SOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.

A. R. Zokayi^{*}

Department of Mathematics, Faculty of Science, Khaj-Nasir-Toosi University of Technology, Tehran, Islamic Republic of Iran

Abstract

Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.

Let us consider the following third order non-linear differential equation

$$x''' + ax' + f(x) = 0, \quad a > 0 \tag{1}$$

where f(x) is a continuous real-valued function with xf(x) > 0. Under this assumption, we shall establish the following theorem.

Theorem. Let us assume that there exist constants D > 0, $c_2 > 0$, α and β such that

(i)
$$a\alpha + f(x) \le 0 \le a\beta + f(x)$$
 for all $|x| \le D$

(ii)
$$c_2 > d$$
 where $d = \max(|\alpha|, |\beta|)$

(iii)
$$3M \le a^{3/2}(c_2 - d)$$
 with $M = ||f||_{\infty}$ where $||f||_{\infty} = \max |f(x)|$

(iv)
$$3m \le D$$
 where $m = \max(M, c_2 + d + \frac{6M}{a^{3/2}})$

Keywords: Autonomous differential equation; Banach space; Schauder's fixed theorem point; Boundary conditions

*Email: zokayi@sc.kntu.ac.ir

 $|x| \leq D$

Then there exists at least one $\omega \in [\frac{\pi}{2\sqrt{a}}, \frac{3\pi}{2\sqrt{a}}]$ such that Equation (1) has a non-trivial solution satisfying the following boundary conditions:

$$x'(0) = x'(\omega), \qquad \int_0^{\omega} f(x(s))ds = 0 \tag{2}$$

Proof. For each $c_1 \in [\alpha, \beta]$, let us define the function $x(t)=x(t,c_1)$ as the solution of the following integral equation:

$$x(t) = l + c_1 \sin\sqrt{at} + c_2 \cos\sqrt{at} + F(t, x(t)),$$

$$F(t, x(t)) = -a^{-1} \int_0^t [1 - \cos\sqrt{a}(t-s)] f(x(s)) ds$$
(3)

Obviously,

$$x'(t) = \sqrt{a} \{ c_1 \cos \sqrt{at} - c_2 \sin \sqrt{at} - a^{-1} \int_0^t f(x(s)) \sin \sqrt{a}(t-s) ds \}$$

One can easily verify that x(t) satisfies Equation (1). By (iii) for $|x| \le D$, we obtain

$$\left|a^{-1}\int_{0}^{t} f(x(s))\sin\sqrt{a}(t-s)ds\right| \leq \frac{3M}{a^{3/2}}.$$

Let H(t) = x'(0) - x'(t), then clearly we have

Zokayi

$$H(\frac{3\pi}{2\sqrt{a}}) = \sqrt{a} \left\{ c_1 + c_2 - a^{-1} \int_0^{\frac{3\pi}{2\sqrt{a}}} f(x(s)) \cos \sqrt{a} \, s ds \right\},\,$$

and

$$H(\frac{\pi}{2\sqrt{a}}) = \sqrt{a} \left\{ c_1 - c_2 + a^{-1} \int_0^{\frac{\pi}{2\sqrt{a}}} f(x(s)) \cos \sqrt{a} s ds \right\}.$$

For $|x| \le D$, we obtain the inequalities:

$$\left| \int_{0}^{\frac{3\pi}{2\sqrt{a}}} f(x(s)) \cos \sqrt{a} \, s ds \right| \leq \frac{3M}{\sqrt{a}}$$

and

$$\left|\int_0^{\frac{\pi}{2\sqrt{a}}} f(x(s)) \cos \sqrt{a} s ds\right| \leq \frac{M}{\sqrt{a}} \ .$$

Hence,

$$H(\frac{3\pi}{2\sqrt{a}}) \le \frac{3M}{a} + \sqrt{a}(c_1 - c_2) \le \frac{3M}{a} + \sqrt{a}(d - c_2) \le 0$$

and

$$H(\frac{\pi}{2\sqrt{a}}) \ge -\frac{M}{a} + \sqrt{a}(c_1 + c_2) = \frac{-M + a^{3/2}(c_1 + c_2)}{a} \ge \frac{-3M + a^{3/2}(c_1 - c_2)}{a} \ge 0$$

