(v \) \(L \)-fuzzy prime ideal of \(R' \).

Proposition 3.17. Let \(f \) be a homomorphism from a near ring \(R \) onto a near-ring \(R' \), and \(B \) be any \(f \)-invariant \(i \)-\(v \) \(L \)-fuzzy prime ideal of \(R' \). Then \(f^{-1}(B) \) is an \(i \)-\(v \) \(L \)-fuzzy prime ideal of \(R \).

Theorem 3.18. Let \(f \) be a homomorphism from a near ring \(R \) onto a near-ring \(R' \), then the mapping \(A \to f(A) \) defines a one-to-one correspondence between the set of all \(f \)-invariant \(i \)-\(v \) \(L \)-fuzzy prime ideals of \(R \) and the set of all \(i \)-\(v \) \(L \)-fuzzy prime ideals of \(R' \).

References