Therefore, $H(\frac{3\pi}{2\sqrt{a}})H(\frac{\pi}{2\sqrt{a}}) \le 0$. If $H(\frac{3\pi}{2\sqrt{a}}) = 0$ or $H(\frac{\pi}{2\sqrt{a}}) = 0$ then $x'(0) = x'(\omega)$ with $\omega = \frac{3\pi}{2\sqrt{a}}$ or $\frac{\pi}{2\sqrt{a}}$. Hence, w.l.o.g, we may assume $H(\frac{3\pi}{2\sqrt{a}})H(\frac{\pi}{2\sqrt{a}}) < 0$ and the obvious continuity of H(t) implies the existence of one $\omega \in (\frac{\pi}{2\sqrt{a}}, \frac{3\pi}{2\sqrt{a}})$ such that $H(\omega)=0$ i.e. $x'(0) = x'(\omega)$. To complete the proof of the Theorem, we introduce the Banach space $B := C[0, \omega] \times \Re$. With norm $\|(\delta, l)\| := \|\delta\|_{\infty} + \|l\|$, $\|\delta\|_{\infty} := \max_{0 \le t \le \omega} |\delta(t)|$. Now we define the map $T: B \to B$ by the rule: $T(\delta, l) = (\delta^*, l^*)$ where

$$\delta^* = l + c_1 \sin \sqrt{at} + c_2 \cos \sqrt{at} + F(t, \delta(t))$$

and

$$l^* = l - \frac{1}{\omega} \int_0^{\omega} f(\delta^*(s)) ds$$

Then *T* is a continuous map from *B* into *B*. Next, we are going to prove that the closed subset K^* of *B* defined by

$$K^* := \left\{ \left(\delta, l \right) \in B : \left| \delta \right| \le D, \left| l \right| \le 2m \right\}$$

is T-invariant. Since

$$\left| \delta^* \right| \le l + d + c_2 + \frac{6M}{a^{3/2}} \le 2m + m = 3m \le D$$

it only remains to prove $|l^*| \le 2m$. For the proof of $|l^*| \le 2m$, three distinct cases will be considered.

Case I. $|l| \le m$: Since $|\delta^*| \le D$, it follows that

$$\left|\frac{1}{\omega}\int_0^{\omega} f(\delta^*(s))ds\right| \le M \le m$$

and hence,

$$-2m \le l - \frac{1}{\omega} \int_0^{\omega} f(\delta^*(s)) ds \le 2m \quad \text{i.e.} \quad \left| l^* \right| \le 2m \,. \tag{4}$$

Case II. m < l < 2m: Obviously

$$\left|\delta^* - l\right| \le d + c_2 + \frac{6M}{a^{3/2}} \le m$$
,

which implies that $3m \ge \delta^* \ge l-m > 0$ and hence, $f(\delta^*) > 0$, since by our assumption $\delta^* f(\delta^*) > 0$. Therefore, we obtain

$$0 < \frac{1}{\omega} \int_0^{\omega} f(\delta^*) ds \le M \le m \,,$$

which clearly means:

$$0 < l - m \le l^* \le l \le 2m \quad \text{or} \quad \left| l^* \right| \le 2m \tag{5}$$

Case III. $-2m \le l < -m$: With similar arguments we obtain $-3m < \delta^* < 0$ implying

$$0 < -\frac{1}{\omega} \int_0^{\omega} f(\delta^*) ds < m$$

and hence,

$$-2m \le l < l^* = l - \frac{1}{\omega} \int_0^{\omega} f(\delta^*(s)) ds < l + m < 0 \quad \text{i.e. } \left| l^* \right| \le 2m$$
(6)

Thus, K^* is a *T*-invariant closed subset of the Banach space *B*. Using Schauder's fixed point Theorem (for more discussion on the subject see [1,4], there exists at least one element $(\delta, \gamma) \in K^*$ such that $T(\delta, \gamma) = (\delta, \gamma)$ i.e.

$$\delta(t) = \delta(t;c_1) = \gamma + c_1 \sin \sqrt{at} + c_2 \cos \sqrt{at} + F(t,\delta(t;c_1))$$

and

 $\int_0^{\omega} (\delta(s;c_1)) ds = 0 ,$

which completes the proof of the Theorem.

Example. Let us consider the equation $x''' + x' + \sin x = 0$. With taking $\alpha = -1$, $\beta = -1$, d = 1, $c_2 = 4$, D = 34, m = 11, M = 1, all assumptions of the Theorem are fulfilled. Hence, there exists $\omega \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ such that

 $x'(0) = x'(\omega)$ and $\int_0^{\omega} f \sin(x(s)) ds = 0$.

References

- 1. Ansorge, R. and Mehri, B. A generalization of a theorem of Reissig for certain non-autonomous differential equation, *Accad. Naz. Lincie*, **61**, 202-210, (1976).
- Cooper, R. M. On the existence of periodic solutions in general two-dimensional differential system, *J. Math. Anal. Appl.*, 40, 243-257, (1972).
- 3. Hartman, P. Ordinary differential equations, John Wiley, New York, (1964).
- Lazer, A. C. On the Schauder's fixed point theorem and forced second order non-linear oscillations, *J. Math. Anal.*, 21, 421-425, (1968).